
Received August 20, 2020, accepted September 12, 2020, date of publication October 2, 2020, date of current version October 23, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3028428

Hybrid Obfuscation Technique to Protect Source
Code From Prohibited Software
Reverse Engineering
ASMA’A MAHFOUD HEZAM AL-HAKIMI , ABU BAKAR MD SULTAN ,
ABDUL AZIM ABDUL GHANI , (Member, IEEE), NORHAYATI MOHD ALI,
AND NOVIA INDRIATY ADMODISASTRO
Department of Software Engineering and Information System, Faculty of Computer Science and Information Technology, Universiti Putra Malaysia (UPM),
Serdang 43400, Malaysia

Corresponding author: Asma’a Mahfoud Hezam Al-Hakimi (selfemoon@gmail.com)

This work was supported by the Universiti Putra Malaysia.

ABSTRACT In this research, a new Hybrid Obfuscation Technique was proposed to prevent prohibited
Reverse Engineering. The proposed hybrid technique contains three approaches; first approach is string
encryption. The string encryption is about adding amathematical equationwith arrays and loops to the strings
in the code to hide the meaning. Second approach is renaming system keywords to Unicode to increase the
difficulty and complexity of the code. Third approach is transforming identifiers to junk code to hide the
meaning and increase the complexity of the code. An experiment was conducted to evaluate the proposed
Hybrid Obfuscation Technique. The experiment contains two phases; the first phase was conducting reverse
engineering against java applications that do not use any protection to determine the ability of reversing
tools to read the compiled code. The second phase was conducting reverse engineering against the proposed
technique to evaluate the effectiveness of it. The experiment of the hybrid obfuscation technique was to
test output correctness, syntax, reversed code errors, flow test, identifiers names test, methods, and classes
correctness test. With these parameters, it was possible to determine the ability of the proposed technique to
defend the attack. The experiment has presented good and promising results, where it was nearly impossible
for the reversing tool to read the obfuscated code. Even the revealed code did not perform as well as original
and obfuscated code.

INDEX TERMS Obfuscation techniques, reverse engineering (RE), anti reverse engineering, intellectual
property, software security, piracy.

I. INTRODUCTION
Intellectual property theft is one of the most challenging
problems of technological era. According to the Business
software alliance global software piracy rate went noticeably
high which lead to a loss of $53billion in 2008. Due to the
lack of security, software vendors have implemented security
algorithms, techniques, and tools, but with the help of reverse
engineering tools, software reversers are able to reveal the
security algorithms to extract the original code from the
source file [1].

IT industry loses tens of billions of dollars due to secu-
rity attacks such as reverse engineering. Code obfuscation

The associate editor coordinating the review of this manuscript and

approving it for publication was Mervat Adib Bamiah .

techniques experienced such attacks by transforming code
into patterns that resist the attacks. The use of popular lan-
guages such as java increases an attacker’s ability to steal
intellectual property (IP), as the source program is translated
to an intermediate format retaining most of the informa-
tion such as meaningful variables names present in source
code [2]. An attacker can easily reconstruct source code
from intermediate formats to extract sensitive information.
Hence, there is a need for development of techniques and
schemes to obfuscate sensitive parts of software to protect it
from reverse engineering attacks [3]. Every organization is
having its own intellectual property and it is a big challenge
for them to protect their data from software piracy or reverse
engineering. Reverse Engineering may damage the software
purchaser’s business directly. There are two general ways

187326 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-4038-5203
https://orcid.org/0000-0002-8962-0112
https://orcid.org/0000-0002-1719-7335
https://orcid.org/0000-0001-5692-9992

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

to protect intellectual property, legally or technically [4].
Legally, such as getting copyrights or signing legal contracts
against creating duplicates. And technically where the owners
implement protection for their software. The better idea is to
use obfuscation, which is a novel area of research in the field
of software protection, and gaining more importance in this
present digital era [5].

Obfuscation is known to be the most common and effec-
tive technique to prevent prohibited Reverse Engineering.
However, none of the current obfuscation techniques meet
and satisfy all the obfuscation effectiveness criteria to resist
Reverse Engineering [6], [7].

A determined attacker, after spending enough time to
inspect obfuscated code, might locate the functionality to
alter the functions and succeed. The renaming obfuscation,
layout obfuscation, and source code obfuscation can be
attacked by the reversing tools that are able to perform anal-
ysis to create a new name for the identifiers that are used in
the source file [8].

All theoretical research on software protection via obfus-
cation typically points to negative results in terms of the exis-
tence of perfect obfuscators. There is no general obfuscation
algorithm exists that can hide all information leaked by a vari-
ant program based on the notion of a virtual black box [9].
The basic impossibility result states that it is impossible to
achieve perfect semantic security where the variant leaks no
more information than the input/output relationships of the
original program [10].

Most of the developers have practiced using only one
obfuscation technique to protect the code and used the tech-
nique for certain part only of the code. Having one technique
to protect the code is proven not to be effective enough to
prevent prohibited reverse engineering, these approaches do
not help to protect the software when the attacker is the end-
user. A determined attacker, after spending enough time to
inspect obfuscated code, might locate the functionality to
alter the functions.

Obfuscation techniques are implemented with other
approaches, such as code replacement/update, code tamper-
ing detection, protections updating by that the attackers get a
limited amount of time to complete their objective.

Reversing tools are currently advanced as they can cre-
ate new code from the obfuscated code that performs
the same output even though the original code is obfus-
cated [11]. It is necessary to enhance the source code
obfuscation to use different approaches from the renaming
techniques in one source file to increase the confusion and
complication [12].

Ordinary obfuscation techniques do not have the ability
to prevent reverse engineering, as the reversing tools are
very advanced and can analyze the code. Having an ordinary
obfuscation technique is equal to not having one at all in the
source file. Based on the researchers a merged obfuscation
technique is well known to provide better protection that hav-
ing an obfuscation technique that contains only one approach
of protection [13].

This article contains several sections, first section is to
discuss the related work to obfuscation techniques, then dis-
cuss the limitations of the current obfuscation techniques.
The contribution is discussed through phases. Experimenta-
tion will be discussed in two phases. The first phase was
an experiment against the java applications that do not use
protection against reverse engineering. The second phase
of experimentation is an experiment against the proposed
hybrid technique to determine the effectiveness of it. Then
a comparison between the two phases was discussed.

II. RELATED WORK
Anti-reverse engineering techniques are going towards obfus-
cation due to its power to transform the code into differ-
ent presentations. Obfuscation opens a room for innovation
where the developer can use different languages in pro-
gramming, a language that only the owner can understand
what it is and what it does [14]. Obfuscation consists of
code transformations that make a program more difficult to
understand by changing its structure [15]. While preserving
the original functionalities. The obfuscation process aims to
modify the compiled code such that its functionalities are
preserved, while its understandability is compromised for a
human reader or the de-compilation is made unsuccessful.

Obfuscation methods include code re-ordering, transfor-
mation to replace meaningful identifier names in the original
code with meaningless random names (identifier renaming),
junk code insertions, unconditional jumps, conditional jumps,
transparent branch insertion, variable reassigning, random
dead code, merge local integers, string encoding, generation
of bogus middle-level code, suppression of constants, mesh-
ing of control flows and many more.

Several approaches and techniques have been developed,
based on the application of different kinds of transforma-
tion to the original source (or machine) code [16]. Obfus-
cating transformations can be classified according to their
target, and the kind of modification they operate on the
code [17], [18]. Obfuscation techniques based on the renam-
ing of the identifiers have such techniques that can be clas-
sified as a form of layout obfuscation since they reduce the
information available to a human reader which examines the
target program, or of preventive obfuscation, since they aim
to prevent the de-compilation or to produce an incorrect Java
source code [6]. Such techniques try to hide the structure and
the behavior information embedded in the identifiers of a Java
program by replacing them with meaningless or confounding
identifiers to make more difficult the task of the reverse
engineer. It is worth noticing that the information associated
with an identifier is completely lost after the renaming.

Furthermore, by replacing the identifiers of a Java byte-
code with new ones that are illegal with respect to the
Java language specification, such techniques try to make the
de-compilation process impossible or make the de-compiler
return unusable source code. Such effects will not be easily
countered by the existing de-compilation technologies forc-
ing the cracker to spend lots of time to understand and debug

VOLUME 8, 2020 187327

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

the decompiled programmanually. According to the power of
obfuscation techniques it is effective to delay Reverse Engi-
neering. However, there are certain limitations that appear in
current techniques. Table 1. displays some of the limitations.

The above techniques are common protection. An ordinary
user will not be able to break in the software program, but the
reverser will be able to break in easily. These techniques do
not prevent reverse engineering.

Reversing tools do not require a long time or days to
break the software program. An enhancement of obfuscation
techniques was possible by merging certain approaches of
obfuscation techniques.

The most effective obfuscation technique that can be
merged is string encryption and renaming techniques. String
encryption was very beneficial when it was used with
a mathematical equation to create a chaos stream while
de-compiling. The renaming approach takes two parts, first
part where identifiers were converted to junk to hide their
meaning, second part where the system keywords were
converted to UNICODE to increase the complication of
the source file look, and to prevent reading it in case it
was stolen.

III. CONTRIBUTION
The contribution of this research is to introduce a new hybrid
obfuscation technique to overcome the obfuscation of Java
programs based on the renaming of the identifiers and string
encryption. The proposed technique was based on the hybrid
renaming of the identifiers in the source file to create extreme
confusion for both the reversing tools the human examining
the source file without permission.

Independently of the obfuscating renaming strategy used,
it was possible to contrast the obfuscation by renaming the
identifiers and string encryption in two phases, to start over-
come the preventive obfuscation, then to add type informa-
tion to the identifiers in the source code to contrast layout
obfuscation. In the first phase, the renaming of the hybrid
obfuscation technique contains two sections. The first section
is to rename the identifiers to junk code to hide the meaning
and increase complexity and confuse the de-compiler while
reversing. The second section is to replace system keywords
with UNICODE.

The second phase, the string encryption, where a group of
random mathematical equations is inserted into the strings
to encrypt them. A framework of transformation was imple-
mented to present the steps of the hybrid obfuscation tech-
nique. The proposed technique can be used to support many
languages such as Arabic, English, Chinese, and so on.
Using this technique opens a possibility to program using
different languages instead of English which increases the
level of protection. The proposed hybrid obfuscation tech-
nique includes three phases of renaming. In these phases,
three renaming approaches were applied in the source file.
The proposed hybrid obfuscation technique aims to confuse
or mislead the reverser as much as possible while reading
the reversed code after obfuscation. The technique should

TABLE 1. Current obfuscation limitation.

produce the same output as the original code. The follow-
ing sections discuss the phases of the hybrid obfuscation
technique.

187328 VOLUME 8, 2020

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

A. STRING ENCRYPTION APPROACH
Amathematical equation with character array and loops were
used to encrypt the strings in the source code. Encrypting the
strings create confusion during de-compiling. The reversing
tool will not be able to translate the symbols created by
the mathematical equation. The compiler will not be able
to translate the symbols which were converted to byte code
during compiling time. The purpose of the string encryption
is to create a chaos stream in the source file and in the reversed
file after decompiling. The advantage of string encryption is
that the mathematical which was used to create the chaos
stream can be used N times in the source code, also several X
amounts of mathematical equations can be used in the same
source file [22]. The more chaos stream created in the source
file the more confusion created during decompiling.

The mathematical equations that were used in the source
file for the sake of this researchwere derived from the concept
that Java programming language provides the feature where
the mathematical equation can be used to convert the charac-
ters into different symbols.

Usually, the equation will contain a fixed value to ensure
accurate output. For the sake for this research, the fixed value
for the equation is 2 that can be considered as the value of X.
There are other two values in the equation that are the values
of Y and Z. The values of Y and Z must be carefully declared
and assigned to produce the accurate output.
If the value of Y is 17 then the value of Z is 2.
If the value of Y is 18 then the value of Z is 3.
If the value of Y is 16 then the value of Z is 1.
According to the above conditions, if the value of Y incre-

ments by 1 value then the value of Z must increment by
1 value as well. The assigned value of X is 2, it can be changed
as well to increment by 1 value, and then the value of Y
must decrement by 3 values to get the calculation right for
accurate output. The result of calculating the three values
must be always 17, therefore the value of X is fixed but it
can decrement by 1 value, to increment the value of Y by
1 value as well. To prevent errors the value of Xwas fixed at 2.
The values of Y and Z can be incremented and decremented
accurately to allow using more mathematical equations in the
source file. The final equation as Char = V/2+ Y+ Z.

B. UNICODE RENAMING APPROACH
The Unicode transformation was used to rename the system
keywords. The purpose of this renaming is to increase the
complication of the code in the source file. In this case,
when the attacker reads the source file will not be able to
get the actual meaning of the code. This approach is very
beneficial before reversing, in the case of stealing the source
file, the reader will not be able to get the actual meaning
of the code, the reader has to translate the entire code to
understand the purpose of it. However, the Unicode might
be easy to translate, yet the system key words do not carry
much meaning as the classes and variables in the functions
and methods.

C. IDENTIFIERS RENAMING TO JUNK APPROACH
Identifiers will be renamed to junk to hide the meaning
of them. The purpose of this conversion is to mislead the
reverser while reading the source file. The measurement of
this approach was conducted by experiment to validate the
effectiveness of the output after obfuscation transformation
and to determine the uncovered code after reversing the
obfuscated code. The following sections present an explana-
tion in detail about the mechanism of the three approaches.
First section discusses the Unicode renaming obfuscation.
Second section discusses string encryption obfuscation. Third
section discusses the mathematical equation used to encrypt
the strings in the source file. Fourth section discusses the
identifiers renaming to junk obfuscation. Fifth section dis-
cusses the possibility to merge the three approaches in one
source file to create preventative transformation and Displays
the results of the merging. Fig 1 demonstrates the Hybrid
Obfuscation Technique. The proposed technique has changed
the form of the code and complicated the look of it. The com-
plication of the codes has created confusion while reading the
source file and while reversing the class file.

FIGURE 1. Hybrid obfuscation technique.

1) FIRST APPROACH UNICODE RENAMING OBFUSCATION
Unicode is a standard design that uniquely encodes charac-
ters written in any language. Unicode uses Hexadecimal to
express the character. Unicode is the standard for encoding,
representation, and handling of text on computers. There are
136,755 are defined in the Unicode which grant an opportu-
nity to use it widely [25].

This research has used Unicode to rename the system
keywords, the conversion will lead to confusion, where by
the reader will not be able to extract the meaning of the
code without manually translating it or using a reversing tool

VOLUME 8, 2020 187329

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

TABLE 2. System keywords converted to Unicode.

after compiling the source code to class file which contains
the bytecode. The following algorithm Displays the transfor-
mation to UNICODE. Table 2 displays an example of java
system keywords converted to Unicode.

Algorithm 1 Unicode Transformation
BEGIN
Get initial code
Get system keyword codes
Apply UNICODE transformation

END

2) SECOND APPROACH STRING ENCRYPTION
OBFUSCATION
String encryption is well known in most of the programming
languages such as C / C++, Java, Python, C#, and PHP.
There are several methods to encrypt the strings. This section
discusses the string encryption obfuscation technique. Java
programming language allows mathematical equations to be
used with arrays and loops to encrypt the strings in the
source file to create a chaos stream as a method to hide the
meaning of it.

Current string encryption such as symmetric Cipher inserts
only one mathematical equation to hide the meaning. The
encryption of the mathematical equation is however readable
by the compiler and confuses the reader. For the proposed
hybrid obfuscation technique, mathematical string encryption
was used to encrypt the strings in the source file. The math-
ematical encryption was inserted with character array in for
loop in the source file.

The purpose of the mathematical equation is to confuse the
reader and complicate the look of the code. Increasing the
number of the string encryptions and mathematical equations
in the source file will complicate the process of decompiling.

3) MATHEMATICAL EQUATION TO ENCRYPT STRINGS
The equation which was used to encrypt the strings in the
source code is associated with beneficial attributes associated
with non-beneficial attributes Y indicates the ideal (best)
value of the considered attribute among the values of the
attribute for different alternatives the fixed and best value for
the equation is 2 this value will not be changed. In the case
of beneficial attributes (i.e., those of which higher values are
desirable for the given application), Y indicates the higher
value of the attribute, and the highest value which will be used
for the equation is 17.

In the case of non-beneficial attributes, Z indicates the
lower value of the attribute. Z indicates the lowest value of
the considered attribute among the values of the attribute for
different alternatives, the lowest value which will be used
is 2. In the case of beneficial attributes, Z indicates the lower
value of the attribute. In the case of non-beneficial attributes,
Y indicates the higher value of the attribute. Below equation
displays the string encryption transformation.
Char = V/2+ Y+ Z.
The following algorithm displays the steps of string

encryption.

Algorithm 2 String Encryption
BEGIN
Get initial code
Start String
For (Define integer x:’’text string’’.to char array)
BEGIN
Print (Char)(x / 2 + vj - vi)

END
END

Print new line
END

According to the above algorithm, there is a possibility to
use a different mathematical equation for string encryption to
transform the characters to different symbols, Fig. 2. demon-
strates an example of code after applying string encryption in
the source file.

FIGURE 2. Code after string encryption.

The approach of using string encryption by applying math-
ematical equation in array and loops. A (character array)
and (For loop) help to convert the messages from English
to symbols. Fig 3. demonstrates the actual message before
applying string encryption.

187330 VOLUME 8, 2020

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

FIGURE 3. Original code before string encryption.

4) THIRD PHASE IDENTIFIERS RENAMING TO JUNK
OBFUSCATION
The third phase which was used in the new proposed hybrid
obfuscation techniquewas renaming identifiers to junk obfus-
cation. The main purpose of the junk renaming is to create a
complicated code that is difficult to understand and difficult
to get a meaning out of it.

The renaming junk obfuscation works for confusing the
reversing tool that leads to wrong analysis, therefore produce
wrong codes. Junk conversion creates an opportunity to create
a variety of languages while developing the software for the
sake of protection. The class file contains the junk code after
compiling the source file.

After using the junk conversion, the converted code will
be converted again to junk in the class file which increases
the level of protection. The following algorithm is to trans-
form identifiers into junk. Fig 4. demonstrates the code after
converting to junk.

FIGURE 4. Code after converting to Junk code.

Algorithm 3 Identifiers Transformation
BEGIN
Get initial code
Get identifiers
Transformation Begin
Convert characters to junk
Transformation END

END

5) APPLYING HYBRID OBFUSCATION TECHNIQUE IN THE
SOURCE CODE
Java development is based on object orientation whereas the
compiler runs the application based on components, unlike
structured programs that are developed by C programming
language. Therefore, obfuscating the code will not create
problemwhile compiling intomachine language or byte code.
To use this hybrid obfuscation technique, certain steps must
be followed; first step is to use the object junk renaming
obfuscation.

This conversion must be done first to prevent confu-
sion and errors when the obfuscation process is running.

Second step is to use string encryption obfuscation; this
technique must be done secondly, for the developer to encrypt
all the strings at once. Final step is Unicode renaming obfus-
cation technique. Carrying out the Hybrid obfuscation tech-
nique increases the security level of the code and complicates
the reversing process.

The string encryption makes the obfuscation technique
more effective in terms of securing the code, as it contains
so many symbols that help to confuse the de-compiler while
parsing and analysis. The following snippet Displays the code
before and after using obfuscation.

The Hybrid Obfuscation Technique is effective as it con-
fuses and the reversing tool while reversing the class file.
The reversing tool has translated the junk code to another
junk code, and it has translated the encrypted strings to
random meaningless numbers. The reversing tool could not
perform an analysis of the obfuscated code. Reversing tools
have produced errors and illogical code after reversing the
obfuscated code. This Hybrid Obfuscation Technique was
tested to evaluate the effectiveness and correctness of the code
with four reversing tools.

IV. EXPERIMENT
The experiment consists of two phases. First phase is to test
the applications that are not using any protection technique
to determine the need of java applications for protection. The
applications that are used for the experiment are procedural
application, image application, object-oriented application,
and an obfuscated application [26]. The parameters used for
the experiment are:

a. Output correctness
b. Syntax and flow
c. Compiling testing
d. Identifiers names

Second phase of experiment was an attempt to reverse the
code after inserting the hybrid obfuscation technique into
the source code. The reversing tools used for the experi-
ment are CAVAJ, JAD, DJ, and JD. The parameters for the
experiment are:

a. Output correctness
b. Syntax
c. Error testing (Reversing code compiling test)
d. Flow test
e. Identifiers names.
f. Decrypt string test

During the experiment, we have calculated total lines of
code (LOC) of the reversed code before and after obfuscation,
total errors of compiled reversed file before after obfuscation.
This calculation has numerically determined the strength of
the proposed hybrid obfuscation technique. the hypothesis of
the experiment is:
H1: Hybrid obfuscation techniques do not significantly

decrease the ability of the reverser to change the original
code.
H2: Hybrid obfuscation techniques significantly decrease

the ability of the reverser to change the original code.

VOLUME 8, 2020 187331

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

A. FIRST PHASE OF EXPERIMENT
There are five cases from four different types of software
applications that are developed by java. The purpose of the
first experiment to demonstrate with evidence the ability of
reversing tools to reveal the software’s code.

1) PROCEDURAL MATH APPLICATION
Class file was inserted into CAVAJ reversing tool to reveal
the original code. Fig 5. demonstrates original and reversed
code.

FIGURE 5. Original and reversed code.

The reversing tool has revealed the code of the application
with some changes of the identifier’s names. Some of the
structure and definitions have changed as well. The reversed
code has generated same output.

The reversing tool has changed the variables names and the
structure of printing; however, the output of the reversed code
was same as the original code Table 3 Displays the translation
of code before and after reversing.

The next procedure is to calculate the number of lines
(LOC), libraries, and methods. The calculation is presented
in Table 4. The reversing tool should be able to reveal the
code successfully if there is no protection technique used.

Total LOC has increased by four lines as compare to the
original code. The reversing tool has added extra libraries.

The reversed code is running efficiently like the original
code. To determine how much the reversing tool was able
to uncover from the original code, we get total (LOC) of
reversed code minus total (LOC) of original code and get
the differences. The extra lines define the strength of the
reversing tool and the defense level of the original code.
• Total line of reversed code = 48
• Total lines of original code = 44
• Difference = 4

TABLE 3. Code translation.

TABLE 4. Original code vs reversed code calculation.

The reversing tools have added up to four extra lines of code
to the original code. The reversing tool was able to reveal the
code, analyze it, and add extra code for better performance.
There was not any hidden code. 100% of the code revealed.

2) CCES, CANCER CARE EXPERT SYSTEM
The class file was inserted to the interface of CAVAJ to
reseal the original code. The applicationwaswrittenwith Java
programming language. The application is based on graphics
where there is an interface for the user to use the system,
which means, graphic libraries are included in the system.
Fig 6 demonstrates the code after reversing.

The reversing tools have discovered the code of the appli-
cation with some changes of the variables and classes names.
Some of the structure and definitions have changed as well.

The reversing tool has produced an error while reversing,
however the reversed code is running and provided same
output as original code. Table 5 displays the code before and
after reversing.

The reversing tool was able to read the code even though
there was an error during reversing. This means, the reverser
can reverse the unprotected code and determine the meaning
of it. Reversing tool was able to do analysis on the origi-
nal code. The reversing tool has changed the logic of the

187332 VOLUME 8, 2020

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

FIGURE 6. Code after reversing.

code, variables names, and structure. With all these changes,
the output is same with original code.

The next procedure is to calculate the (LOC), libraries, and
methods. The calculation is presented in Table 6. the reversing
tool should be able to reveal the code successfully if there is
no protection technique used.

Total number of lines has increased by thirty-one lines as
compare to the original code. Even there are less libraries
generated by the reversing tool. The reversed code is running
efficiently like the original code. To find out how much the
reversing tool was able to reveal from the original code,
we get total (LOC) of reversed minus total (LOC) of origi-
nal code and get the differences. The extra lines define the
strength of the reversing tool and the defense level of the
original code.
• Total lines of reversed code = 148
• Total lines of original code = 117
• Difference = 31

The reversing tools have added up to 33 extra lines of code
to the original code. The reversing tool was able to reveal the
code, analyze it, and add extra code for better performance.
100% of the codewas revealed. Fig 7 demonstrates the output
of the reversed code.

The reversing tool had the ability to uncover from the
original code, we get total (LOC) of reversed code minus
total lines of original code and get the differences. Table 7.
Displays the differences.

Total number of lines has increased by 56 lines as com-
pare to the original code. Even there are less libraries were
revealed by the reversing tool. The reversed code is running

TABLE 5. Original code before and after reversing.

TABLE 6. Original and reversed code calculation.

efficiently like the original code. The reversed code is quite
different from the original, it however provides the same
output as original code.

VOLUME 8, 2020 187333

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

FIGURE 7. Output of reversed code.

TABLE 7. Original and reversed code calculation.

To find out how much the reversing tools was able to
uncover from the original code, we get total (LOC) of
reversed code minus total lines of original code and get
the differences. The extra lines define the strength of the
reversing tool and the defense level of the original code
• Total line of reversed code = 477
• Total lines of original code = 421
• Difference = 56

The reversing tools have added up to 56 extra lines of code
to the original code. The reversing tool was able to reveal the
code, analyze it, and add extra code for better performance.
100% of the code was revealed.

B. SECOND PHASE OF EXPERIMENT
In the experimentation, four reversing tools were used against
the hybrid obfuscation technique. The purpose of the exper-
iment is to determine the effectiveness of the technique and
how much can the reversing tool uncover and read from the
obfuscated code.

Four reversing tools were used for this experiment;
the tools are CAVAJ, JAD, DJ, and JD. Table 8 Displays the
parameters used for every reversing tool. At the end of the
experiment, the results were compared with the research

TABLE 8. Parameters used for the second phase experiment.

hypothesis to determine the success of the new proposed
hybrid obfuscation technique.

The parameters are distributed among the reversing tools
based on their behavior towards the obfuscated code.
For example, JD only tested the identifiers names because it
can reveal the entire code, therefore, there was no need to test
the rest of parameters.

C. FIRST PRESENTATION OF TOOLS WILL BE CAVAJ
REVERSING TOOL
1) CAVAJ REVERSING TOOL, (OUTPUT CORRECTNESS) TEST
This reversing tool was used to de-compile hybrid obfuscated
code. Fig 8 demonstrates the output of reversed obfuscated
code.

FIGURE 8. Output of reversed code.

187334 VOLUME 8, 2020

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

The reversing tool has generated an error message while
reversing the obfuscated code. Due to the string encryption
used in the hybrid obfuscation technique, the compiler was
not able to read it and translated.

The output of the messages in the code was a series of
random numbers that have no meaning. The reversing tool
has generated an error message notifies that parsing was not
possible.

To determine the strength of the reversing tool against the
hybrid technique, total (LOC) of the reversed original file will
be compared with total (LOC) of obfuscated reversed file.
• Total LOC of original reversed file: 48
• Total LOC of obfuscated reversed file: 20
• Difference between original file and reversed file:
48 - 20 = 28

The reversing tool was not able to discover 28 lines of obfus-
cated code. There was some series of random numbers were
added to the decompiled code that leaded to error during
running the code.

2) CAVAJ REVERSING TOOL, SYNTAX TEST
The reversing tool has generated an error message while
reversing the obfuscated code. Due to the identifiers renaming
used in the hybrid obfuscation technique, the compiler was
not able to read the junk and was not able to translate it or
analyze it. Fig 9 demonstrates the output of reversed obfus-
cated code.

FIGURE 9. Results of reversed obfuscated code.

Table 9 displays the translation of the unreadable output.
The reversing tool was not able to read the encrypted

strings, and encrypted identifiers. Due to heavy obfuscation,
the overall flow of the code has changed after reversing.

To determine the strength of the reversing tool against
the hybrid technique, total number of lines of the reversed

TABLE 9. Unreadable code translation.

TABLE 10. Output analysis.

original file will be compared with total number of lines of
obfuscated reversed file.
• Total LOC of original reversed file: 48
• Total LOC of obfuscated reversed file: 21
• Difference between original file and reversed file:
48 - 21 = 27

The reversing tool did not have the ability to discover 27 lines
of obfuscated code. There was a series of random num-
bers added to the decompiled code that leaded to error
Table 11 displays the analysis of the output.

3) CAVAJ REVERSING TOOL, COMPILED REVERSED CODE
ERROR TEST
NetBeans was not able to run the reversed code, as it con-
tained many errors from the reversing tool. The result of
the encrypted string was a series of numbers in an array.
NetBeans was not able to read this series of numbers. The
public class in the code had an error which was undefined.

To determine the strength of the proposed obfuscated tech-
nique, we calculate the total errors appeared during run-
ning the reversed code before and after obfuscation. This
calculation will help to determine the ability of obfuscation
technique to hide the code from reversing tools.

• Total errors of running reversed file before
obfuscation: 0

VOLUME 8, 2020 187335

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

TABLE 11. Reversed code output translation.

• Total errors of running reversed file after obfuscation: 6
The code that was generated from the reversing tool was not
running as it was supposed to be, therefore it did not produce
any output.

4) CAVAJ REVERSING TOOL, FLOW TEST
There was a parsing error during reversing. Some of the
code structure was changed from the reversing tool. Fur-
thermore, some variables names were undefined such as int
d0011A4iA2viA5d160e.

The results of the revising tools, Tree classes have disap-
peared, run time error occur during running the source file.
The reversing tool has changed the flow of the code and
structure. Variables and classes names were still obfuscated,
the reversing tool was not able to read them correctly.

Parsing the class file was possible by the reversing tool as
well. Fig 10 demonstrates the output of reversed obfuscated
code.

5) CAVAJ REVERSING TOOL, IDENTIFIERS NAMES TEST
The obfuscated identifiers have changed and remained
encrypted. The reversing tool was able to read the math-
ematical equation which was used for the string encryp-
tion; however, it was partially discovered and was relocated
in a different location in the code associated with a loop.
Fig 11 demonstrates the errors of reversed code. Table 11 dis-
plays the translation of the output.

FIGURE 10. Errors of reversed code after compiling.

FIGURE 11. Errors of reversed code after compiling.

D. CAVAJ REVERSING TOOL, DE-CRYPT STRING TEST
The reversing tool was not able to parse the file. An error
converting the file name. In this case, the string encryption
was used heavily in the file and identifiers were renamed
to junk. Then there was another layer of obfuscation added
while compiling the file to machine language. The transfor-
mation process has made reversing difficult.

Fig 12 demonstrates the result of reversing obfuscated
code.

To determine the strength of the proposed obfuscated tech-
nique, we calculate the total errors appeared during running
the reversed code before and after obfuscation. This calcula-
tion will help to find out the ability of obfuscation technique
to hide the code from reversing tools

187336 VOLUME 8, 2020

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

FIGURE 12. Errors of reversed code after compiling.

• Total errors of running reversed file before
obfuscation: 0

• Total errors of running reversed file after obfuscation: 1
The code that was generated from the reversing tool was not
running as it was supposed to be, therefore it did not produce
any output.
Summary of CAVAJ Testing: According to the experiment

conducted with CAVAJ reversing tool. The result supports
the first and second objectives. The reversing tool was not
able to read the texts in encrypted strings, chaos stream was
generated after reversing.

The proposed hybrid obfuscation technique contains three
elements of renaming that are string encryption and renam-
ing that focuses on junk and Unicode. The three elements
were mixed in the source file to create confusion while
decompiling.

The ordinary obfuscation techniques usually apply one
renaming technique. Having an ordinary renaming obfusca-
tion does not protect the code from reversing tools. However,
applying the hybrid obfuscation technique has proved to be
better than ordinary obfuscation techniques.

After applying the hybrid obfuscation technique and run-
ning the CAVAJ reversing tool against it, it was obvious that
the reversing tool was not able to read the encrypted strings,
and have created a chaos stream as per the first objective
of this research. The chaos stream that was created looks
\0070D\276\ 313\255\306\256\264\306\ 311\3 13\276\
314\274\u02EC. The reversing tool was not able to read the
junk code also during reversing, a series of junk code was
generated such as:
• M01010010101000n0101088
• Int d0011A4iA2viA5d160e

Applying hybrid obfuscation technique grants protections
whether there was reverse engineering attempted or it has
been stolen.

E. SECOND PRESENTATION OF TOOLS WILL BE JAD
REVERSING TOOL
1. JADReversing Tool, (Output Correctness) Test:Therewere
7 errors while reversing. Some of the code statements were
discovered but withoutmeaning. Therewas an invalidmethod
declaration in reversing time. The reversing tool was not able
to translate the file name and the obfuscated code.

Fig.13 demonstrates the output of reversed obfuscated
code.

FIGURE 13. Errors of reversed code after compiling.

To determine the strength of the obfuscation technique,
we calculate the total errors appeared during reversing before
and after obfuscation
• Total errors of running reversed file before
obfuscation: 0

• Total errors of running reversed file after obfuscation: 7
According to the results, it was clear that the reversing tool
was not able to reveal the code 100% without errors.

1) JAD REVERSING TOOL, COMPILED REVERSED CODE
ERROR TEST
The reversing tool have generated 8 errors during reversing
process. Series of random numbers were generated from the
encrypted strings in the source code. A series of junk code
were generated.

To determine the strength of the obfuscation technique,
we calculate the total errors appeared during reversing before
and after obfuscation
• Total errors of running reversed file before
obfuscation: 0

VOLUME 8, 2020 187337

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

FIGURE 14. Errors of reversed obfuscated code after compiling.

• Total errors of running reversed file after obfuscation: 8

Looking at the results it was clear that the reversing tool was
not able to reveal the code 100% without errors.

2) JAD REVERSING TOOL, METHODS AND CLASSES
CORRECTNESS TEST
The reversing tool, there were 33 errors while reversing.
Some of the code statements were discovered but without
meaning. After reversing, it was possible to save the file, but
compiling was not possible.

The tool could not read the encrypted strings, it has gen-
erated a series of random numbers. Fig 14 demonstrates the
output of reversed obfuscated code.

To determine the strength of the obfuscation technique,
we calculate the total errors appeared during reversing before
and after obfuscation
• Total errors of running reversed file before obfuscation:0
• Total errors of running reversed file after obfuscation: 33

According to the results, it was clear that the reversing tool
was not able to reveal the code 100% without errors
1. JAD Reversing Tool, Identifiers Names Test: The identi-

fier names were converted to numbers. Empty methods were
added to the code. Classes trees have disappeared with some
reference indicate to them. Fig 15 demonstrates the output
of reversed obfuscated code. Table 13 displays the identifiers
before and after reversing.
Summary of JAD Testing:As per the experiment, the result

answers the second research objective as the reversing tool
was not able to read the junk code as seen below:
• A461.F909();
• A461.F90A();
• \u002E

FIGURE 15. Result of reversed obfuscated code.

TABLE 12. Presentation of obfuscated and reversed identifiers.

The experiment has proven that applying the hybrid obfus-
cation technique is evidently better than applying ordinary
obfuscation. According to the results from the experiment,
the reversing tool was not able to read or determine the
meaning of the code.

F. THIRD PRESENTATION OF TOOLS WILL BE DJ
REVERSING TOOL
1) DJ REVERSING TOOL, (OUTPUT CORRECTNESS) TEST
DJ Reversing tool java is a tool that reverses the class file
developed by java. This tool allows editing the code for other
purposes, this tool is used to determine the ability to reverse
java class file that contains a hybrid obfuscated technique.
The test will determine if the tool is able to read the obfus-
cated code, and how much can the tool reveal. Fig.16 demon-
strates the reversing result.

Main class was reversed by the tool. Evidently the revers-
ing tool was not able to find the class files for reversing.

187338 VOLUME 8, 2020

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

FIGURE 16. After reversing the class file.

TABLE 13. Presentation of objects.

The tool has generated an error message that notifies that the
file could not be opened and was not found. Table 14 displays
the objects of the file.

To determine the strength of the proposed obfuscated tech-
nique, we calculate the total errors appeared during running
the reversed code before and after obfuscation. This calcula-
tion will help to find out the ability of obfuscation technique
to hide the code from reversing tools
• Total errors of running reversed file before
obfuscation: 0

• Total errors of running reversed file after obfuscation: 1
The code that was generated from the reversing tool was not
running as it was supposed to be, therefore it did not produce
any output.
DJ Reversing Tool, Identifiers Names Test: The reversing

tool was not able to read the identifiers in the source file.
There was no analysis done on the code by the tool. An empty
method was added to the code and reference to indicate
missing class. Fig 17 demonstrates the output result of the
reversing tool. Table 14 displays the changes happened to the
identifiers after reversing.
Summary of DJ Testing: The results of the reversing tool

answer to the first and second research objectives and third
and fourth hypothesis. The reversing tool was not able to
read the encrypted strings and junk code. It is however
created un-known ciphers. The created cipher looks like
following.
• A461.F907();
• A461.F908();
• \u002E

FIGURE 17. Result of reversed obfuscated code.

TABLE 14. Obfuscated Identifiers before and after reversing.

G. FOURTH PRESENTATION OF TOOLS WILL BE JD
REVERSING TOOL
1) JD REVERSING TOOL, IDENTIFIERS NAMES TEST
DJ Reversing tool java is a tool that reverses the class. This
tool allows editing the code for other purposes, it is used to
determine the ability to reverse java class file that contains
a hybrid obfuscated technique. The test will determine if the
tool is able to read the obfuscated code, and how much can
the tool read and discover. The reversing tool was able to
read the code, however, was not able to read the encrypted
strings. It has converted the strings to an unknown language.
The variables were converted. A mathematical equation was
revealed but with some encrypted string. Table 15 displays
the translation of the reversed code.

To determine the strength of the reversing tool against the
hybrid obfuscation technique, total number of lines of the
reversed original file will be compared with total number of
lines of obfuscated reversed file.
• Total LOC of original reversed file: 48
• Total LOC of obfuscated reversed file: 49
• Difference between original file and reversed file:
48− 49 = 1

VOLUME 8, 2020 187339

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

TABLE 15. Translation of obfuscated reversed code.

The reversing tool was able to discover the code despite the
complication of it. It however has changed most of the code
and could not read some of symbols in the code. To determine
the strength of the proposed obfuscated technique, we calcu-
late the total errors that appeared during running the reversed
code before and after obfuscation. This calculation will help
to find out the ability of obfuscation technique to hide the
code from reversing tools:
• Total errors of running reversed file before
obfuscation: 0

• Total errors of running reversed file after obfuscation: 1
The code that was generated from the reversing tool was not
running as it was supposed to be, therefore it did not produce
any output. The generated code from the reversed code is
copied into NetBeans for further testing. After running the
code, an error appeared, and there was no results or output.
Fig.18 demonstrates the error message that appeared after
compiling the reversed code.
Summary of JD Testing: The result of the experiment

conducted with the JD reversing tool proves that the first
and second research objectives are successfully met. The
experiment of the tool proves that the research questions are
met where it was possible to merge the three approaches
proposed in the research as discussed in the first chapter.

FIGURE 18. Result of reversed obfuscated code.

According to the research hypothesis, the experiments have
proven that the reversing tools were not able to translate
or de-compile the obfuscated code due to its complication
and the great merge of the three approaches of the string
encryption and renaming techniques.

All reversing tools have generated errors during
de-compiling due to the hard encryption used in the
source code. The generated code from the reversing tools has
generated errors as well during compiling.
Summary of Experiment: The Hybrid Obfuscation Tech-

nique was effective to protect the code. The reversing tools
were not able to read and translate the encrypted strings.
Renaming to junk in the obfuscation technique was effective
as the reversing tool has converted the junk to a series of
random numbers and symbols.

The reversing tool was able to read the system keywords
only. Furthermore, the reversing tool has added methods,
pre-processors while parsing the file. The reversing tool was
not able to analyze the obfuscated code to get the appropriate
output.

This means that the Hybrid Obfuscation Technique is
effective to protect the source file from prohibited reverse
engineering. The third objective of this research was success-
fully met, according to the experimentation, a series of junk
and chaos was created after reversing the obfuscated code.
The extreme chaos was generated due to the merge of string
encryption and renaming approaches in one source file which
has led to confusion while reversing as the reversing tool was
not able to translate or read or analyze the code.

To summarize the results of the experiments that were con-
ducted before and after obfuscation, we calculate the LOC of
the original file before and after reversing, we calculate total
errors appeared during running the reversed file before and
after obfuscation, then we find the difference to determine the

187340 VOLUME 8, 2020

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

TABLE 16. Calculation summary of first and second experiment.

TABLE 17. Errors summary of first phase experiment cases.

strength. Table 16 displays the summary of the experiments
before and after obfuscation.

Based on the results of the reversing tools, they were
not able to discover fully functioning code, in all cases the
reversing tools have generated a series of chaos and random
numbers and symbols while attempting to translate the obfus-
cated code.

The code that was generated from the reversing tools did
not provide an output, there was always an error while trying
to compile the obfuscated code after reversing. Table 17 dis-
plays the summary of errors that occurred for the four tested
cases.

The code that was generated by the reversing tools did not
provide any output after it has been obfuscated. Errors always
occur while running the reversed code after obfuscation.

The minimum errors occur while running code was one error.
Even though some of the cases had one error only, yet there
was no output generated.

The experiments have supported the research hypothesis,
where protection is highly needed to protect the code and
more specifically hybrid obfuscation technique is more pro-
tective than standard obfuscation techniques. It was proved
that not having protection or applying standard obfuscation
technique decreases the security of the code, while applying
a hybrid obfuscation technique have successfully protected
the code.

V. CONCLUSION
Due to the increasing piracy of the software, a novel attempt
is made to implement a hybrid obfuscation technique in this
research. Typically, after obfuscation, the complexity of the
code increases according to logically as well as structurally
because of the insertion, removal, or rearrangement of the
code. The proposed technique presented has been found to
be effective.

The future work is aimed at the development of a frame-
work for automation of the presented technique and to pro-
vide as a plug-in to support developers to customize the
method of obfuscation. Also, the aim has been set to imple-
ment the proposed idea for large scale software protection and
improvement.

Implementing a hybrid obfuscation technique is highly
recommended and proved to be successful. Currently, most
reveres and companies are very much interested to reverse
complicated software applications rather than implementing
fresh ones. Implementing the hybrid obfuscation technique
will make them struggle to understand the obfuscated code,
as it requires a long time to get a meaning out of it.

The proposed techniquewas evaluated empirically with the
experiment. Four reversing tools were used for the experi-
ment to determine the ability to discover the code and analyze
it. An interview was conducted with programming experts
from the industry. Results from the experiment and interview
supported the research’s hypothesis and objectives.

According to the experiments, the proposed technique has
shown promising results, where the objectives of the research
are met, where a chaos stream was created during reversing,
junk code was generated from the reversing tool, and an extra
layer of garbage created from the reversing tool as a result of
the inability to read the obfuscated code.

Merging of different renaming techniques and mathemati-
cal equations for encryption plus the extra layer added from
the compiler during compiling have created a huge amount of
junk code while reversing as the reversing tool was not able
to determine or trace or analyze the obfuscated code.

ACKNOWLEDGMENT
Asma’a Mahfoud Hezam Al-Hakimi would like to thank and
acknowledge her Supervisor Professor Dr. Abu Bakar Md
Sultan for her guidance, support, and understanding during
this research. She would also like to extend her appreciation

VOLUME 8, 2020 187341

A. M. H. Al-Hakimi et al.: Hybrid Obfuscation Technique to Protect Source Code From Prohibited Software RE

to my committee members, Professor Dr. Abdul Azim Abdul
Ghani, Dr. Norhayati Binti Mohd Ali, and Dr. Novia Indriaty
Admodisastro for their support and contribution.

REFERENCES
[1] M. ul Iman and A. F. M. Ishaq, ‘‘Anti-reversing as a tool to protect

intellectual property,’’ in Proc. 2nd Int. Conf. Eng. Syst. Manage. Appl.,
Apr. 2010, pp. 1–5.

[2] P. Samuelson and S. Scotchmer, ‘‘The law and economics of reverse
engineering,’’ Yale Law J., vol. 111, no. 7, pp. 1575–1663, 2002.

[3] N. D. Gomes, ‘‘Software piracy?: An empirical analysis software
piracy?: An empirical analysis,’’ Univ. De Combra, Coimbra, Portugal,
Tech. Rep., 2014.

[4] M. Batchelder and L. Hendren, ‘‘Obfuscating Java: The most pain for
the least gain,’’ in Compiler Construction (Lecture Notes in Computer
Science), vol. 4420. Berlin, Germany: Springer-Verlag, 2007, pp. 96–110.

[5] C. K. Behera and D. L. Bhaskari, ‘‘Different obfuscation techniques for
code protection,’’ Procedia Comput. Sci., vol. 70, pp. 757–763, Jan. 2015.

[6] M. Popa, ‘‘Techniques of program code obfuscation for secure software,’’
J. Mobile, Embedded Distrib. Syst., vol. 3, no. 4, pp. 205–219, 2011.

[7] A. Kulkarni and R. Metta, ‘‘A code obfuscation framework using code
clones,’’ in Proc. 22nd Int. Conf. Program Comprehension ICPC, 2014,
pp. 295–299.

[8] A. K. Dalai, S. S. Das, and S. K. Jena, ‘‘A code obfuscation technique to
prevent reverse engineering,’’ in Proc. Int. Conf. Wireless Commun., Signal
Process. Netw. (WiSPNET), Mar. 2017, pp. 828–832.

[9] P. Junod, J. Rinaldini, J. Wehrli, and J. Michielin, ‘‘Obfuscator-LLVM -
software protection for the masses,’’ in Proc. IEEE/ACM 1st Int. Workshop
Softw. Protection, May 2015, pp. 3–9.

[10] S. Qing, W. Zhi-yue, W. Wei-min, L. Jing-liang, and H. Zhi-wei, ‘‘Tech-
nique of source code obfuscation based on data flow and control flow tans-
formations,’’ in Proc. 7th Int. Conf. Comput. Sci. Edu. (ICCSE), Jul. 2012,
pp. 1093–1097.

[11] P. Kanani, K. Srivastava, J. Gandhi, D. Parekh, andM. Gala, ‘‘Obfuscation:
Maze of code,’’ in Proc. 2nd Int. Conf. Commun. Syst., Comput. Appl.
(CSCITA), Apr. 2017, pp. 11–16.

[12] S. Hosseinzadeh, S. Rauti, S. Laurén, J. M. Mäkelä, J. Holvitie,
S. Hyrynsalmi, and V. Leppänen, ‘‘Diversi fi cation and obfuscation tech-
niques for software security?: A systematic literature review,’’ Inf. Softw.
Technol., vol. 104, pp. 72–93, Jul. 2018.

[13] D. Hofheinz, J. Malone-Lee, andM. Stam, ‘‘Obfuscation for cryptographic
purposes,’’ J. Cryptol., vol. 23, no. 1, pp. 121–168, Jan. 2010.

[14] T. Winograd, H. Salmani, H. Mahmoodi, and H. Homayoun, ‘‘Prevent-
ing design reverse engineering with reconfigurable spin transfer torque
LUT gates,’’ in Proc. 17th Int. Symp. Qual. Electron. Design (ISQED),
Mar. 2016, pp. 242–247.

[15] M. H. BinShamlan, M. A. Bamatraf, and A. A. Zain, ‘‘The impact of
control flow obfuscation technique on software protection against human
attacks,’’ in Proc. 1st Int. Conf. Intell. Comput. Eng. (ICOICE), Dec. 2019,
pp. 2–6.

[16] Y. Peng, J. Liang, and Q. Li, ‘‘A control flow obfuscation method for
Android applications,’’ in Proc. 4th Int. Conf. Cloud Comput. Intell. Syst.
(CCIS), Aug. 2016, pp. 94–98.

[17] D. Pizzolotto and M. Ceccato, ‘‘[Research paper] obfuscating java pro-
grams by translating selected portions of bytecode to native libraries,’’
in Proc. IEEE 18th Int. Work. Conf. Source Code Anal. Manipulation
(SCAM), Sep. 2018, pp. 40–49.

[18] S. Cimato, A. De Santis, and U. Ferraro Petrillo, ‘‘Overcoming the obfus-
cation of java programs by identifier renaming,’’ J. Syst. Softw., vol. 78,
no. 1, pp. 60–72, Oct. 2005.

[19] S. I. Bani Baker and A. H. Al-Hamami, ‘‘Novel algorithm in symmetric
encryption (NASE): Based on feistel cipher,’’ in Proc. Int. Conf. New
Trends Comput. Sci. (ICTCS), Oct. 2017, pp. 191–196.

[20] Z. Y. Wang and W. M. Wu, ‘‘Technique of Javascript code obfuscation
based on control flow tansformations,’’ Appl. Mech. Mater., vols. 519–520,
pp. 389–392, Feb. 2014.

[21] H. Badier, J.-C.-L. Lann, P. Coussy, and G. Gogniat, ‘‘Transient key-
based obfuscation for HLS in an untrusted cloud environment,’’ in
Proc. Design, Autom. Test Eur. Conf. Exhib. (DATE), Mar. 2019,
pp. 1118–1123.

[22] M. Maskur, Z. Sari, and A. S. Miftakh, ‘‘Implementation of obfuscation
technique on PHP source code,’’ in Proc. 5th Int. Conf. Electr. Eng.,
Comput. Sci. Informat. (EECSI), Oct. 2018, pp. 738–742.

[23] M.-J. Kim, J.-Y. Lee, H.-Y. Chang, S. Cho, Y. Park, M. Park, and
P. A. Wilsey, ‘‘Design and performance evaluation of binary code packing
for protecting embedded software against reverse engineering,’’ in Proc.
13th IEEE Int. Symp. Object/Compon./Service-Oriented Real-Time Dis-
trib. Comput., May 2010, pp. 80–86.

[24] X. Guangli and C. Zheng, ‘‘The code obfuscation technology based on
class combination,’’ in Proc. 9th Int. Symp. Distrib. Comput. Appl. Bus.,
Eng. Sci., Aug. 2010, pp. 479–483.

[25] P. Leahy,What is Unicode. New York, NY, USA: ThoughtCo, 2017, p. 1.
[26] X. Zhou and J. Xie, ‘‘Evaluating obfuscation performance of novel

algorithm-to-architecture mapping techniques in systolic-array-based cir-
cuits,’’ in Proc. Asian Hardw. Oriented Secur. Trust Symp. (AsianHOST),
Oct. 2017, pp. 127–132.

ASMA’A MAHFOUD HEZAM AL-HAKIMI was
born in Egypt. She received the Diploma degree
in computer programming from the University of
Science and Technology Sanaa Yemen, in 2006,
the bachelor’s degree in computer studies from
Northumbria Newcastle University, U.K., in 2008,
the master’s degree in software engineering from
Staffordshire University, U.K., in 2011, and the
Ph.D. degree in software engineering from Uni-
versiti Putra Malaysia. She started working as a

Graphic Designer in the media line, then in networking field. She has worked
for five years as a Lecturer in Asia Pacific (APU), Malaysia.

ABU BAKAR MD SULTAN received the
bachelor’s degree in computer science from Uni-
versiti Kebangsaan Malaysia, in 1993, and the
master’s degree in software engineering and the
Ph.D. degree in artificial intelligence from Uni-
versiti Putra Malaysia (UPM). He is currently a
Professor with the Faculty of Computer Science
and Information Technology, UPM. His research
interests include optimization and search-based
software engineering (SBSE).

ABDUL AZIM ABDUL GHANI (Member,
IEEE) received the B.Sc. degree in mathemat-
ics/computer science from Indiana State Univer-
sity, the M.Sc. degree in computer science from
the University of Miami, and the Ph.D. degree
in software engineering from the University of
Strathclyde. He is currently a Professor with the
Department of Software Engineering and Infor-
mation System, Universiti Putra Malaysia. His
research interests include software measurements,
software testing, and software quality.

NORHAYATI MOHD ALI is currently an
Associate Professor with the Department of Soft-
ware Engineering and Information System, Uni-
versiti Putra Malaysia. Her main research interest
includes software engineering.

NOVIA INDRIATY ADMODISASTRO is cur-
rently an Associate Professor with the Department
of Software Engineering and Information Sys-
tem, Universiti Putra Malaysia. Her main research
interests include software engineering, service-
engineering, and human–computer interaction.

187342 VOLUME 8, 2020

