
Received September 14, 2020, accepted September 24, 2020, date of publication October 2, 2020, date of current version October 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3028051

The EPI Framework: A Dynamic Data Sharing
Framework for Healthcare Use Cases
JAMILA ALSAYED KASSEM 1, CEES DE LAAT2, (Member, IEEE), ARIE TAAL1,
AND PAOLA GROSSO1, (Member, IEEE)
1MutliScale Networked Systems (MNS) Research Group, University of Amsterdam, 1098 XH Amsterdam, The Netherlands
2Complex Cyber Infrastructure (CCI) Research Group, University of Amsterdam, 1098 XH Amsterdam, The Netherlands

Corresponding author: Jamila Alsayed Kassem (j.alsayedkassem@uva.nl)

This work was supported by the Dutch Science Foundation in the Commit2Data Program through the Enabling Personalised Intervention
Project under Grant 628.011.028.

ABSTRACT To support the current trend of personalised medicine, a collaboration between different
healthcare providers is increasingly vital. The main element is the ability to share data among all parties
while abiding by a data sharing policy. The EPI (Enabling Personalised Intervention) project addresses the
problem of personalised diagnosis by developing real-time monitoring services and digital health twins. The
EPI services run over adaptive computing infrastructures which provide more flexibility to accommodate
the different requests. This paper proposes the EPI framework to support these novel health services over
programmable infrastructure. The framework works on aligning the parties’ ability to share data with the
policy defined beforehand. We explain the approach by introducing the framework’s data sharing logic
model. We define the formalism of the logic model to deduce feasible data movements between and
possibly satisfy a data collaboration request. We reinforce the framework’s logic model by introducing the
algorithms running on this federated system to simulate its workflow. We provide three healthcare use cases
running on a typical EPI infrastructure. We evaluated our model according to three relevant parameters,
performance, feasibility, and aggregation power, and we can conclude that our framework supports the
required interoperability between the EPI partners.

INDEX TERMS Data sharing, dynamic infrastructure, healthcare, information flow control, medical
information system.

I. INTRODUCTION
Consistent, reliable, and interoperable health data sharing is
needed to support different healthcare applications such as
decision making, monitoring, and planning. This is evidently
important in extreme cases and disasters. As an example of
that, the international health data-sharing efforts are facilitat-
ing effective combat strategies in the light of the COVID-19
pandemic spread across the world [1].

The exchange of health data is a key enabler to efficient
and high-quality healthcare. This concept has been there for
over a decade, through which many laws, requirements, and
standards were adopted to regulate and preserve the patient’s
rights for privacy and security [2], [3]. Ultimately, data col-
laboration between healthcare providers/parties considering
the mentioned requirements can empower patients through
the healthcare cycle.

The associate editor coordinating the review of this manuscript and

approving it for publication was Jenhong Tan .

The heterogeneity of the network infrastructure across
different health care domains brings forth a challenge of
ensuring seamless information flow. The EPI1 project aims
to provide self/joint management of medical treatments
throughout the healthcare cycle. That can be made possible
by effectively enabling data sharing across parties. And as a
result, the EPI project intends to support various applications,
such as privacy-preserving machine learning (ML) and small
data-set models.

The EPI project requires a dynamic infrastructure to adapt
to different requirements. The infrastructure should optimally
exploit the heterogeneity and programmability of comput-
ing/networking resources. The paper proposes the dynamic
EPI infrastructure that we set up according to a data-sharing
logic model. We aim to align information flow with the
policy i.e. data sharing rules. The framework defines each
node’s capabilities with attributes and detects heterogeneity

1https://delaat.net/epi/

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 179909

https://orcid.org/0000-0003-1520-2767
https://orcid.org/0000-0002-7562-6695

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

with the concept of areas. After that, the framework auto-
mates the setup of an overlay of virtualised functions to
bridge attributes’ gaps. The logic model proposed addresses
the heterogeneity and provides interoperability, undegraded
security, and reliability of information flow across various
domains.

The research question to be answered is, How to support
health data sharing for heterogeneous parties collaborating
within an infrastructure?

In this paper, we answer this question, and we contribute
to the existing literature of health data sharing frameworks:

• We propose a logic model to determine achievable data
sharing within heterogeneous environments of infras-
tructure

• We match the achievable data sharing with the defined
policy to ensure alignment

• We define the concept of EPI areas that maps to the
possible data flow

• We implement an algorithm that creates EPI areas
• We evaluate the algorithm according to relevant param-
eters

• We define a typical EPI infrastructure and its compo-
nents

• We apply the logic model to the infrastructure running
specific EPI use cases

In Section II, we discuss several existing data-sharing
frameworks in the context of health to give a background
about the topic. After that, we introduce the EPI frame-
work in Section III, the logic model behind it and its
components in Section IV. To validate the logic model,
we show the simulation experiment and evaluate the results
in Section V. In Section VI, we expand on the results’ dis-
cussion. In section VII, we show how the EPI framework
functions with an EPI infrastructure. Moreover, we explain
the framework’s functionality in the light of different health
use cases in Section VIII.

II. HEALTH DATA SHARING FRAMEWORKS
Latest advancements in the field of informatics inspired
much of research utilising said technologies in the healthcare
domain. Such development is currently essential due to the
impractical traditional data sharing methods. According to
surveys [4], roughly 15% of patients visiting a doctor were
asked to supply their radiology report personally (like on a
DVD), and another 5% had to redo their tests.

Healthcare providers realise that and are migrating towards
the usage of electronic medical records (EHR). It is a broad
consensus that sharing data in the medical spectrum can be
beneficial in terms of cost-efficiency, preventing redundan-
cies, cooperation between stakeholders, reliable research and
discoveries. Achieving secure health data sharing can result
in an efficient and effective healthcare cycle managed by the
patients/healthcare stakeholders.

Health data sharing frameworks exist, but they are catered
to satisfy a single, specific use case. That makes the

architecture rigid and less suited to support different appli-
cations. These frameworks do not address the different capa-
bilities present in all network endpoints, and actually assume
identical operational possibilities on all participating nodes.
This is far from the current state-of-the-art in computing
infrastructures.

In this section, we aim to highlight some of the literature.
The way that we gathered the literature is as follows. For each
query on Google scholar, we chose the top result. We queried
‘‘secure sharing infrastructure’’, and the top result was [5].
The search results were further filtered with a 2018+ time
frame to represent more recent research [6].

We queried ‘‘secure data sharing infrastructure’’, and the
top result was [7], then added a time filter of 2018 which
gave the top result [6]. We queried ‘‘health data secure
monitoring’’ with top result [8], and got [9] as a top result
for the results published after 2018. The mentioned papers
referenced interesting literature like [10]–[13]. Some frame-
works provide interoperability of data but for a single use
case. Roelofs et al. [7] discuss an open-source infrastruc-
ture to share medical data internationally for radiotherapy
studies. They provide interoperability of data by running a
multicentric data mining. While Sartipi et al. [5] introduce
an infrastructure that integrates PACS (Picture Archiving and
Communication System) and HL7 (Health Level 7) and aims
to have a homogeneous, and internationally accepted EHR
(Electronic Health Records).

Other frameworks rely on single specific technologies
or devices. In more recent papers, frameworks leverage
blockchain as a single infrastructural data sharing solution.
Patel [6] favours an established consensus on a blockchain
ledger over third party intermediates. Another framework
utilising the same tools is MeDShare [10]. The system inte-
grates smart contracts and access control protocols to provide
a tamper-proof ledger of health data.

MedBlock [11] compares with the MeDShare system and
shares data via blockchain. Unlike MeDShare, MedBlock
does not maintain a ledger of audited behaviour, instead,
it provides an information management system. Moreover,
Thilakanathan et al. [8] propose a platform based on cloud
data services. The platform adds a layer of security by propos-
ing a security protocol with ElGamal and proxy re-encryption
key exchange schemes.

A different application of medical data sharing is secure
monitoring. Anoop and Parani [12] propose streaming an
enormous chunk of medical data collected through wearables
using BSN (Body Sensor Network) to provide real-timemon-
itoring of the patient’s health status. Manogaran et al. [13]
design a new architecture of IoT environment to store,
process, and share big data. Griggs et al. [9] build a
blockchain-based system to monitor the patient’s status
remotely. The system uses smart contracts on a private
Ethereum network to handle medical information.

Table 1 shows a comparison between these frameworks
according to a set of considered features. In light of the
frameworks discussed, some elements, or combination of

179910 VOLUME 8, 2020

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

TABLE 1. Comparison between health data sharing frameworks.

FIGURE 1. A high-level view of the EPI framework architecture after an
application setup is initiated.

elements, might be lacking. For instance, some proposals
consider security on one hand, but do not address relevant
laws and auditing. On the other hand, other frameworks
address interoperability and data model usage across different
sectors, but do not offer access control and security to pro-
tect sensitive data. More importantly, all these frameworks
are catered to satisfy a specific use case which makes the
architecture rigid and hard to support different use cases.

Themajority of the proposedwork seems to be application-
specific. These infrastructures are mainly static and still offer
a ‘‘one fits all’’ standard. None of these frameworks addresses
the datamovement requirements for generic use cases. In EPI,
we formalise a methodology to support data sharing requests
across providers with heterogeneous resources, which relies
on the programmability of the infrastructure.

III. THE EPI FRAMEWORK
The EPI infrastructure is the collection of all networking/
computing/ and storage nodes provided by EPI parties. The
EPI framework will cater to any application scenario by
building a sub-infrastructure.

Figure 1 illustrates a high-level view of the proposed
framework. An application scenario initiated by the col-
laborating parties (1) specifies the resources needed, and
the data collaboration goals. The information-sharing agree-
ment (ISA) describes the data sharing policy between parties,
i.e. a policy is the group of rules governing data move-
ment/usage [14]. The EPI framework queries ISA from the
policy management system (2). The received ISA is further
translated to a set of rules (3) that are recorded into a log.

The EPI framework uses a logic model (Section IV) to
group nodes into areas that describe feasible data movements

between them (4). On top of feasible data movements, the
framework also considers the information flow rules to deter-
mine possible archetype mapping (5). The model describ-
ing the pattern of data movement is called collaboration
archetype [15].

An application request is the actual requested data move-
ment between parties. After building the sub-infrastructure,
application requests are introduced (6). A single applica-
tion scenario can refer to multiple application requests, and
archetypes represent the aggregation of all possible data
movements. When an application request maps to an existing
collaboration archetype (7), that is further applied in the
sub-infrastructure (8).

An auditing log is maintained of the data movement
behaviour (9). The audit log is compared to the rules log,
hence provides accountability (10).

IV. THE DATA SHARING LOGIC MODEL
This section explains the logicalmodel of creating and assign-
ing areas nodes, hence creating a distinction of nodes’ capa-
bilities. Initially, there exists a clear view of all possible
parties (e.g. hospital, research centre, rehabilitation centre).
The nodes can partake or initiate an application scenario
setup.

We assume that a higher level of the architecture filled out
an ISA when a set of parties (healthcare domains) initiates
an application scenario. The ISA is assumed to consider all
requirements under which data collaborating is allowed, and
it gives back a set of permission rules. These permission rules
are further translated into rules, which leaves the issue of
actually moving the data. The issue arises due to the data
movement depending on the compatibility and data interop-
erability between parties.

A. SUB-INFRASTRUCTURE INITIALISING
A health domain/provider party assigns a number of nodes
which are the endpoints of physical/virtual resources. The
first step is to establish ‘‘who’’ can offer ‘‘what’’. We rep-
resent all resources endpoints included in the infrastructure
by the set N of nodes:

N = {ni | i = 1, . . . ,m}, (1)

where ni represents a single node in the infrastructure and m
is the total number of nodes.

Attributes refer to what a node can support in terms of
networking, computing, and storage functionalities. Possible

VOLUME 8, 2020 179911

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

attributes can specify software and computing resources: soft-
ware tools, response scalability, CPUs. It can also specify
security and network resources: identity and access con-
trol mechanism in place, data encryption and key manage-
ment, data anonymisation, firewalls, scalable network links.
Attributes for storage resources: maximum data storage,
database tools, structured EHR/ unstructured. Let A be the
set of all possible attributes:

A = {ak | k = 1, . . . , d}, (2)

where ak represents a distinct attribute and d is the total
number of attributes.

Once the application scenario is made clear, a sub-
infrastructure is initialised to support it. The sub-
infrastructure is the set of nodes supporting a specific
application for a duration of time. Let NApp be the set of
mentioned nodes, such that:

NApp ⊆ N , (3)

where N is the silo of resources of all parties and NApp speci-
fies the nodes the collaborating parties use in the application
scenario. The nodes needed to support the application are
determined and the larger set N is filtered down. Each node’s
capabilities are described by a set of infrastructural attributes,
which can be any subset of A. Subsequently, every node nj in
NApp is assigned Aj ⊆ A.
The model inspects nodes within NApp and queries the

attributes associated with each node. We define a mapping
fApp between the set of nodes NApp and the power set ℘(A) of
A, such that fApp(nj) = Aj. Eq. (4) notates the many to one
relation between nodes and attribute sets:

fApp : NApp→ ℘(A), (4)

fApp is used to determineµ, whereµ is the set of attribute sets
related to nodes in NApp:

µ = {Aj | j = 1, . . . , ||NApp||} = {fApp(nj) | nj ∈ NApp}. (5)

B. AREAS CREATION
The area abstraction is used to spot heterogeneity between
nodes and deduce what movement is supported.

Let 2App be the set of all areas grouping NApp within the
sub-infrastructure:

2App = {θp | p = 1, . . . , l}, (6)

where θp is a single area associated with a distinct set of
attributes, and 2App is a partitioning on the set NApp.
An equivalence relation on NApp is defined such that

ng ∼ nh if ng and nh belong to the same θp and with nh ∼ ng
denoting fApp(ng) = fApp(nh) or Ag = Ah. As in Eq. (7),
deterministic function α gives the area set 2App having NApp
and µ as an input:

α(NApp, µ) = 2App. (7)

As a result, areas map to the total resources and endpoints
per application setup within a sub-infrastructure and the dif-
ferences between said nodes. Based on that, supported data
movement channels can be deduced from this mapping.

C. SUPPORTED CHANNELS WITHIN A
SUB-INFRASTRUCTURE
The logic dictates that data movement is supported when
Eq. (8) is satisfied, where ng ⇒ nh represents a one data
movement support between nodes ng and nh. That means
that a directional movement from ng to nh is supported when
the capabilities of nh (Ah) is the same or a superset of that
of ng (Ag)

ng ⇒ nh, iffAg ⊆ Ah. (8)

Supported/unsupported movements are represented by
channels that can be utilised via a collaboration between
nodes. The α output is further processed and translated into a
channel matrix by function β

β ◦ α(NApp, µ) = C . (9)

The adjacency C matrix represents all nodes connected by
a channel, where a single entry cij is the channel between
the sender node ni and the receiver node nj, such that C is
a s × s square matrix with s = ||NApp||. A single entry cij
is a Boolean value where 0, 1 represents the existence of a
channel or the lack thereof, respectively.

D. APPLYING FLOW RULES
To determine and set up the channels is not sufficient by
itself to control the information flowwithin the infrastructure.
The application scenario’s policy further uses the channels
in place to regulate and dictate data movement. The rules
describe all required data movements of an application sce-
nario mindful of the policy.
R represents the allowed/denied data movement the appli-

cation needs to run. The data flow rules R are set in the light
of ISA that is placed by a policy and management system.
Rules are translated into a matrix form to make it easier to
aggregate with other variables:

γ (ISA) = R. (10)

All the rules between the nodes are represented in an
adjacency matrix R, such that a single entry rij refers to the
rule between the sender node ni and the receiver node nj,
such that R is a s × s square matrix. A single entry rij is a
Boolean value where 0, 1 represents the denied and allowed
data movement rules, respectively.

We differentiate between allowed/denied and sup-
ported/unsupported data movements. Ideally, rules restrict
further supported movements. As an example, when ni ⇒ nj
is supported, this means that cij = 1. Moreover, if data
movement utilising cij is also allowed, this means rij = 1,
hence the rule set aligns with channels.

E. BRIDGE ATTRIBUTE GAPS
In other cases, rules and channels might not necessarily align,
which can be an issue to run an application successfully.

The condition Ag ⊆ Ah supports data movement from node
ng to nh. Otherwise, Ag is not a subset of Ah. A bridging
function is introduced to apply the missing attributes εgh and

179912 VOLUME 8, 2020

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

by that creating the previously missing channel, if possible.
In Eq. (11), εgh indicates the missing attributes

εgh = Ah ∩ Ag. (11)

There is a known set of bridgeable attributes Aδ . Aδ is set
a priori. Virtualised functionalities provide bridges on top of
existing sub-infrastructure resources, and it is dependent on
the capabilities of the infrastructure. The bridging function
applies the missing attribute if εgh ⊆ Aδ . This supports the
data movement and ensures compatibility and interoperabil-
ity within collaborating nodes. The bridging function δ works
as follows:

δ(C) = B, (12)

where δ takes as an input the matrix of channels, and returns
matrixB of bridged channels. B is represented as a s×s square
matrix. A single entry bij is a Boolean value, where 0 can
mean either a none bridgeable channel or εij = φ (the channel
already exists), and 1 means a bridgeable channel cij.
In case an entry cij = 0, and εij ⊆ Aδ , this means that

δ(cij) = bij = 1. The two concerns that arise dealing with
bridging functions are as follows:

• The cost associated with the bridging function offered in
terms of time and complexity

• There exists an infeasibility ratio that needs to be con-
sidered in case εij 6⊂ Aδ; an unsupported data movement
is unbridgeable

The three matrices serve as dependable variables that con-
trol the information flow. the information flow control (IFC)
is computed by the aggregation of the channels, rules, and
bridges. IFC is calculated by Eq. (13):

IFC = (R ∧ C) ∨ B. (13)

IFC is a square matrix of the same dimensions s × s.
A single entry fij = (rij ∧ cij) ∨ bij of IFC is is a Boolean
value, where 0, 1 represent no flow/flow of information,
respectively. IFC is the adjacency matrix that describes the
aggregated directed graph of all possible archetypes in an
application scenario.

A single application request Q is met when Q and IFC
overlap, hence the archetype mapping exists. All matrices we
mentioned C , R, B, IFC , Q have the same size s× s.

F. APPLICATION REQUESTS
Once a sub-infrastructure is initialised, application request
Q utilises the built framework with collaboration instances.
An application request is the matrix of requested data
movements among nodes in an application scenario sub-
infrastructure.

A single entry qij is a Boolean value that describes a
single requested data flow from ni to nj, such that 0, 1 map
to an absence or existence of a requested directional flow.
To satisfy an application request Q, Q should overlap with
the matrix of supported, allowed, and bridgeable flows IFC .

FIGURE 2. The different functions in the EPI framework and their relation
with the application request.

TABLE 2. Apply / reject truth table.

The previously discussed functions interact as shown in
Figure 2. NApp and µ are the input to create the sub-
infrastructure’s EPI areas 2App. Next, the output is used to
translate the channels into a matrix using β. Meanwhile,
the policies turned rules are also translated into a matrix of
allowed/denied flows by γ .

Rules and channels matrices are aggregated, and a single
entry aggregation rij ∧ cij gives an output true in case of
alignment, else false. In case of a false, the δ is introduced to
apply εij.
After that, the IFC matrix is determined by the aligned and

bridged channels, where IFC = (R ∧ C) ∨ B. A set of Q’s
is then considered by applying the ‘‘XNOR’’ logic gate with
IFC to determine the matches between the two matrices. The
‘‘XNOR’’ output is 1 in case of an overlap between qij and fij,
and 0 is a mismatch.

The logic ‘‘AND’’ is applied to apply (1) or reject (0) a
single data movement qij in an application request Q. That
is further clarified in Table 1, where qij = 1 is applied
only when it overlaps with fij = 1, otherwise the request is
rejected.

V. SIMULATION EXPERIMENT AND EVALUATION
After discussing the framework in Section III, we introduce
4 algorithms that implement the EPI logic model. The first
algorithm works by creating different areas associated with
distinct attribute sets, such that NApp is an input. It appends
nodes with the exact matching attribute set to the same area,
as shown in Algorithm 1.

The first lines (3-4) are looping over all the nodes in the
NApp set and query the node’s attribute set. There are two
cases that this algorithm deals with. Lines 8-11 checkwhether
the area that is associated with a node’s attribute set is already
there, then it appends it to that area’s node set. The lines 14-16

VOLUME 8, 2020 179913

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

Algorithm 1 Algorithm to Assign Nodes to Areas
1: procedure createAreas(NApp)
2: 2←− φ F initialise the set of areas
3: for all n ∈ NApp do F loop over all nodes
4: An←− getAttributes(n)
5: flag←− 0
6: for all θ ∈ 2 do
7: Aθ ←− getAttributes(θ) F retrieve attributes
8: if An = Aθ then
9: θ ←− θ ∪ {n}

10: flag←− 1
11: break
12: end if
13: end for
14: if flag = 0 then
15: θ ←− {n} F create new area with node n
16: 2←− 2 ∪ {θ}

17: end if
18: end for
19: return 2
20: end procedure

are executed if the node belongs to a new area that does not
already exist.

Once the logic model assigns all the nodes to areas, it also
searches for subset relations between areas (included or dis-
tinct), as shown in Algorithm 2. After that, the framework
deduces the supported channels between nodes within areas.
We determine this relation according to the attribute set asso-
ciated with each area.

Algorithm 2 Algorithm to Assign Subsets to Areas
1: for all θi ∈ 2 do F loop over areas
2: superseti←− φ F The set of all supersets to area
3: holder ←− φ
4: for θj ∈ 2 do F compare with other areas
5: Ai←− getAttributes(θi)
6: Aj←− getAttributes(θj)
7: if Ai ⊂ Aj and i 6= j then F i is a subset to j
8: holder ←− holder ∪ {θj}
9: end if

10: end for
11: superseti←− superseti ∪ {holder}
12: end for

In Algorithm 2, we loop over created areas twice (lines 1-4)
to compare both areas associated attribute set. The algorithm
sets a subset-superset relation between areas (lines 7-11).

The model’s logic dictates that if an area is a subset
(with fewer attributes) of another area, it means that sup-
ported channels exist between this area’s nodes and the nodes
in all superset areas (with more attributes characteristics).
Algorithm 3 processes the created areas and deduces chan-
nels, as follows.

Algorithm 3Algorithm to Deduce Channels Between Nodes
1: procedure checkChannels(2)
2: Let C = {cij} be a new sxs matrix with ∀cij = 0
3: for θi ∈ 2 do F loop over areas
4: for ni ∈ θi do F loop over nodes in each area
5: for nj ∈ θi do F nodes in the same area
6: if i 6= j then
7: cij←− 1 F channel exists
8: end if
9: end for
10: if supersetsi 6= φ then F θi has supersets
11: for θj ∈ supersetsi do
12: for nz ∈ θj do
13: ciz←− 1
14: end for
15: end for
16: end if
17: end for
18: end for
19: return C F the matrix of all channels
20: end procedure

Algorithm 3 loops over nodes in each area (lines 2-3),
and initialises existing channels between nodes within the
same area (lines 4-6). In lines 9-12 the algorithm checks
whether a node’s area has a subset-superset relation area if
so channels between this node and the nodes in the other area
are initialised by setting the corresponding entry in matrix C
to true.

After creating areas and deducing their channels, we con-
sider the rules. We assume that the rule matrix was set by the
policy management system involved, and then translated by
γ . Then, take into account the possible bridging functions that
can compensate for missing attributes and add to supported
channels C . Function δ(C) results with the matrix B, where
bij = 0 in case channel cij already exists, i.e. εij = φ or isn’t
included in Aδ .

The algorithm checks for available bridges (matrix B) and
matches it to the missing channels between nodes is as in
Algorithm 4.

In Algorithm 4, the algorithm in line 2 loops over all nodes
in NApp and checks if it has supported channels to other
nodes in lines 6-7. In case the channels to other nodes are
missing, the algorithm in lines 11-13 checks if the attribute
difference between the two nodes is bridgeable. As a result,
the algorithm returns the matrix of updated channels with the
added bridges.

The framework uses the IFC matrix to push the
sub-infrastructure setup and support possible applica-
tion requests. Application requests are successful when
Q overlaps with IFC . Otherwise, not all data move-
ments within this request might be possible. We deploy
the algorithm on a server to emulate a framework
prototype.

179914 VOLUME 8, 2020

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

Algorithm 4 Algorithm to Add Bridges
1: procedure checkBridges(C)
2: for ni ∈ NApp do
3: Ai←− getAttributes(ni)
4: for nj ∈ NApp do
5: Aj←− getAttributes(nj)
6: if cij = 1 then
7: Channel already exists
8: else
9: εij←− Aj ∩ Ai F the missing attributes

10: Aδ ←− getBridges() F retrieve bridges
11: if εij ∈ Aδ then F bridgeable attributes
12: Apply bridging functions
13: cij←− 1
14: end if
15: end if
16: end for
17: end for
18: return C F updated channels
19: end procedure

FIGURE 3. The EPI framework prototype and an illustration of its
operational work flow interacting with the middleware system.

A. EVALUATION
We introduce a framework prototype in Figure 3 that uses
the above methodology. We use that to measure the model’s
performance. Moreover, we propose formulas to evaluate the
infrastructural properties that affect the feasibility and cost of
different application requests.

1) PERFORMANCE
We set up a server to run the algorithm in the back-end, and
maintain a database of all possible nodes. The server runs on a
Dell machine with Ubuntu 18.04 operating system and 8 CPU
cores, where the Python script of the logic model does not use
multiprocessing.

We initiated an application scenario with the specifying
nodes relevant for this request NApp (step 1 in Figure 3).
The framework redirects the application query to the policy
management system to query the regulating rules R of the
information flow within this scenario (steps 1.1 and 1.2).

The server runs the logic model and lists the areas 2App,
estimatesB, and aggregates it withR (step 2). Themiddleware
system deduces the IFC with all possible archetype models,
and the setup cost is estimated (step 3). After the confirmation
of the user (parties initiating the application) (step 4), the
system pushes the IFC to the infrastructural level (step 5).
Ultimately, a node then initiates the application requests (Q)
to utilise the sub-infrastructure (step 6), and requests are
applied or rejected accordingly.

We further evaluate step 2 in Figure 3 that runs the area
logic model algorithm, and we estimate the performance of
the framework (Algorithms 1, 2, 3, and 4). This measurement
is important to test how the algorithm would scale with large
input nodes in case of time-critical application requests. The
objective is to measure the performance as the number of
nodes increases and becomes more distinct (heterogeneous
attribute sets).

To define heterogeneity we first calculate the average inter-
section rate AIR for µ, we consider the intersection rate of all
distinct pairs in µ, as in Eq. (14):

AIR =

∑n
i,j;i<j

||Ai∩Aj||
||Ai∪Aj||(n

2

) . (14)

To determine the average heterogeneity rate AHR of the
nodes’ attribute sets, we calculate AHR, such that:

AHR = 1− AIR. (15)

The performance variables that we measure are execution
time and CPU time. We measure the execution time by
recording the elapsed real-time between the invocation of the
script and its termination. We also measure the CPU time
is by the processing time of the instructions. The recorded
time describes the scaling of the delay between sending an
application scenario setup request (step 1) and receiving an
answer from the IFC matrix (step 4), which is relevant in case
of time-critical requests.

The algorithms’ complexity also determines the perfor-
mance of the framework. The plots in Figures 4 and 5 show
the scaling of response time in real-time and CPU time. The
time is measured as the input size increases (number of nodes
increases), and as the heterogeneity of the input increases
(number of areas increases).

In the plot of Figure 4, we keep the heterogeneity as a
constant (AHR = 0), and we increase the number of nodes.
Notice that a third-degree polynomial nicely fits the data,
demonstrating time complexity O(n3).
The plot in Figure 5 shows the scalability of real and

CPU time as AHR increases, where n = 20. Notice that a
second-degree polynomial nicely fits the data, indicating a
scaling as O(n2).

2) INFRASTRUCTURAL PROPERTIES
The percentage of aggregated nodes within the same area
indicates the setup cost of any sub-infrastructure. As an
example, if the aggregation power percentage is a 100%,

VOLUME 8, 2020 179915

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

FIGURE 4. The script execution time with respect to the increasing input.

FIGURE 5. The script execution time with respect to increasing AHR.

that means that no extra bridging functions need to be in
place before the movement of information between nodes is
possible.

The opposite is also true, the lower the aggregation power,
the higher the setup cost might be estimated. Moreover,
aggregation is directly proportional to the probability of satis-
fiable application requests. As an example, if the aggregation
power is 100% (all nodes belong to the same area) then the
probability that supported channels exists (data movement is
possible) is 1.

Eq. (16) calculates the number of possible attribute subsets,
given that d is the number of all possible distinct attributes,
such that:

||℘(A)|| = 2d − 1. (16)

The result of Eq. (17) shows the percentage of nodes being
aggregated into distinct areas. The value might differ with
different infrastructures. Aggregation power is calculated as

follows, where 2 is the set of all areas grouping N :

Aggregation =
||℘(A)|| − ||2|| + 1

||℘(A)||
× 100. (17)

The infrastructure also has a property of setup success
ratio, where the bridging functions can satisfy all possible
missing channels (attributes εij). The fewer attributes are
bridgeable, the higher the failure ratio is. We calculate the
success ratio as follows:

Success =
||Aδ||
||A||

. (18)

VI. DISCUSSION
The framework provides clear identification of missing
attributes per node and matches it to a bridging function.
The available bridging functions directly affect the appli-
cation requests feasibility and success rate, as defined by
the infrastructural properties. The infrastructural properties’
measurements rely on the infrastructure itself.

The infrastructure should be ready to bridge any missing
attribute to accomplish a complete success rate. Moreover,
the success rate also depends on the heterogeneity of the
infrastructure, which the aggregation power value reflects.
The aggregation power is 100% if the number of areas cre-
ated is equal to 1, hence all nodes are characterised by the
same attribute sets. Subsequently, upgrading the infrastruc-
ture improves the success rate of an application request and
the aggregation power of areas.

The algorithm of the logic model scales under the com-
plexity ofO(n3). We interpret the algorithm performance as a
one time run delay before pushing the setup instructions into
the infrastructure level. After that, the complexity and time
cost is inversely proportionate to the aggregation power and
average intersection rate.

In other words, as the heterogeneity in the infrastructure
increases, the time cost increases. The delay follows from
the extra steps of the intermediate bridging functions that are
associated with a higher heterogeneity and a larger number of
areas.

The previously discussed measurements foresee the prob-
ability of an application request failure, high setup costs, and
delays. Those values are dependant on the infrastructure and
can be improved by tailoring the infrastructure resources. The
EPI parties can evaluate the infrastructural properties before
introducing any application to estimate a future upgrade or to
customise the requests accordingly.

Existing health data sharing frameworks focus on primarily
security and access control, as shown in Table 1. The EPI
framework addresses these two features by considering secu-
rity and access control attributes. As a result, channels exist to
support data movements to nodes that offer the same security
functionalities (same area) or more (area superset).

Our proposed framework addresses other features by defin-
ing attributes (for example structured data storage) that ensure
interoperability and delegating the definition of data sharing
rules to the policymanagement system. Data auditing is also a

179916 VOLUME 8, 2020

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

proposed feature considered by the EPI architecture as shown
in Figure 1. The EPI framework adds the EPI logic model to
the infrastructural programmability and provides a dynamic
and heterogeneous infrastructure. As a result, we contribute
to existing frameworks by offering the dynamicity feature.

VII. THE EPI INFRASTRUCTURE
Introducing Network Functions Virtualisation (NFVs) [16] to
the EPI infrastructure enables configuring hybrid networks
of physical and virtual resources to adapt to different use
cases. As discussed before, the programmability of the EPI
infrastructure depends on efficiently setting up the bridging
functions between areas of nodes. We utilise the NFV ser-
vices as a tool to provide the bridging functions on top of the
initially heterogeneous areas.

Each NFV instance hosted on a virtualised network imple-
ments a bridging function. We refer to the set of virtualised
network nodes as the NFV infrastructure (NFVI), which is
an overlay cloud-like infrastructure on top of the physical
one. NFV instances are set up to add missing attributes,
such as packet encryption/decryption. To forward and redirect
incoming packets to the correct NFV node. Each instance is
identified with a unique IP address [17].

We define the series of connected bridging functions as the
bridging function chain (BFC), and we assume that the proxy
nodes will use a suitable mechanism to perform area-area
routing along the BFC. One of the possible technologies that
an EPI infrastructure could use is, for example, Segment rout-
ing [18]. The routing table is set to enforce packet forwarding
along the BFC path. By that applying the abstract set of
commands specified by δ (see Eq. (12)).

In Figure 6, we illustrate a typical EPI infrastructure that is
layered into physical topology, logical topology, and a control
plane. The physical topology layer is the initial topology of
the parties’ nodesNApp. The EPI framework builds the logical
topology of areas on a higher layer of 2App. At that layer,
the framework initialises the C matrix by noting supported
channels between nodes.

The proxy node hosts the Area-Area packet forwarding
to bridge communication between nodes of different areas.
The proxy node handles establishing a connection with the
NFV instances hosted on the NFVI. In other words, the proxy
node’s tasks are to 1) Identify the NFV instances required to
bridge a channel, 2) Establish a connection with the NFVs,
3) Enable Area-Area routing by enforcing packets redirection
along the BFCs. The control plane runs on the highest level
and has three components: 1) The NFV management nodes
2) An orchestrator 3) The middleware controller.

Similar to an ETSI-NFV architecture [19], the EPI infras-
tructure incorporates NFVmanagement nodes and an orches-
trator to configure and manage the NFVs lifecycle. The
orchestrator also coordinates with the middleware controller
to set up the proxy nodes. There is a centralised orchestrator
and one NFV management component per proxy node.

The middleware controller performs the following main
tasks: 1) Processing the logical topology and assigning

FIGURE 6. The infrastructure topology in any EPI use case.

areas, 2) Configuring the proxy node to enable bridges, and
determining the needed BFC of NFVs, 3) Configuring the
Area-Area routing tables.

The EPI infrastructure, in a general sense, includes NFV
components that are set up to enable the EPI logic model
(refer to step 5 in Figure 3). In an EPI use case, we reprogram
the EPI infrastructure to adapt by determining the specific
BFC of NFVs and effectively communicating with EPI par-
ties. As long as the missing attributes between nodes are
bridgeable, and can be virtually provided at a higher layer,
then the use case is supported.

VIII. EPI USE CASES
In the EPI project, there are three main use cases to consider.
In this section, we introduce these use cases, apply the logic
model to determine the IFC, and set up the bridging functions
proxies in an attempt to satisfy the requested data movements.
Note that in the following use cases, the attributes that we
considered are characteristic of the nodes’ low-level commu-
nication attributes, such as the IP version and data encryption
capabilities.

We identify each node as follows ni(Ai, IP), and the possi-
ble attributes are the set A= {Encrypted data (a1), IPv4 (a2),
IPv6 (a3)}. If a node has a1 as an attribute, that means that
this node stores maintains, and communicates the data in an
encrypted form. A node supports IPv4 and IPv6 addresses if
it has attributes a2 and a3, respectively. Any incompatibilities
between these attributes can result in an unsupported data
movement, hence data sharing failure. The three EPI use
cases discussed in this section are:

1) Patients to doctor data streaming which is a typ-
ical scenario that aims to provide personalized
medicine/diagnosis

2) Maintain an EHR and backup storage with multiple
data sources

3) ML model sharing to train models on medical data sets

A. PATIENTS-DOCTOR DATA STREAMING
The first EPI use case is built to support patient-doctor data
streaming and as a result, providing a personalised diagnosis.
Figure 7 illustrates this and shows the framework setup.
Nodes n1, n2, and n3 are patients’ nodes such that each node
simulates the behaviour of a patient’s medical data streaming.

VOLUME 8, 2020 179917

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

FIGURE 7. The EPI setup for patient to general practitioner data
streaming.

These nodes want to send their data to the doctor node hosted
on node n4. Node n4 has a trained ML model and aims to
receive the monitoring data and reply with the patient’s per-
sonalised diagnosis. In this use case, NApp = {n1, n2, n3, n4},
and A1 = {a2} A2 = {a2} A3 = {a2} A4 = {a1, a2}
respectively.

The middleware controller runs the logic model, assigns
areas based on these nodes’ attributes, deduces IFC, and sets
up the area-area proxies. We assume that the policy allows
all data movements, and the R matrix entries are initialised
all to 1. The bridging functions utilised are the IPv4-to-
IPv6 tunnelling and data decryption functions. In case of
an unsupported movement between nodes, the middleware
controller sets up a proxy that redirects the packets along the
BFC to apply the bridging functions. The BFC is identified
by the controller to implement the set of commands defined
by δ, such that decrypt and tunnel are two Boolean functions
that pre-process the packets to be effectively communicated
by nodes.

The NFV applied services in this use case are shown in
Figure 7. The incompatibility in this use case is between θ2
and θ1, such that ε21 = {a1}. The proxy is set up to manage
area-area routing with BFC: δ(c21) = decrypt(c21) = b21 =
1, such that output represents the availability of the bridge
between θ2 and θ1.

Figure 7 shows the supported channels, and bridgeable
channels, and the calculation of IFC is as follows (refer to
Eq. (13)):

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ∧

1 1 1 1
1 1 1 1
1 1 1 1
0 0 0 1

∨

0 0 0 0
0 0 0 0
0 0 0 0
1 1 1 0

As mentioned before, according to this use case data should
flow both ways: patients-doctor and doctor-patients. The
application requests are expected to be from nodes n1, n2,
and n3 to node n4 and vice versa and theQmatrix shows that.
Data movement requests Q are applied once it overlaps with
the IFC matrix. That is determined by ¬(IFC⊗Q)∧Q (refer

FIGURE 8. The EPI setup for EHR storage and backup use case.

to Table 2), where ⊗ represents a logic XOR:

¬

IFC ⊗

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 1

 ∧

0 0 0 1
0 0 0 1
0 0 0 1
1 1 1 1

B. EHR AND BACKUP STORAGE
The second EPI use case is presented to maintain an EHR
storage node and backup node with multiple data sources.
Figure 8 illustrates this use case and the sub-infrastructure
setup. In this use case we have medical data sources consist-
ing of two doctors running on n1 and n2 nodes. The EHR
storage is maintained on n3, and n4 acts as a backup. Nodes
n1 and n2 wants to effectively query (Update/Insert/Get) a
patient’s medical records from node n3, and n3 will update
n4 as a backup node, accordingly. NApp = {n1, n2, n3, n4},
and A1 = {a2, a3} A2 = {a2, a3} A3 = {a1, a2, a3} A4 =
{a1, a2, a3} respectively.
In this use case the encryption/decryption of data is sup-

ported on all nodes. Subsequently, the bridging functions that
are required from NFVI are IPv4-to-IPv6/IPv6-to-IPv4 tun-
neling to support data movements between these incompati-
ble nodes. As an example, c12 = 0 indicates unsupported data
movement, then the proxy enables δ(c12) = tunnel(c12) =
b12 = 1 through area-area routing.
Figure 8 shows the supported channels (such that all rules’

entries are set to 1) and the bridgeable channels. We calculate
IFC as follows (Eq. (13)):

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ∧

1 1 1 1
1 1 1 1
0 0 1 1
0 0 1 1

∨

0 0 0 0
0 0 0 0
1 1 0 0
1 1 0 0

In this use case, the expected application requests require the
data flow from the medical data sources (might be doctors)
nodes n1 and n2 to EHR storage node n3 and vice versa.
Moreover, a data flow from node n3 to the backup node n4
is expected in the aim to maintain an updated backup storage.

179918 VOLUME 8, 2020

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

Data movement requests Q are applied once it overlaps with
the IFC matrix. That is determined as follows (Table 2):

¬

IFC ⊗

0 0 1 0
0 0 1 0
1 1 0 1
0 0 0 0

 ∧

0 0 1 0
0 0 1 0
1 1 0 1
0 0 0 0

C. ML MODEL SHARING
The third use case is proposed to share an ML model and
train it over different nodes and that is described in Figure 9.
Node n1 is the MLmodel owner, and wants to train the model
on the different medical data sets stored on n2, n3, and n4
and representing potential hospital parties. Figure 9 shows
n1 initiating the application scenario setup and identifying
relevant nodes for this application. In this case, NApp =
{n1, n2, n3, n4}with A1 = {a2}, A2 = {a1, a3}, A3 = {a1, a3},
and A4 = {a1, a2} respectively.
An example of applying BFC in Figure 9: With the incom-

patibility between θ2 and θ1, ε21 = {a1, a3}, the proxy
handles packets redirection to create bridges associated with
the previously unsupported channel, such that δ(c21) =
decrypt ∧ tunnel(c21). Nodes in area θ1 do not support the
encrypted data form that might be sent by nodes in area
θ2. Subsequently, the decrypt function, offered by the NFV
node, handles decrypting the data to communicate with θ2
effectively.

Moreover, θ1 is the area characterised by supporting only
IPv4, so the tunnel bridging function is offered on top of the
physical infrastructure of θ1 (hosted on the NFV node). The
tunnelling function works by encapsulating IPv6 packets into
IPv4 packets during transmission so that it is routed normally
through IPv4 routers, and vice versa. The chaining of the two
bridging functions allows previously unsupported channel
c21 = 0 to be successfully bridged b21 = 1. After applying
these functions, the nodes can effectively receive and process
the data communicated.

Figure 9 shows the supported channels and bridgeable
channels where we calculate IFC as follows (Eq. (13)):

1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 ∧

1 0 0 1
0 1 1 0
0 1 1 0
0 0 0 1

∨

0 1 1 0
1 0 0 1
1 0 0 1
1 1 1 0

Data movement requests Q are applied once it overlaps with
the IFC matrix:

¬

IFC ⊗

1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

 ∧

1 1 1 1
1 0 0 0
1 0 0 0
1 0 0 0

As a result, the EPI framework provides the previously miss-
ing support to effectively share data between EPI parties in

FIGURE 9. The EPI setup for the ML model sharing use case.

different use case scenarios. It is important to highlight that
some attributes may never be bridge-able, where a /∈ Aδ .
An example of a low-level communication attribute that

can never be bridged is the TLS version supported by a
specific node. If two nodes in different areas want to commu-
nicate, they must have the same attribute value, i.e. support
the same TLC version. There is no VNF or other mechanism
that can bridge this gap.

IX. CONCLUSION
In contrast to current healthcare data sharing frameworks,
we propose a dynamic programmable infrastructure that
can bridge functionality gaps. Subsequently, the framework
enables effective communication and interoperability when
sharing data between heterogeneous infrastructures. The
frameworkmanages an overlay of attributes services (BFC) to
align the data sharing policies with the heterogeneous techni-
cal attributes of healthcare domains. The framework assigns
nodes into areas, initialises channels, considers collaboration
rules, and sets up the bridging functions such that it can
control the information flow in a sub-infrastructure.

We defined the logic model and provided the mathematical
notations to follow. We simulated the algorithm and designed
a prototype to use it. We want to stress that our framework,
built to support healthcare use cases, is nonetheless capable of
supporting general data sharing use cases. Our work defined
the framework component needed to support this.

The measurement formulas of the infrastructure aggrega-
tion and success rate are used to quantify the infrastruc-
tural properties and compute an estimated failure and cost.
We evaluated the performance of the algorithm and estimated
that it scales withO(n3) as an upper limit, which is a one time/
application setup delay.

The clustering of nodes into areas is done according to
the node’s attributes. We will extend on the possible list
of characterising attributes and the bridgeablity of each.
The attributes are classified into: low-level communication
attributes (e.g. IP version), security attributes (e.g. level
of encryption), service attributes (e.g. ML model privacy
level), storage attributes, and computing attributes. After
that, we will append more requirements statements to the
logic model to accommodate to customised requirements
(e.g. ng ⇒ nh, iffAg ⊆ Ah AND ng ⇒ nh, iffa1 ∈ Ah).

VOLUME 8, 2020 179919

J. A. Kassem et al.: EPI Framework: A Dynamic Data Sharing Framework for Healthcare Use Cases

The paper proposes the EPI framework and lays out the
framework’s logic model, and we plan to extend on that with
real testbeds experiments. Moreover, this paper explains how
the framework and its components will be deployed in a typi-
cal infrastructure utilising NFVI and virtual networks.We see
potential in the use of overlay networks and network vir-
tual functions as technologies to provide the missing bridges
(refer to Section VII and VIII), and we intend on emulating a
real EPI infrastructure to evaluate its performance.

REFERENCES
[1] V. Moorthy, A. M. H. Restrepo, and M. P. Preziosi. (2020). Data Shar-

ing for Novel Coronavirus COVID-19. [Online]. Available: https://www.
who.int/

[2] (2013). Summary of the HIPAA Security Rule. HHS.gov. [Online]. Avail-
able: https://www.hhs.gov/.html

[3] (2019).General Data Protection Regulation (GDPR)—Official Legal Text.
General Data Protection Regulation (GDPR). Accessed: Sep. 9, 2020.
[Online]. Available: https://gdpr-info.eu/

[4] V. Patel, W. Barker, and E. Siminerio, Trends in Consumer Access and Use
of Electronic Health Information. Washington, DC, USA: Office of the
National Coordinator for Health Information Technology, 2015.

[5] K. Sartipi, K. Kuriakose, and W. Ma, ‘‘An infrastructure for secure
sharing of medical images between PACS and EHR systems,’’ in Proc.
Conf. Center Adv. Stud. Collaborative Res., Toronto, ON, Canada,
2013, pp. 245–259. [Online]. Available: http://dl.acm.org/citation.cfm?id=
2555523.2555549

[6] V. Patel, ‘‘A framework for secure and decentralized sharing of medical
imaging data via blockchain consensus,’’Health Informat. J., vol. 25, no. 4,
pp. 1398–1411, Dec. 2019, doi: 10.1177/1460458218769699.

[7] E. Roelofs, A. Dekker, E. Meldolesi, R. G. P. M. van Stiphout, V. Valentini,
and P. Lambin, ‘‘International data-sharing for radiotherapy research:
An open-source based infrastructure for multicentric clinical data min-
ing,’’ Radiotherapy Oncol., vol. 110, no. 2, pp. 370–374, Feb. 2014, doi:
10.1016/j.radonc.2013.11.001.

[8] D. Thilakanathan, S. Chen, S. Nepal, R. Calvo, and L. Alem, ‘‘A platform
for secure monitoring and sharing of generic health data in the
cloud,’’ Future Gener. Comput. Syst., vol. 35, pp. 102–113, Jun. 2014.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167739X13001908

[9] K. N. Griggs, O. Ossipova, C. P. Kohlios, A. N. Baccarini, E. A. Howson,
and T. Hayajneh, ‘‘Healthcare blockchain system using smart contracts for
secure automated remote patient monitoring,’’ J. Med. Syst., vol. 42, no. 7,
pp. 1–7, Jul. 2018, doi: 10.1007/s10916-018-0982-x.

[10] Q. Xia, E. B. Sifah, K. O. Asamoah, J. Gao, X. Du, andM. Guizani, ‘‘MeD-
Share: Trust-less medical data sharing among cloud service providers via
blockchain,’’ IEEE Access, vol. 5, pp. 14757–14767, 2017, doi: 10.1109/
access.2017.2730843.

[11] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, ‘‘MedBlock: Efficient and
secure medical data sharing via blockchain,’’ J. Med. Syst., vol. 42, no. 8,
p. 136, Aug. 2018, doi: 10.1007/s10916-018-0993-7.

[12] N. A. Anoop and T. K. Parani, ‘‘A real time efficient & secure patient
monitoring based on wireless body area networks,’’ in Proc. Online Int.
Conf. Green Eng. Technol. (IC-GET), Nov. 2016, pp. 1–5, doi: 10.1109/get.
2016.7916814.

[13] G. Manogaran, R. Varatharajan, D. Lopez, P. M. Kumar, R. Sundarasekar,
and C. Thota, ‘‘A new architecture of Internet of Things and big
data ecosystem for secured smart healthcare monitoring and alerting
system,’’ Future Gener. Comput. Syst., vol. 82, pp. 375–387, May 2018.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S0167739X17305149

[14] S. Shakeri, V. Maccatrozzo, L. Veen, R. Bakhshi, L. Gommans, C. de Laat,
and P. Grosso, ‘‘Modeling andmatching digital data marketplace policies,’’
in Proc. 15th Int. Conf. eSci. (eSci.), Sep. 2019, pp. 570–577.

[15] L. Zhang, R. Cushing, L. Gommans, C. De Laat, and P. Grosso, ‘‘Modeling
of collaboration archetypes in digital market places,’’ IEEE Access, vol. 7,
pp. 102689–102700, 2019, doi: 10.1109/access.2019.2931762.

[16] R. Mijumbi, J. Serrat, J.-L. Gorricho, N. Bouten, F. De Turck,
and R. Boutaba, ‘‘Network function virtualization: State-of-the-art and
research challenges,’’ IEEE Commun. Surveys Tuts., vol. 18, no. 1,
pp. 236–262, 1st Quart., 2016, doi: 10.1109/comst.2015.2477041.

[17] B. Yi, X.Wang, K. Li, S. K. Das, andM. Huang, ‘‘A comprehensive survey
of network function virtualization,’’Comput. Netw., vol. 133, pp. 212–262,
Mar. 2018.

[18] A. AbdelSalam, F. Clad, C. Filsfils, S. Salsano, G. Siracusano, and L. Vel-
tri, ‘‘Implementation of virtual network function chaining through segment
routing in a Linux-based NFV infrastructure,’’ in Proc. IEEE Conf. Netw.
Softwarization (NetSoft), Jul. 2017, pp. 1–5.

[19] H. Hawilo, A. Shami, M. Mirahmadi, and R. Asal, ‘‘NFV: State of the
art, challenges, and implementation in next generation mobile networks
(vEPC),’’ IEEE Netw., vol. 28, no. 6, pp. 18–26, Nov. 2014, doi: 10.1109/
mnet.2014.6963800.

JAMILA ALSAYED KASSEM received the B.Eng.
degree in computer engineering from Beirut Arab
University, Debbieh, in 2017, and theM.Sc. degree
in information and network security from the Uni-
versity of the West of Scotland, U.K., in 2018.
She is currently pursuing the Ph.D. degree with
the MultiScale Networked Systems, University of
Amsterdam. Her research interests include novel
network infrastructure, programmable infrastruc-
ture, health data sharing, and information security.

CEES DE LAAT (Member, IEEE) is currently
the Chair of the System and Network Engineer-
ing (SNE) Laboratory, Complex Cyber Infrastruc-
ture (CCI) Research Group, Faculty of Science,
Informatics Institute, University of Amsterdam.
He serves with the Lawrence Berkeley Laboratory
Policy Board for ESnet. He is a Cofounder of
the Global Lambda Integrated Facility (GLIF), the
Founder of GRIDforum.nl, and a Founding Mem-
ber of CineGrid.org. His group has been a part of

A.O. EU projects GN4-2, SWITCH, CYCLONE, ENVRIplus and ENVRI,
Geysers, NOVI, NEXTGRID, and EGEE, and national projects DL4LD,
SARNET, COMMIT, GIGAport, VL-e, and EPI. He is also a member of
the Advisory Board of Internet Society Netherlands and Scientific Technical
Advisory Board of SURF Netherlands.

ARIE TAAL received the Ph.D. degree in nuclear
science from the University of Delft, in 1989. He is
currently a Part-Time Researcher in advanced
Internet research with the University of Amster-
dam.His research interest includes network’s algo-
rithms and architecture.

PAOLA GROSSO (Member, IEEE) is currently
an Associate Professor with the University of
Amsterdam where she leads the Multiscale Net-
worked Systems Research Group. Her work
focuses on the creation of sustainable and secure
e-infrastructures, and relying on the provisioning
and design of programmable networks. She has
an extensive list of publications on the topic and
contributes to several national and international
projects.

179920 VOLUME 8, 2020

http://dx.doi.org/10.1177/1460458218769699
http://dx.doi.org/10.1016/j.radonc.2013.11.001
http://dx.doi.org/10.1007/s10916-018-0982-x
http://dx.doi.org/10.1109/access.2017.2730843
http://dx.doi.org/10.1109/access.2017.2730843
http://dx.doi.org/10.1007/s10916-018-0993-7
http://dx.doi.org/10.1109/get.2016.7916814
http://dx.doi.org/10.1109/get.2016.7916814
http://dx.doi.org/10.1109/access.2019.2931762
http://dx.doi.org/10.1109/comst.2015.2477041
http://dx.doi.org/10.1109/mnet.2014.6963800
http://dx.doi.org/10.1109/mnet.2014.6963800

