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ABSTRACT Most of the controlled plants in the industrial field are complex in structure and the models are
difficult to obtain, thus tuning of the controller parameters without a detailed model is critical in practice.
This paper proposes a specific parameter tuning formula for second-order linear active disturbance rejection
controller (LADRC) based on step response curves of the controlled plant. The proposed tuning formula
is only related to the two special points on the step response curve of the plant. Simulation results for a
wide range of systems show that the proposed method can achieve satisfactory performance in disturbance
rejection and robustness, and the Bode plots show that this tuning method also performs well in noise
suppression. The effect is also verified with a practical heater temperature control experiment.

INDEX TERMS Linear active disturbance rejection controllers, parameter tuning, step response curves,
the temperature control lab system.

I. INTRODUCTION
Among the practical industrial process control, the most pop-
ular control strategy is PID control. The three parameters of
PID controller have a very clear connection with the perfor-
mance of the system, so it can be easily tuned online. How-
ever, with the increasing complexity of industrial processes,
the control effect of traditional PID controller may not be
satisfactory due to its specific structure. Active disturbance
rejection control (ADRC) proposed by Han is composed of
tracking differentiator (TD), extended state observer(ESO)
and nonlinear state error feedback(NLSEF). The main pur-
pose of the tracking differentiator is to arrange the transition
process of the closed-loop system by tracking the differential
output and the fastest synthesis function of the differentiator,
so that the system can realize tracking without overshoot,
and solve the contradiction between rapidity and overshoot.
ADRC combines the internal uncertainty (constant or time-
varying, linear or nonlinear) and external uncertainty into a
‘total disturbance’. By constructing an ESO, the ‘total distur-
bance’ is estimated and compensated in real time, so strong
disturbance rejection ability may be achieved [1]. In the
past 20 years, ADRC has been widely used in the fields of
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electromechanical system, power generation process, chemi-
cal process, etc., [2]–[4].

There are still some problems to be solved in ADRC tech-
nology, among which parameter tuning is the most important
one. The traditional ADRC structure needs lots of parameters
to tune and the tuning procedure is complex. At present,
optimization algorithm is the most commonly used tuning
method of ADRC [5], [6]. However, the convergence of the
optimization algorithm depends on the initial value. How to
select the initial value is always a problem, which can not
be well applied in engineering application. To simplify the
structure of ADRC, Gao proposed the ‘linear’ version of
ADRC(LADRC) that uses the estimated output and its deriva-
tives for linear state feedback, and transformed the design
of linear extend state observer (LESO) and state feedback
into the selection of two parameters of the observer band-
width and the controller bandwidth [7], [8]. The structure
of LADRC is much simpler, and the parameter tuning is
simplified, so LADRC found wide applications in practice.
Up to now, there are many tuning methods. Reference [9]
proposes a method that takes the desired settling time as the
only parameter to tune. References [10], [11] claim that the
parameters of LADRC can be obtained from PID parameters.
References [12], [13] propose to tune the LADRC parameters
using the extra model information. Reference [14] proposes a
tuning formula for second-order LADRC for first-order plus
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dead-time (FOPDT) model. The above tuning methods either
need specific model information or need to set some known
conditions in advance, such as settling time. It is difficult
to know the information in practice. Futhermore, [15] pro-
poses a tuning formula for LADRC based on relay feedback
experiment without modeling, but the relay feedback experi-
ment needs the system to produce stable constant amplitude
oscillation, which is very dangerous in the practical industrial
process. Therefore, how to determine the tuning parameters
of LADRC without a detailed model is still a problem to be
solved, and this tuning method should be meaningful to guide
engineering practice.

As a way to improve the automation of control system, PID
auto-tuning products has been widely used in the market [16].
The purpose of PID auto-tuning is to quickly get the initial
value of the controller for an acceptable performance. The
auto-tuning steps are shown as follows [17]: (1) By giving
an excitation signal to the system, the output data of the
system is obtained by sampling; (2) The dynamic charac-
teristic parameters of the system are obtained by using the
output data of the system; (3) The controller is auto-tuned by
characteristic parameters. At present, many large companies
(ABB, Honeywell) use the step identification or the relay
feedback identification strategy for PID auto-tuning products.
Thus as a potential replacement of PID control technique,
it is required that there is a similar auto-tuning method for
LADRC. The contribution of this paper is to propose a tuning
formula for second-order LADRC based on step response,
which is simple and easy to master. The tuning parameters
of LADRC can be quickly obtained by only two time points
(t1, t2) on the step response curve.
The rest of the paper is arranged as follows: Section 2 intro-

duces the principle of LADRC; Section 3 describes
the identification methods using step response curves;
Section 4 introduces the relevant derivation process of the
proposed tuning formula for LADRC; Simulation results are
given in Section 5; A practical temperature control exper-
iment is implemented in Section 6 and the conclusion is
described in Section 7.

II. LINEAR ACTIVE DISTURBANCE REJECTION CONTROL
Consider a second order plant [7]:

ÿ = bu+ g(t, y, ẏ, d) (1)

where d is the external disturbance, b is the high frequency
gain and g(t, y, ẏ, d) is the comprehensive characteristics of
unknown dynamics and external disturbances of the system.
For most processes, the exact value of b is difficult to obtain,
so the plant model can be assumed as:

ÿ = b0u+ ω (2)

where ω = g + (b − b0)u is the total disturbance to be
estimated as the extended state.

Let:

x1 = y, x2 = ẏ, x3 = w(y, u, d) (3)

write model (2) in the form of state space expression [7]:{
ẋ = Aex + Beu+ Eeω̇
y = Cex

(4)

where

Ae =

 0 1 0
0 0 1
0 0 0

 , Be =
 0
b0
0

 , Ce = [ 1 0 0
]
,

Ee =

 0
0
1

 (5)

Therefore, the following Luenberger observer is designed
for the system to estimate the total disturbance:{

ż = Aez+ Beu+ Lo(y− ŷ)
ŷ = Cez

(6)

where Lo is the observer gain:

Lo =
[
β1 β2 β3

]T (7)

The stability and observation ability of ESO are analyzed
in [18]. Suppose the total disturbance ω is bounded. When
Ae − LoCe is asymptotically stable, z1, z2 will approach the
output y and ẏ, and z3 will approach the disturbance ω.
Therefore, z3 can be used to suppress ω quickly.

The following state feedback control rate is adopted:

u0 = k1(r − y)+ k2(ṙ − ẏ) (8)

where r is the reference input and the final control law:

u =
u0 − z3
b0

=
k1(r − z1)+ k2(ṙ − z2)− z3

b0
= Ko(r̂ − z)

(9)

where

r̂ =
[
r ṙ 0

]T
, z =

[
z1 z2 z3

]T (10)

The controller gain Ko is defined as:

Ko =
[
k1 k2 1

]
/b0 (11)

FIGURE 1. The structure of second-order LADRC.

In summary, a second-order LADRC is realized in the
following state space and its structure is shown in Figure 1:{
ż = Aez+Beu+Lo(y−Cez)= (Ae−LoCe)z+Beu+Loy
u = Ko(r̂ − z)

(12)
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And the feedback loop transfer function from y to u is

Kc(s) =
u(s)
y(s)

=
(β3+β1k1+β2k2)s2+(β2k1+β3k2)s+β3k1
b0s(s2 + (β1 + k2)s+ (β2 + k1 + β1k2))

(13)

According to the above design process, a linear ADRC
needs to tune the following three parameters: b0, Lo
andKo. [7] proposed the concept of bandwidth and the tuning
parameters are transformed into the selection of ωc and ωo.
Therefore, for the second-order LADRC, the relationship
between Ko, Lo and ωc, ωo are shown as follows:

k1 = ω2
c , k2 = 2ζωc, β1 = 3ωo, β2 = 3ω2

o, β3 = ω
3
o (14)

where ζ is a damping ratio to improve the closed-loop perfor-
mance. Thus the tuning of LADRC becomes tuning the four
parameters ωc, ωo, b0 and ζ .

III. PARAMETER IDENTIFICATION BASED ON
STEP RESPONSE CURVES
A step signal is easy to generate and has low harm to the con-
trolled process, so the control system identification based on
a step test is widely used in the practical industrial field. The
step test system identification has the following characteris-
tics: (1) the generation of a step signal is simple; (2) whether
the system is open-loop or closed-loop, step test identification
can be applied; (3) there is no need to have a detailed under-
standing of the system structure. Due to these advantages,
these classical representative methods based on step test have
always been favored by field engineers [19], [20].

A step excitation input is added to a stable and self-
balanced plant. It can be roughly divided into two categories
by its output response. One is the monotonic rising FOPDT
plant without overshoot, and the other is the second-order
underdamped plant with oscillation [21]. This paper mainly
studies FOPDT model as shown in Eq.(15) and designs
auto-tuning formula for it.

G(s) =
Ke−τ s

Ts+ 1
(15)

A. TWO-POINT APPROACH [22]
For a FOPDT model, the static gain can be obtained from
the following formula according to a step experiment shown
in Figure 2:

K =
y(∞)− y(0)

1u
(16)

where 1u is the amplitude of the step input, y(0) and y(∞)
are the initial value and the final value of the step response.

The relationship between the output y and the time t is
shown in Table 1 [23].

Let t1 and t2 be the time when the step response curve
reaches 39.3% and 63.2% of the steady value, from Table 1,
we have 

T
2
+ τ = t1

T + τ = t2
(17)

FIGURE 2. Illustration of two point approach.

TABLE 1. The relationship between y and t .

Solving the equation (17), the value of T and τ can be
obtained {

T = 2(t2 − t1)
τ = 2t1 − t2

(18)

Using (16) and (18), it is not difficult to identify a FOPDT
model from the reaction curve via the two-point approach.

B. FLEXION TANGENT APPROACH [24]
The flexion tangent approach is easy to obtain the FOPDT
model of the controlled plant. Different from the two-point
approach, this method needs to find the inflection point of
the curve, that is, the point with the largest slope of the
curve. As shown in Figure 3, the tangent passing through
the inflection point P intersects the time axis at N-point and
the steady value at M-point. Then the delay time τ and the
time constant T are respectively:

τ = ON , T = NQ (19)

where NQ is the projection of NM on the time axis.

C. AREA METHOD [16]
Consider the response of a stable self-balancing process
under step signal input. As shown in Figure 4, y(∞) is the
steady value and tr is the rising time.
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FIGURE 3. Illustration of flexion tangent approach.

FIGURE 4. Illustration of area method.

According to the area method, the parameters indicated
in Figure 4 are calculated as follows [25]:

A0 =
∫
+∞

0
(y(∞)− y(t))dt

tr =
A0
y(∞)

A1 =
∫ tr
0 y(t)dt

(20)

Further, the parameters in FOPDT model can be identified
by

T =
eA1
y(∞)

, τ =
A0
y(∞)

− T (21)

Based on these commonly used methods to identify model
parameters by step response, [26] and [27] further proposed
some methods to obtain PID parameters directly through step
response, and achieved good control effect. Thus it will be
feasible to obtain the parameters of LADRC by step response.
Remark 1: All three methods need step disturbance exper-

iment. In a complex industrial process, the determination
of the amplitude of step disturbance is very important. The
amplitude should be large enough to reduce the influence
of other disturbances on the test results. However, if the
amplitude of disturbance is too large, the nonlinear factors
of the plant itself will increase. In addition, before the step

disturbance, the system should be operated in steady state for
a period of time to ensure the accuracy of the step response
data.
Remark 2: From the above analysis of the three identifi-

cation methods, it is not difficult to see that the area method
has high accuracy and is suitable for irregular response curve,
but the calculation is complex, it needs to calculate the
parameters through integration. In flexion tangent approach,
the inflection point of tangent method is difficult to deter-
mine, so the tangent at inflection point will be inaccurate,
resulting in low identification accuracy. Reference [23] anal-
yses and compares different identification methods and their
corresponding identification accuracy, and the identification
error as a measurement index is used to evaluate the iden-
tification accuracy. From the data and simulation, it can be
seen that the identification errors of the area method and the
two-point approach are similar for most systems with regular
step response curves. It can be predicted that the identification
accuracy of area method may be higher for the system with
irregular step response curve. The purpose of this paper is
to design a simple and practical tuning formula for LADRC.
Due to the excellent performance of LADRC, the require-
ments for identification accuracy are not high. Thus the two-
point approach will be used in the subsequent derivation and
experiment in this paper.

IV. DERIVATION OF TUNING FORMULA FOR LADRC
BASED ON STEP RESPONSE
A. DERIVATION OF TUNING FORMULA
For system (15), there are many PID tuning formu-
las [28]–[30] and LADRC tuning formulas [14], [31], but they
need to know the parameters of FOPDT model. A LADRC
tuning formula based on the two point approach of step
response is proposed in this paper. The parameter value of
LADRC can be obtained directly from the two points of step
response. The formula is deduced as follows.

A parallel PID tuning formula with good control effect for
large delay plant is proposed [32], which is called MO-PID.

Kp =
1
4K

(1+ 3.26
T
τ
)

Ti = (
1

3.9τ
+

1
T
)−1 +

1
3
τ

Td = (
3.26
τ
+

1
T
)−1

(22)

Consider the system (15) with a normalized delay

Ḡ(s) =
e−τ̄ s

s+ 1
(23)

As τ̄ increases from 0.1 to 10 with an appropriate step,
we can get the corresponding PID parameters by the for-
mula (22). And then we can calculate the corresponding
parameters ω̄c, ω̄o, b̄0, ζ̄ of LADRC by the method of [9].
The procedure to get the parameters of a second-order
LADRC from the parameters of a PID goes as follows:
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1) Choose α so that the following equation has a positive
solution, take it as the observer bandwidth ωo.

ω5
o − αKdω

2
o + 3αKpωo − 6αKi = 0 (24)

2) Compute the controller bandwidth ωc and the damping
ratio ζ as:

ωc =

√
αKi
β3
, ζ =

αKp − αKiβ2/β3
2ωcβ3

(25)

3) Compute b0 as

b0 =
α

β2 + k1 + β1k2
(26)

FIGURE 5. The relationship between τ̄ and ω̄c , ω̄o, b̄0, ζ̄ .

The relationship between τ̄ and ω̄c, ω̄o, b̄0, ζ̄ is shown
in Figure 5. It is shown that ω̄c, ω̄o and b̄0 are all in approx-
imate linear relationship with 1/τ̄ , which can be fitted by
linear function. However, the relationship between τ̄ and ζ̄
cannot be fitted by straight line, so we fit it by Nike func-
tion. Thus for the system (23), the following LADRC tuning
formula can be obtained

ω̄c = 2.0327
1
τ̄
+ 1.6910

ω̄o = 12.1663
1
τ̄
+ 2.5825

b̄0 = 33.3936
1
τ̄
+ 8.4602

ζ̄ = 0.0852(τ̄ + 0.3494)+
0.8632

τ̄ + 0.3494
+ 1.1820

(27)

Further considering the tuning formula for system (15),
the relationship between the tuning parameters ωc, ωo, b0, ζ
for system (15) and the tuning parameters ω̄c, ω̄o, b̄0, ζ̄ for
system (23) is given as follows [31].

ωc =
ω̄c

T
, ωo =

ω̄o

T
, b = b̄

K
T 2 , ζ = ζ̄ , τ̄ =

τ

T
(28)

By substituting (18) and (27) into equation (28), the tuning
formula for system (15) can be obtained

ωc =
2.0327
2t1 − t2

+
1.6910

2 (t2 − t1)

ωo =
12.1663
2t1 − t2

+
2.5825

2 (t2 − t1)

b0 = K
(

33.3936
2 (t2 − t1) (2t1 − t2)

+
8.4602

(2 (t2 − t1))2

)
ζ = 0.0852

(
2t1 − t2
2 (t2 − t1)

+ 0.3494
)

+
0.8632

2t1 − t2
2 (t2 − t1)

+ 0.3494
+ 1.1820

(29)

where t1 and t2 are the time when the step response curve
reaches 39.3% and 63.2% of the steady value if the initial
value is zero. K is the steady-state gain and can be obtained
by Eq.(16). It can be seen from (29) that it is easy to tune the
parameters for LADRC by using the tuning formula proposed
in this paper. t1, t2 and K can be easily obtained by a step
response experiment.

B. ROBUSTNESS MEASURE
In order to measure the robustness and performance of the
system, robustness measure is a comprehensive index to ana-
lyze the robustness and disturbance rejection performance
of the system. There are usually two forms of measurement
index of robustness.

Ms = ‖S‖∞ = max
ω

∣∣∣∣ 1
1+ L(jω)

∣∣∣∣ (30)

Mp = ‖T‖∞ = max
ω

∣∣∣∣ L(jω)
1+ L(jω)

∣∣∣∣ (31)

where L(s) = P(s)Kc(s) is the open-loop transfer function of
the system.Ms is a good measure of mid- and low frequency
uncertainty. The largerMs, the stronger the disturbance rejec-
tion ability is. Mp is a good measure of mid- and high fre-
quency uncertainty, the noise of the system is usually high
frequency. The smallerMp, the stronger the noise suppression
ability is and the stronger the robustness stability is. There-
fore, for the full frequency uncertainty, it is not appropriate
to measure only one ofMs orMp. It may be more appropriate
to consider a combination ofMs and Mp [33].

It is assumed that the plant has the following uncertainties
at the same time.

P1 = (I −11)−1P(I +12),11,12 ∈ H∞ (32)

Suppose a normalized left coprime factorization of P is
P = M̃−1Ñ , we have

P1 = (M̃ − M̃11)−1(Ñ + Ñ12)

= : (M̃ +1M )−1(Ñ +1N ) (33)

Compared with the uncertainty of coprime factors [34],
the uncertainty of Eq.(33) contains additional structural infor-
mation (1M = −M̃11,1N = Ñ12), so the analysis of
robustness can be simplified.
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TABLE 2. Systems for testing.

Suppose that the controller Kc is a controller which can
make the controlled plant P stable, and then make the follow-
ing definition.

M : =
[

(I + PKc)−1 (I + PKc)−1P
−Kc(I + PKc)−1 −Kc(I + PKc)−1P

]
,

1 : =

[
11 0
0 12

]
(34)

Using the small µ theorem [35], the closed-loop system
under the controller Kc is robust and stable for all uncertain-
ties P1(‖1‖∞ ≤ γ ), if and only if (35) holds

ε := µ1(M ) < 1/γ (35)

Therefore, µ1(M ) can be used as a measure of the robust-
ness of the system. A robustness index measure of single loop
system is proposed in [33].

ε = sup
ω
(‖S‖∞ + ‖T‖∞) (36)

where ε is the combination of Ms and Mp, which is a com-
prehensive index to measure the robust stability and distur-
bance rejection performance of the system. The larger ε is,
the stronger disturbance rejection performance of the system
is, and the weaker the robust stability is. The smaller ε is,
the stronger the robust stability is and the weaker the distur-
bance rejection ability is. In general, the value of ε is between
3 and 5 is the best. If the system ε is 4, it means that the system
can be stable as long as the uncertainty of input and output is
within 1/4 ≈ 25%.

V. SIMULATION
In this section, benchmark systemsG1,G2,G3,G4,G5 in [36]
and high-order systems G6, G7, G8 in [21] shown in Table 2
are used to illustrate the validity of the formula (29). In order
to better evaluate the dynamic performance and robustness of
the system, we use the settling time (±2%) and the overshoot
under a unit step setpoint disturbance at t=0s and a unit step
input disturbance at appropriate time to analyze the dynamic

performance of the system, and use the robustness measure
to measure the robustness of the system.
Figure 6 shows the response of G1 under different con-

trollers. Because our tuning formula is designed based on
FOPDT system, good performance can be achieved for
these three standard FOPDT systems. For the system G1
with large T

/
τ , for both tracking and disturbance rejection

responses, the overshoot is smaller and the settling time is
shorter under the proposed tuning formula (29). To ensure the
better disturbance rejection performance, the tuning formula
has to sacrifice a little bit of robustness, which is shown by
the slightly larger robustness measure in Table 3. The specific
controller parameters and performance indices are shown
in Table 3. For the smaller T

/
τ , that is, the delay-dominated

system, the effect of the proposed formula is slightly worse
than that of [14] and [21]. The main reason is that when using
a straight line to fit the data of ωc, there is errors for large
delays. We can reduce ωc, or increase b0 to slow down the
response speed and reduce the overshoot.

In general, the design of the controller is a process of
seeking balance between noise suppression and disturbance
suppression. In order to measure the noise suppression per-
formance of the proposed tuning formula, the Bode plots of
different controllers for G1 systems are shown in Figure 7.
The low frequency of the Bode plots reflects the integral
performance, which indicates the requirements of the con-
troller for the steady state error. The intermediate frequency
should make the system have enough bandwidth to ensure the
amplitude margin and the phase margin of the system. For the
high frequency of Bode plots, we hope that the high frequency
attenuation is as fast as possible, and the high frequency gain
is as small as possible, so that the noise suppression ability
is strong enough. Figure 7 shows that the proposed LADRC
and LADRC in [14] have approximate attenuation speed and
noise suppression capability.
G2, G3, G4, G5 are non-oscillatory and can be regarded

as FOPDT models approximatively, so it is expected that the
proposed tuning formula (29) can achieve good performance,
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FIGURE 6. Responses of G1 under different controllers.

FIGURE 7. Bode plots of different controllers for G1.

TABLE 3. Parameters of the controllers and performance indices of the system G1.

which is verified by Figure 8-11. The parameters of the
controllers and the performance indices for these systems are
shown in Table 5-8 in appendix. For most of the systems in

G2, G3, G4, G5, the values of τ/T are between 0.1 and 1.7,
which belong to the balanced and time-dominated systems.
It can be predicted that our tuning formulas (29) can achieve
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FIGURE 8. Responses of G2 under different controllers.

FIGURE 9. Responses of G3 under different controllers.

FIGURE 10. Responses of G4 under different controllers.

FIGURE 11. Responses of G5 under different controllers.

good effect, which is also confirmed by the response curve
in Figure 8-11 and performance indices in Table 5-8. It should
be noted that for the case of α = 2 inG4, since the τ/T of the

approximate FOPDT model is approximately equal to 2.06,
which belongs to the case of larger τ/T , our formula slightly
oscillates, but the overall effect is fine.
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FIGURE 12. Responses of G6 under different controllers.

FIGURE 13. The temperature control lab.

TABLE 4. Comparison of performance indices between LADRC and
AMIGO-PID.

Further, some complex higher-order systems are studied
to verify the applicability of the proposed formula. The
responses are shown in Figure 12. The relevant controller
parameters and performance indices are shown in Table 9
in appendix. It should be emphasized that, for the slightly
oscillatory under-damped system G8, the LADRC controller

tuned by the proposed formula can still stabilize it, which
shows that the proposed method is highly adaptable.

VI. EXPERIMENTAL VERIFICATION
TCLab(temperature control lab) is a temperature con-
trol experimental device with a microcontroller as shown
in Figure 13(a) [37]. As a hardware benchmark test
device, TCLab is widely used in the teaching of process
control [38], [39]. The TCLab device is printed circuit board
(PCB) shield, in which there are transistors and thermis-
tors as heaters and temperature sensors, and an Arduino
microcontroller is connected for temperature regulation.
The control algorithm of the microcontroller can be written
by user. After applying a step response to the device, it is
found that the temperature response is actually a second-order
system with a time constant of about 2.9 minutes and a
static gain of 0.9

◦C
%heater . The difficulty of the experiment is

that it is easy to be affected by environmental factors, such
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TABLE 5. Parameters of the controllers and performance indices of the systemG2.

TABLE 6. Parameters of the controllers and performance indices of the system G3.

as ambient temperature, power supply output and airflow
(nearby computer fan), etc. The slight disturbance of these
factors will make the plant dynamic characteristics have a big
fluctuation. In the face of such a ‘‘model uncertainty’’ system,
how to quickly get the initial value of the controller will be a
very difficult problem.

Figure 13(b) shows the whole idea of using step response
method to obtain the parameters of LADRC. The step
response data of the system is shown in Figure 14, where the

initial value of the temperature is 24.78◦C and a step input
change from 0 to 50 (%) at t=10s.

The steady gain can be obtained by the formula (16).

K =
y(∞)− y(0)

1u
=

66.81− 24.78
50

= 0.84 (37)

And the corresponding time of 39.3% and 63.2% of
y(∞)− y(0) in the step response data is

t1 = 100; t2 = 172.5 (38)

180878 VOLUME 8, 2020



W. Cui et al.: Tuning of LADRCs Based On Step Response Curves

TABLE 7. Parameters of the controllers and performance indices of the system G4.

TABLE 8. Parameters of the controllers and performance indices of the system G5.

Thus the parameters for LADRC is obtained as follows by
submitting (37) and (38) into (29).

ωc = 0.0856; ωo = 0.4602; b0 = 0.0074; ζ = 2.8292;

(39)

In order to better test the control effect of our proposed
formula, a practical AMIGO-PID is used to compare with our

tuning formula.

KPID(s) = Kp(1+
1
Tis
+

Td s
Td
N s+ 1

) (40)

where

Kp = 6.6513; Ti = 64.4521; Td = 6.9414; N = 20
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TABLE 9. Parameters of the controllers and performance indices of the system G6,G7,G8.

FIGURE 14. Step response of the open-loop system.

FIGURE 15. The response of the closed-loop system under LADRC (39).

Figure 15 shows the response curves of the plant output y
and the controller output u under the parameters of LADRC
by Eq.(39) and the parameters of AMIGO-PID by Eq.(40),
where a step setpoint is changed from 30◦C to 50◦C at t=0s,
and a step input disturbance with amplitude 40% is inserted
at t=300s. From Table 4, it can be read that the tracking

overshoot and the tracking settling time (±5%) of the system
are 1% and ts = 156s respectively, the overshoot and the
settling time (±5%) under the input disturbance are 28.3%
and ts = 188s respectively. Compared with AMIGO-PID,
the tuning formula (29) can achieve better tracking and sim-
ilar disturbance rejection performance for this system. It can
be seen from the output of the controller, the oscillation of
LADRC is smaller and smoother.

VII. CONCLUSION
In this paper, a simple and practical method is proposed
to tune the parameters for second-order LADRC via step
test. The parameters of LADRC can be determined by two
points on the step response curves quickly. Simulation results
show that the tuning formula is applicable to a wide range
of systems, and can achieve good performance for FOPDT
systems and high-order non-oscillatory systems. The practi-
cal temperature control experiment also illustrates the effec-
tiveness of the tuning formula. The method can be quickly
grasped by control engineers and provides initial parameters
for second-order LADRC. The parameters can be re-tuned
online to achieve better performance if necessary. Since the
tuning formula Eq.(29) is not suitable for the oscillation
system G8 in Table 2, the tuning method of LADRC for the
system with oscillation will be studied in the future work.
Especially, the control of heavy oscillation system is always
a difficult problem in engineering control, it is necessary to
try to solve it.

APPENDIX
See Tables 5–9.
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