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ABSTRACT Melanoma is a common form of skin cancer that dangerously affects many people around the
world. Detection of melanoma with the naked eye by dermatologists may be subject to errors. Therefore,
the implementation of image processing devices equipped with artificial intelligence can act as a support for
the dermatologist in examination and decision making. However, due to the various characteristics of this
type of lesions and the presence of noises and artifacts in the images, it is difficult to distinguish melanomas
from benign lesions. In this article, we propose a new type of intelligent system which is based on several
neural networks connected on two levels of classification. The first level contains five classifiers (subjective
classifiers): the perceptron coupled with color local binary patterns, the perceptron coupled with color
histograms of oriented gradients, the generative adversarial network (for segmentation) coupled with ABCD
rule, the ResNet, and the AlexNet. They are chosen experimentally and consider the following features of
melanomas: texture, shape, color, size, and convolutional pixel connections. At the second level (objective
level), one classifier (perceptron-type) decides whether the lesion is a melanoma, based on learning-adjusted
weight and the decisions at the first level. The second level is based on back-propagation perceptron that
provides the final decision (melanoma or non-melanoma). The subjective and objective levels undergo two
separate training phases. This approach allows an easier transition of the system from one database to
another. This study shows that the use of the objective classifier brings an accuracy of 97.5% and an F1
score of 97.47%. These results are better than those of the individual classifier and those of the previous
literature mentioned in References.

INDEX TERMS Artificial neural networks, decision fusion, dermoscopic images, feature extraction, image
classification, image decomposition, image segmentation, melanoma detection.

I. INTRODUCTION
Skin cancer is the most common of all human cancers.
After the recent studies, the global incidence of skin cancers
increased in recent decades. It is expected that by 2040,
the number of skin cancers will increase by 62% com-
pared to 2018 [1]. According to the World Health Organiza-
tion (WHO) approximately 2 - 3 million non-melanoma skin
cancers and 132,000 melanoma skin cancers occur globally
each year [2]. Although melanomas account for less than 5%
of skin cancer cases, they are responsible for 75% of skin
cancer deaths [3]. Therefore, skin cancer is a major public
health issue, with high annual medical and social costs.
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Although melanoma is one of the cancers that can be pre-
vented, it has been growing exponentially in recent years. The
main cause is repeated long-term exposure to UV radiation
(from the sun or indoor tanning). Melanoma can progress
from a common or atypical nevus that undergoes changes
such as shape, size, irregular boundaries, color, or texture of
pigmented areas. In almost all cases, it is the type of cancer
that occurs in the pigment cells (melanocytes) of the skin [4].
Because melanoma is an aggressive malignant tumor and has
a very high risk of metastasis, an in-depth knowledge of the
factors that lead to its development is very important.

Early detection increases the patient’s chance of sur-
vival, as this allows for more treatment options to be tried.
Thus, visiting a specialist for a thorough analysis of a skin
lesion can save lives. Yet, human visual examination can
be subject to errors (lesions showing similarities), leaving
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patients misdiagnosed. These errors are subjective, some-
times due to a lack of specialist experience. Without tech-
nological support, the accuracy obtained by dermatologists
using human visual examination for the correct diagnosis
of melanoma is 60% [5]. It is proven that the diagnosis
of skin lesions using image examination is more accurate
than the diagnosis without images [6]. The non-invasive
method, based on images acquired by dermoscopic equip-
ment, is generally used in a preliminary computational anal-
ysis for melanoma detection. Therefore, automatic detection
of malignancy, especially based on artificial intelligence (e.g.
deep neural networks) can become an important supporting
tool for specialists in diagnosing melanoma [7]. However, the
precise diagnosis of skin cancer is made by histopathologi-
cal examination on surgically obtained samples (considered
ground truth).

Clinical images of skin lesions are very different, con-
cerning the following aspects: contrast, shape, size, border,
weak resolution, presence of artefacts, hair, veins, texture,
etc. This makes it difficult to distinguish between melanoma
and non-melanoma lesions [8]. Therefore, an image prepro-
cessing phase is necessary [9]. The most used preprocessing
operations are the following: image decomposition on
color channels, noise filtering, removing artifacts, contrast
enhancement, illumination correction, and segmentation.
These operations can effectively improve the prediction of
melanoma detection.

There are three main stages in an automated dermoscopy
image analysis: the image preprocessing (noise rejection
and segmentation), the feature extraction, and the lesion
classification.

Different classifiers were used to detect skin lesions in the
images, focusing on various aspects such as texture, shape,
color, size, etc. Due to the specific nature of learning, the
individual classifiers can be considered subjective elements
of artificial intelligence. As novelty, we recommend the use
of several individual classifiers and the final decision to be
based on the correlated interpretation of classifier outputs.
In this way, we introduce a more objective approach in the
melanoma detection process. The question of how many
subjective actors (individual classifiers) must be considered
remains open. From a theoretical point of view, this is an
unresolved problem. However, based on experimental obser-
vations, and as a compromise between cost and performance,
we used classifiers based on the analysis of shape, color,
texture, and convolutional connections.

The novelty of the article consists of the implementation
of a more objective system with high performance, based
on artificial intelligence for the detection of melanomas in
images. To this end, the system includes several individual,
subjective classifiers that exploit different characteristics of
melanoma. The subjective classifiers are the following: two
individual classifiers based on texture feature (a perceptron
combined with color LBP – local binary patterns – and a
perceptron combinedwith color HOG– histogram of oriented
gradients), one individual classifier based on shape and color

(GAN – generative adversarial network [10] – combined with
classic ABCD rule – asymmetry, border, color, diameter) and
two end-to-end individual CNNs (ResNet – residual network
– and AlexNet). As a new contribution, we use a final percep-
tron to combine the subjective partial decisions into a more
objective one, the final decision. The system was learned
and tested using ISIC 2019 [11] and PH2 [12] databases.
The system performance is higher than that of individual
classifiers, as well as previous literature.

The next section presents the state of the art concerning
automated melanoma detection. Section III deals with meth-
ods andmaterials used for the implementation of the objective
system based on multi-neural networks. The experimental
results are presented in section IV. The discussions and anal-
ysis of the proposed system are contained in section V. The
paper ends with a brief conclusive section.

II. RELATED WORKS
As mentioned earlier, due to poor quality of skin lesions
images, these need to be improved by preprocessing [13]:
eliminate noise, adjust the contrast, remove the artifacts, hair,
and segment the lesion. Removing the hair from the lesion
images has been a challenge in many works. Specialized pre-
processing software has been created for this action, the best
known being Top-hat operator and DullRazor [14].

Since the preprocessing stage affects the accuracy of
melanoma detection, segmentation is an important step and
must be executed carefully [15]. For example, in the case of
ABCD rule, one of the most important and difficult problems
is lesion segmentation. That is because it can strongly influ-
ence the assessment of asymmetry and border [16].

Through segmentation, the lesion is separated from the rest
of the skin and can be better analyzed. This is a difficult task
because of the low contrast between the lesion and the rest
of the skin. In the past, the most commonly used technique
to segment the melanoma was the adaptive thresholding [17].
The more recent research of [18] proposes a method based
on a deep learning CNN for the efficient extraction of lesion
regions. The skin images are preprocessed to reduce possible
artifacts because the input images were obtained from stan-
dard cameras. This CNN analyzes both the general structure
and the local texture-based structure. It can be seen that
there are different segmentation techniques such as threshold-
based (the simplest), edge and region-based technique, and
artificial intelligence-based technique (most recent) [9].
Different methods and extensive studies [19] were used
to generate masks on skin lesions, from simple ones like
threshold-based binary images to complex ones based on
CNN.

Literature has often reported segmentation accuracy (with-
out classification). The deep learning method is more accu-
rate, however, more expensive than the threshold-based
binary image generation. Among neural networks, GANs
gave the best results in segmenting melanoma skin lesions
[20], [21]. Thus, the authors in [21] compare theGANmethod
with other neural networks like U-net, SegNet, and ExB and
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obtain an accuracy of 97% in melanoma segmentation. In this
study, we create a mask on the skin lesion using a GAN-based
technique. We use this mask for the ABCD rule investigation.

The next step after image preprocessing is the interpreta-
tion of segmented lesion. Different methods have been used
to detect cancerous lesions and especially melanoma from
dermoscopic images. The more traditional method (1985)
called ABCD rule [22] has been expanded in 2004 into
the ABCDE rule (A - Asymmetry, B - Border irregularity,
C - Color variation, D - Diameter, and E – Evolving) [23].
These methods of differentiation between malignant, atypical
nevi, and common nevi, used by dermatologists, were an
effective aid to identify suspicious lesions with the naked
eye. The total dermoscopic score (TDS) computed by the
extraction of four features of skin lesion images (A, B, C,
and D) is used for the lesion classification.

The authors in [24] used texture, fractal, and geometric fea-
tures to discriminate malignant lesions from benign lesions.
The decision is taken based on a voting scheme combining
these features.

Recently, new classification methods of skin lesions, like
deep neural networks, have been frequently used. A compara-
tive study of different deep learning architecture to melanoma
detection is presented in [25]. By transfer learning, deep
CNNs have been used successfully in many applications
for recognizing shapes and objects in images. They can be
pre-trained on certain image bases (such as ImageNet [26])
and then adapted for a specific application. Of these, the most
commonly used in the detection of melanomas in skin
images were the following [9], [25]: AlexNet, VGG Net,
GoogleNet, ResNet, DenseNet, Xception, etc. For example,
ResNet – 34 was used in [27] to classify melanoma and
benign cells, with an accuracy of 92%. The authors in [28]
studied deep learning CNN architectures like ResNet-101 and
Inception-v3 for classification tasks of skin lesions as benign
or malignant. They reported an accuracy rate of 89% for
ResNet-101 and 90% for Inception-v3.

Transfer learning and some improvements (fine-tuning
weights, replacing classification layer with softmax layer, and
augmenting dataset) were used in [29] for AlexNet to obtain
good performance in the classification of skin lesions. For the
ISIC 2017 database, an accuracy of 95.91 was reached.

The authors in [19] used CNN-based frameworks for three
tasks: lesion segmentation, feature extraction, and lesion clas-
sification. For lesion segmentation and classification (such as
nevus, melanoma, and seborrheic keratosis) an extension of
a fully convolutional residual network (FCRN – 88), namely
Lesion Indexing Network, has implemented and trained. For
feature extraction, the Lesion Feature Network framework
has been used. The authors in [30] connected the informa-
tion about texture (features extracted from gray level co-
occurrence matrix) with the information about shape and
color (ABCD rule) at the entrance of an artificial neural net-
work and obtained a detection ofmelanomaswith an accuracy
of 93.7%. Just as [18] and [28], we use information about
texture, color and shape, but on separate channels. Thus, our

system contains one channel characterizing the general struc-
ture (shape, size, color, and border irregularity) and two
channels characterizing the appearance of the texture (LBP
and HOG).

In our previous work [31] we used a global fusion-
based decision system consisting of the following classifiers:
two-layer-feed-forward network, GoogleNet CNN, ResNet-
101 CNN, NasNet-Large CNN (all deep CNN with trans-
fer learning), and HOG based SVM. The decision fusion
is based on a threshold of 0.7 from the total weights. The
individual classifier decisions were considered 0 for non-
melanoma (NMe) and 1 for melanoma (Me). Unlike [31],
we propose a system based on two classification stages:
the first stage uses different aspects of melanoma: tex-
ture, shape and color characteristics, and particular features
extracted inside deep convolutional networks (end-to-end).
These are seen as subjective classifiers. Their outputs are
not decisions but probabilities of belonging to the Me class.
The second classification stage is a perceptron that uses
the outputs of the classifiers from the first stage. Thus,
we consider that combining more subjective classifiers into
a new final integrator classifier, the decision becomes more
objective.

Two databases have been frequently used in research
papers for melanoma detection: PH2 (from Hospital Pedro
Hispano) [12] with 200 dermoscopic images (40 with
melanoma, 80 with common nevi, and 80 with atypical nevi)
and ISIC 2019 (International Skin Imaging Collaboration)
with 25332 JPEG images of skin lesions [11]. Unfortu-
nately, these public datasets have several deficiencies, such
as small volume (especially PH2), imbalance (the num-
ber of non-melanoma lesions is higher than the number of
melanomas), hair coverage, lack of consistency in the use of
the image acquisition equipment, or different image quality
standards. They are difficult to diagnose and, therefore, some
researchers used data purification and augmentation to seg-
ment and classify melanomas [32].

III. MATERIALS AND METHODS
We propose a system for melanoma detection based on three
stages: the image preprocessing, first classification stage
(subjective classification), and second classification stage
(objective classification). Preprocessing refers to known
algorithms for eliminating noise, hair (DullRazor), improving
contrast, and data normalization. These algorithms will not
be detailed further, the paper focusing on the classification
approach.

The first classification stage contains five subjective
classifiers working in parallel to detect melanomas: Color
LBP-Perceptron, Color HOG-Perceptron, ABCD rule-based
classifier, ResNet 101 – deep CNN, and AlexNet – deep
CNN. Their outputs, expressed as probabilities with a certain
predetermined level of confidence, are used in a final percep-
tron type module for making the final classification decision
(the second classification stage).
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A. CLASSIFIERS BASED ON TEXTURE INFORMATION
Information about the color texture of the lesion is of great
interest in melanoma detection. From the relevant features
for this classification, we chose the LBP color histogram and
HOG color histogram. Two perceptrons with backpropaga-
tion as in our previous work [33] were used for proper clas-
sification on two separate branches in the proposed objective
system.

1) COLOR LBP-PERCEPTRON
The LBP operator for texture classification was introduced
by Ojala et al. [34]. The LBP discriminator was first applied
on a 3 × 3 neighborhood around a pixel and then enhanced
in 2002 [35] by extending the algorithm to any spatial
neighborhood. The advantages of the LBP operator are the
following: high discriminative power, invariance to lighting
conditions, simplicity of calculation (allows real-time opera-
tion), and the ability to encode fine details. It is well known
that the LBP algorithm encodes the local pixel information
in a binary code. All the pixels from the neighborhood are
compared with the central pixel. If they have values higher
than or equal to this pixel, then they are given a value of 1; if
not, they are given a value of 0. The values 0 and 1 are sequen-
tially read clockwise. Increasing power of 2 is associated,
multiplied with corresponding 0 or 1, and finally summed.
The number represents the binary code of the central pixel.
This algorithm is applied for all the image pixels and the
histogram of these numbers (LBP histogram) is considered as
an efficient descriptor of the image texture. Algorithm 1 syn-
thesizes the LBP code calculation for a monochrome (or gray
level) image.

Algorithm 1 LBP Code Calculation
1. Create the neighborhood of pixel Px,y:

NPx,y = [n1, n2, . . . , n8] (1)

2. Compare all pixels positioned in NPx,y :

FLBP
(
Px,y, nk

)
=

{
1, Px,y − nk ≤ 0
0, Px,y − nk > 0, k = 1, . . . , 8

(2)

3. LBP concatenation process, LBP binary code:

LBPbin
(
Px,y

)
= FLBP

(
Px,y, n1

)
· · ·FLBP

(
Px,y, n8

)
(3)

4. LBP decimal codes:

LBPdec
(
Px,y

)
=

8∑
i=1

LBPbin (i)× 2i−1 (4)

The LBP operator of a monochrome image replaces the
pixel Px,y by its LBP code in the decimal format (4). Thus,
the LBP output is an image with the same resolution as the
input image. From this image, a histogram is calculated by
considering equal-width bins (width of 25). We consider that

a color channel is represented by 8 bits. Then, the correspond-
ing histogram vector has 10 elements.

Using the histogram concatenation of R, G, and B chan-
nels, a characteristic vector (LBPRGB) of 30 elements is
obtained for the color representation of images (5):

LBPRGB = [l1R, . . . , l10R, l1G, . . . , l10G, l1B, . . . , l10B] (5)

where lR, lG, and lB, are the elements of LBP histograms
on R, G, and B color components.

For skin lesions classification the LBP operator was
applied so that, subsequently, the LBPRGB vector will be
combined with a perceptron-like neural network. Thus,
the LBPRGB vector is used to train and assist the neural
network in the decision-making process, as it has proven to
be an important mechanism of discrimination in image pro-
cessing. The perceptron used in this article is a single hidden
layer neural network which classifies the input images into
two classes: melanoma (Me) and non-melanoma (NMe). The
general architecture of the perceptron combinedwith LBPRGB
(namely LBP-Perceptron) for the training phase is presented
in Figure 1, where the following blocks are highlighted: Input
– Lesion Image (the image of the skin lesion); Color Image
Decomposition (R, G, and B components); LBPRGB (Cal-
culation of LBP histogram vectors on each color channel);
HLBPRGB (Concatenation of LBP histograms represented by
a vector with 30 components); Histogram vectors (Histogram
represented by a vector); Weights (The set of perceptron
weights wk,k = 1, . . . , 30, corresponding to each bin of
HLBPRGB); Convolution (The product sum of the histogram
vector li and the weights wi) used to determine the output;
Sigmoid (Sigmoid function to determine which defined class
was predicted); WA (Weights Adjustments - a process used
only in the training phase of the neural network).

In the testing phase, the LBP-Perceptron, noted with PL
into system configuration, provides at the output the proba-
bility p1 that the lesion is a melanoma.

2) COLOR HOG-PERCEPTRON
For the Histogram of Oriented Gradient descriptor (HOG),
the absolute value of the gradient is calculated at the pixel
level. By combining the horizontal and vertical components,
it can extract the absolute value (magnitude) of the gradient
and its orientation. The amplitude of the gradient indicates
the intensity transitions between pixels. On the other hand,
the gradient orientation represents the values of the angle at
which the intensity transitions between pixels take place.

Considering a grayscale image, HOG [36] assumes the
calculus of the gradient magnitude Gmag (6) and orientation
Gdir (7) for each pixel (i, j) – Algorithm 2.
The general architecture of the perceptron combined with

HOGRGB (namely HOG-Perceptron) is similar with LBPRGB
and is presented in Figure 2, where the following blocks
are highlighted: Input – Lesion Image (the image of the
skin lesion); Color Image Decomposition (R, G, and B com-
ponents); HOGRGB (Calculation of HOG histogram vectors
on each color channel); HHOGRGB (Concatenation of HOG
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FIGURE 1. LBP-Perceptron architecture in the training phase.

histograms represented by a vector with 27 components); His-
togram vectors (Histograms represented by vectors); Weights
(The set of weights wk,k = 1, . . . , 27 corresponding to each
bin of HHOGRGB); Convolution (The product sum of the
histogram vector li and the weights wi) used to determine
the output; Sigmoid (Sigmoid function to determine which
defined class was predicted); WA (Weights Adjustments -
process used in the training phase of the neural network).

Algorithm 2 HOG Descriptor Calculation
1. Calculating gradients (direction x and y) for each
image pixel: magnitude (6) and orientation – using
arctangent (7),

Gmag (i, j) =
√
G2
x (i, j)+ G2

y (i, j) (6)

Gdir (i, j) = tan−1
(
Gy (i, j)
Gx (i, j)

)
(7)

2. Calculate the gradient components with Sobel operator.
3. Divide the image into cells of specified dimension
4. For monochrome (or gray level) representation, 9
components of orientations (bins) are calculated for
equal space of 20 degrees over 0 to 180 degrees interval.

5. For each cell we allocate the gradient magnitude to fill
the values in the matrix;

6.Magnitudeweighting allocation in adjacent bins for each
cell;

7. Histogram normalization.

By histogram concatenation of R, G, and B color chan-
nels, a characteristic vector (HOGRGB) of 27 elements is
obtained (8):

HOGRGB = [h1R, . . . , h9R, h1G, . . . , h9G, h1B, . . . , h9B] (8)

where hR, hG, and hB are the HOG elements on R, G, and B
components.

In the testing phase, the HOG-Perceptron, noted with PH
into system configuration, provides at the output the proba-
bility p2 that the input lesion is a melanoma.

B. CLASSIFIERS BASED ON SHAPE AND COLOR
INFORMATION
The classification branch based on the particularities of shape
and color contains two main blocks: the GAN network to
segment the lesion and the ABCD block to evaluate the four
features and to establish the classification decision.

Generally, on the segmented lesion, it can see more dif-
ferences between melanoma and non-melanoma (Figure 3).
Non-melanoma (Figure 3 - left) is characterized by symme-
try, regular edges, diameter less than 10 mm, and uniform
color. Melanoma is characterized by asymmetrical appear-
ance, irregular edges, larger diameter, and colors which vary
(Figure 3 - right). These differences were first observed many
years ago and were formalized as ABCD rule [22].

The formulas for asymmetry (As), border score (B),
Color variation score (C), and diameter (D) are
presented in Table 1 [13].

Given the fact that ABCD rule represents a dermoscopic
evaluation algorithm slightly more technical, the solution
used in this article for the detection of melanoma from skin
lesion images has few changes compared to [22].

For the As calculation, only the shape was taken into
consideration and not color or structure. Asymmetry is eval-
uated in two half-planes obtained by the two main orthog-
onal axes. A score of 0 was given for symmetry on two
axes, 1 for asymmetry on one axis, and 2 for asymmetry on
both axes. To evaluate the border parameter, a compactness
index is calculated for each of the eight segments of the
image and then a total border irregularity index (B) was
determined as stated in [13]. One point was added for each
color with a percentage of >5% of the area of the lesion
to calculate the color variation (C) and instead of different
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FIGURE 2. HOG-Perceptron architecture in the training phase.

FIGURE 3. Comparison between non-melanoma (left) and
melanoma (right) structures.

TABLE 1. Features and their formulas.

structural components. Six different colors count in deter-
mining the color score: light-brown, dark-brown, black, red,
white, and blue-gray. The maximum color score assigned to
the lesion is 6, the minimum score is 1. The lesion diameter
(D) is used for the last parameter of TDS and a score is
established to mark the length of the major axis.

A total dermoscopic score (9) must be calculated for
ABCD rule classification. A score higher than 5.45 indicates
a high suspicion of melanoma.

TDS = 1.3× As+ 0.1× B+ 0.5× C + 0.5× D (9)

FIGURE 4. GAN architecture in the training phase.

To be able to associate a probability (pABCD) of detecting
melanoma by the ABCD method, we impose the TDS nor-
malization by twice the separation index (5.45) of Me from
NMe (10). This means a melanoma probability of 0.5 for
TDS = 5.45.

pABCD =


TDS
A

, if TDS ≤ 10.9

1, if TDS > 10.9
(10)

In the ABCD method, precise segmentation of the lesion
is very important. For image segmentation, we used a condi-
tional GAN-based method like in [36] with two phases: the
learning phase and the segmentation phase. GAN has two
main adversarial blocks (convolutional type): the generator
(G) and the discriminator (D) – Figure 4.

First, in the learning phase, a set of lesion images from
datasets (Me and NMe) are used to create a batch of images
with mask on the lesions (RM - real masks). Then, a lesion
image (LI) is introduced in G to create a fake mask (FM).

179194 VOLUME 8, 2020



L. Ichim, D. Popescu: Melanoma Detection Using an Objective System Based on Multiple Connected Neural Networks

FIGURE 5. GAN architecture in the testing phase.

Two image pairs are introduced in D: (LI, RM) and (LI, FM).
The process is repeated successively, each time changing the
weights in G and D, so that FM is as close as possible to
RM. Other notations in Figure 4 are the following: O –weight
optimizer (one for G and one for D), M0 – null matrix, M1
– unit matrix, and BCE – Binary Cross Entropy criterion
for comparison. The process is described in detail in [36].
Second, in the actual segmentation phase, only the generator
is used to create the segmentation of the lesion (mask) in
the image (Figure 5). However, D provides a probability of
FM approaching the RM (pGAN ). This probability is used
together with the classification probability of the module
ABCD to obtain the confidence of the classifier (CC) from the
corresponding branch of the global classifier. Thus, the inputs
of the CC block (Figure 5) are the probabilities pABCD and
pGAN . The final probability (p3) is the product (11):

p3 = pABCD × pGAN (11)

C. DEEP CONVOLUTIONAL NEURAL NETWORKS
Two branches of the objective system are dedicated to
neural networks, end-to-end learning (transfer learning
approach). Based on reference studies [9], [37], and our
previous study [31] we chose two efficient deep CNNs:
ResNet-101 and AlexNet. In addition, for these neural net-
works, the input images were resized to a resolution of
224× 224× 3 pixels.

1) RESNET-101
ResNet was one of the best performing deep neural networks
in the classification challenges of 2015 (ILSVRC2015 - IMA-
GENET Large Scale Visual Recognition Challenge) [38].
There are several similar variants, with different numbers
of layers (ResNet-18, ResNet-34, ResNet-50, ResNet-101,
ResNet-110, ResNet-152, ResNet-164, ResNet-1202). The
chosen network (ResNet-101), Figure 6, contains 101 deep
layers and is similar to the typical deep CNN structure,
the difference being the construction of residual blocks that
allow the use of skip connections or shortcuts to jump over
some layers.

The use of residual blocks solves the problem of vanishing
/ exploding gradients. The ResNet-101 architecture is shown
in Figure 6, and it is characterized by the repetition (marked
as× n) of similar residual units RUA and RUB. These residual
units are presented in Figure 7.

2) ALEXNET
AlexNet is the name of a convolutional neural network
(CNN), designed by Krizhevsky et al. [39]. AlexNet uses
color images as input in the CNN. The images must be

FIGURE 6. ResNet-101 architecture, FC – fully connected layer, ReLU –
rectified linear unit.

FIGURE 7. ResNet-101, residual blocks (RUA and RUB), ReLU – rectified
linear unit.

224× 224 pixels, so they will be adjusted to this size before
being used as input data. As output, AlexNet produces two
numbers, the probabilities that the lesion belongs to Me or
NMe. The sum of all elements of the vector is 1. The AlexNet
architecture is composed of eight layers: convolutional (the
first five) and fully connected (the last three). Each convo-
lutional layer contains several filters of the same size. These
filters are used to extract features from images. An important
feature of the model is that it uses the ReLu (Rectified Linear
Units) function, which activates neurons in the convolutional
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FIGURE 8. AlexNet architecture.

layers and helps reduce training time. The last layer, which
uses the softmax function, will be modified to provide a
probability of the objects belonging to the two classes: Me
and NMe. A representation of the network layers can be seen
in Figure 8.

D. GLOBAL SYSTEM
The proposed system has five subjective classifiers: SC1,
SC2, SC3, SC4, and SC5 (Figure 9) corresponding to the
subjective classifiers described above. Each contains a neural
network with a specific task. Two networks of branches SC1
and SC2 perform the lesion classification based on texture
features (Perceptron PL – LBP and Perceptron PH – HOG).
The neural network of the branch SC3(GAN) has the task
of lesion segmentation. SC3 uses information about shape
and color (A, B, C , and D). The deep neural networks of the
branches SC4 and SC5 (ResNet and, respectively, AlexNet)
achieve the direct classification, based on the end-to-end
learning approach. Thus, through the final perceptron PF,
the global multi-network system uses information about the
shape, color, texture and features extracted by two different
deep convolutional networks.

There are four phases in using the system:
a. Training phase 1 for the individual classifiers
b. Validation phase for the individual classifiers.

Confidence coefficient establishing.
c. Training phase for the final perceptron. Weights estab-

lishing.
d. Testing phase. Lesion classification as Me or NMe.
When changing the lesion database only the

phases 3 and 4 are necessary.
First, the lesion image is preprocessed to obtain a for-

mat agreed by all branches of primary classification and

FIGURE 9. System architecture. SCi – subjective classifiers, LBP – color
LBP histogram calculation module, PL – perceptron of SC1, HOG – color
HOG histogram calculation module, PH – perceptron of SC2, GAN –
generative adversarial network, ABCD Rule – module for TDS calculation,
xi – outputs of SCi, wi – final perceptron weights, PF – final perceptron,
Me – melanoma decision, NMe – non-melanoma decision, WA – weight
adjustment for PF (only for the second training phase).

improving image representation. The format is 224×224×3
pixels and the chain of image preprocessing operations is
the following: noise rejection (including hair removal), con-
trast enhancement, and histogram equalization. Each indi-
vidual classifier is trained separately to obtain the maximum
accuracy. Because of the specific architecture and individual
training, they have subjective behavior. Thus, a subjective
classifier (SCi) is characterized by an associated confidence
coefficient ci. The last level of the objective system has also
a perceptron structure, presented in detail in Figure 9 (PF).
The weights wi of PF are adjusted in the final training phase.
The dashed line shows an active connection only in this final
phase of training (fine adjustment).

The inputs of the final perceptron (PF) are the outputs of the
individual classifiers xi, i = 1, . . . , 5, located on the branches
SCi, i = 1, . . . , 5 of the global system. The SCi output (xi)
is the product of the probability pi of lesion classification
as melanoma and the confidence coefficient ci given to the
classifier in the validation phase (12),

xi = ci × pi, i = 1, . . . , 5 (12)

The confidence coefficient is considered as the accuracy
calculated in the validation phase (13),

ci = ACCi [%]× 100, i = 1, . . . , 5 (13)
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The hidden layer of PF is a convolutional law of the inputs
xi and the perceptron weights wi (14)

S =
5∑
i=1

xi × wi (14)

As for the first training phase, for the second training
phase, two classes were defined:Me andNMe. For each class,
a series of representative lesion images (LI ) were considered
and for each selected image, the probability pi of SCi is
computed, Then the inputs xi together with the desired output
Do (15), form the training data (Td) of the perceptron (16).

Do (LI ) =

{
1, LI ∈ Me
0, LI ∈ NMe

(15)

We consider that the training data is defined as a set of
n vectors with 5 elements (16) associated with a scalar. The
vector vk represents the subjective outputs (xi, i = 1, . . . , 5)
for a training lesion image LIk and the scalar Do(LIk ) is the
desired output.

Td=


vT1 , Do (LI1)= [x1 (LI1) , . . . , x5 (LI1)] , Do (LI1)
· · ·

vTn , Do (LIn)= [x1 (LIn) , . . . , x5 (LIn)] , Do (LIn)
(16)

The training process starts with a set of random weights.
The dot product between the vector vk and the vector of
weights (wj, j = 1, . . . , 5), is computed to determine the
network predicted output Po(LIk ) for each training image
which is normalized between 0 and 1 using the Sigmoid
function (17).

Po (LIk) =
1

1+ e−
∑5

j=1 xj(LIk )×wj
(17)

The back-propagation error (Er) is defined as the difference
between the predicted and desired output of each training
image defined in the training data Td (18).

Er (LIk) = Po (LIk)− Do (LIk) (18)

After computing the back-propagation error, the set of
weights must be adjusted.We propose besides using the back-
propagation error to also use the derivative Sigmoid function
of the predicted output that can indicate how confident is the
network about the existing weights (19).

P′o = Po × (1− Po) (19)

The proposed weights adjustment formula at the training
image LIk is presented in (20) where the training data at the
subjective level, vk is multiplied with the back-propagation
error and the derivative Sigmoid function.

WA (LIk) = vk × Er (LIk)× P′o (LIk) (20)

Finally, to reach an optimum for the set of weights based
on a specific training set, all this training process is repeated
for 800 images and each time small adjustmentsWA(LIk ) are
applied to the weights.

FIGURE 10. Learning images from the two databases used.

FIGURE 11. Training images from the two databases used.

FIGURE 12. LBP histogram: a) non-melanoma case, b) melanoma case.

E. DATABASES USED
Our system based on the automatic detection of dermato-
scopic images was trained and validated on two public
databases PH2 [12] and ISIC 2019 [11] (Figure 12). PH2 was
obtained in the dermatology department of Pedro Hispano
Hospital, Matosinhos, Portugal. The images were obtained
using a Tuebinger Mole Analyzer, with a magnification
of 20. The images are 8-bit RGB color with a resolution of
768×560 pixels. This database contains the manual segmen-
tation, the clinical diagnosis, and the identification of several
dermoscopic structures, performed by expert dermatologists,
in a set of 200 dermoscopic images, containing 80 common
nevi, 80 atypical nevi, and 40 melanomas.

ISIC (2016, 2017, 2018, and 2019) database (International
Skin Imaging Collaboration), was developed as a project
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FIGURE 13. HOG histogram: a) non-melanoma case, b) melanoma case.

between several medical institutions to reduce melanoma
mortality. ISIC 2019 is a collection of multiple databases
and it is currently the standard source for dermatoscopic
image analysis research. Moreover, is the most comprehen-
sive, technically advanced, and accessible resource for digital
dermatoscopy. It contains the largest collections of RGB
images of various sizes, perspectives, and lighting condi-
tions, and acquired with different dermatoscope types. Most
images have associated clinical metadata, which has been ver-
ified by recognized melanoma experts. The database contains
25,331 lesion images, 24-bit RGB color, from 9 classes of
skin diseases, such as melanoma, melanocytic nevus, basal
cell carcinoma, etc.

F. EVALUATION METRICS
In order to quantitatively evaluate the performances of the
proposed system for melanoma detection, we use two com-
mon metrics: the accuracy (ACC) (21) and F1 score (22).
These performance indicators can be calculated from the con-
fusion matrix (Figure 11) taking into account the following
elements: TP (true positive) which represents the number of
Me cases correctly classified, TN (true negative) - the number
of NMe cases correctly classified, FP (false positive) - the
number of NMe cases detected asMe, andFN (false negative)
- the number of Me cases detected as NMe.

ACC =
TP+ TN

TP+ TN + FP+ FN
(21)

F1 =
2TP

2TP+ FP+ FN
(22)

G. COMPUTER RESOURCES
To carry out the network training process in the shortest pos-
sible time, we used a laptop with the following specifications:
IntelCore i5-4200H processor, with 4 cores of 2.80 GHz each,
8192 MB RAM, 450 GB storage space, NVidia GEForce
GTX 850M video card with a total of 6047 MB memory.
Using these specifications, the training and validation

TABLE 2. Images used for different phases.

time of the networks was on average 150 minutes/
network [40].

IV. EXPERIMENTAL RESULTS
For system training, validation, and testing we used
1000 images from both datasets (Table 2). Because the
datasets are unbalanced (they contain fewer images with
melanomas), their augmentation was necessary.

The augmentation was carried out by four turns
90 degrees (except the validation phase). Thus, we obtained
3,400 images for the four phases of the study required:
2000 – SC training, 200 – validation (establishing the con-
fidence coefficient), 800 – PF training, and 400 – testing the
system. The Me and NMe images were balanced. Since the
number of Me images equal the number of NMe images, F1
is expected to be close to ACC .

A. RESULTS OBTAINED FOR THE SUBJECTIVE CLASSIFIERS
As can be seen from Table 2 in the training phase 1,
we used 500 images (2000 augmented images) from ISIC
2019 database, 250 with Me and 250 without Me (NMe).
The LBP histograms and HOG histograms for Me and NMe
cases are presented in Figure 12 and Figure 13. The values
are grouped in 10 bins (LBP) or 9 bins (HOG) for each color
component (R, G, and B) and are normalized.

Some examples of lesion segmentation (binary mask and
color mask) with the GAN algorithm for ABCD rule are
presented in Figure 14.

To evaluate the SC3 decision, the TDS score and the prob-
ability pABCD are calculated as in (10). Based on pGAN and
pABCD, the probability p3 provided by SC3 is evaluated as in
(11). Some examples are given in Table 3.

Fig. 15 shows the degree of accuracy and loss corre-
sponding to training and validation for ResNet. One can thus
observe an increase in accuracy and, to the same extent,
a decrease in losses as one reaches the sixth epoch. The
training cycle consists of 6 epochs, 86 iterations per epoch,
resulting in a maximum number of iterations of 516. Once
reached the last iteration, the accuracy obtained for the vali-
dation images was 93.67%.
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FIGURE 14. Masks and segmented lesions for ABCD rule (GAN output).

FIGURE 15. Accuracy and loss graph during the training process using
ResNet-101.

Similar results were obtained for the AlexNet model
(Figure 16). The obtained accuracy was 91.04%.

After the training phase, the validation of subjective
classifiers was performed on each branch using 200 images
without augmentation. For this purpose, the statistical indi-
cators TP,TN ,FP,FN and ACC were considered. Then,
the confidences ci, associated with classifiers SCi are estab-
lished (Table 4). Note that the best confidence coefficient is
given to SC4.

B. RESULTS OBTAINED FOR THE OBJECTIVE CLASSIFIERS
(GLOBAL SYSTEM)
For the testing phase, we considered 320 augmented images
from ISIC 2019 dataset (160 - Me and 160 - NMe) and
80 images from the PH2 dataset (40 - Me and 40 - NMe). The
accuracy and F1 score for individual classifiers (branches
SC1, . . . , SC5) and the global system are presented in Table 5.

FIGURE 16. Accuracy and loss graph during the training process using
AlexNet.

TABLE 3. Probability associated with TDS score for SC3.

TABLE 4. Associated confidences for the subjective classifiers
(Validation Phase).

TABLE 5. Performance comparison with individual subjective
classifiers SCi (Testing Phase).

Because the data (Me/NMe) are balanced, the ACC and F1
are close.

Some examples of the first level decision (subjective
classifiers) and of the second level decision (objective
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TABLE 6. Performance comparison with the subjective classifiers
(Testing Phase); examples of subjective errors compensation.

classifier) are given in Table 6. Note that there were situa-
tions when the subjective classifiers gave wrong decisions,
but the final (objective) classifier corrected the mistakes
taking into account the decisions of the other individual
classifiers (those with red are given the wrong decision of
classification).

V. DISCUSSIONS
In this article, we present a hierarchical structure of classi-
fiers for melanoma detection on two levels. The first level
is composed of five classifiers, named subjective classifiers
because everyone looks at melanomas from different points
of view: texture, shape, color, convolutional transformations,
etc. These individual decisions, called subjective decisions
are analyzed by the classifier on the second level, which can
be considered as an objective classifier. The system perfor-
mances in terms of accuracy and F1 score are significantly
better than for the subjective classifiers (Table 5). The use of
the probability offered by GAN in lesion segmentation does
not affect the subjective classification according to the ABCD
rule (based on TDS), in Table 6 (SC3). The Table 7 shows that
the method proposed in this article has better results than any
previous method displayed in Section II.
Remark: In our experiment, the ACC and F1 values are

close because the number of Mes is equal to that of NMes.
If the number of Mes is significantly less than that of NMes
then F1 is less than ACC (see examples from Table 7).

None of the articles propose the combination of complex
information (texture, shape, size, color, and combinatorial
laws). Some correlate only combinational laws from vari-
ous CNNs [29] with a majority vote-based decision, others

TABLE 7. (Performances) accuracy comparison with other works.

correlate CNNwith ABCD rule [43]. A single paper provides
similar values of ACC (97%), but refers only to segmenta-
tion [20]. As can be seen (Table 7), the simple classification
decision based on a majority voting scheme [29] gives poorer
results than the more elaborated method based on the percep-
tron decision [our].

The results confirm that the system offers better perfor-
mance on accuracy (more than 4.25% compared with sub-
jective classifiers and more than 2.5% compared with the
related works), F1 score (more than 4.27% compared with
subjective classifiers and more than 3.8% compared with the
related works), and time to adapt to a new source (database)
of images of melanoma lesions (because only the final
perceptron must be trained).

Another advantage of the proposed system consists of two
training phases. The first (training phase 1) used only the
ISIC 2019 database for the subjective classifiers. The confi-
dence coefficients obtained remain valid for other databases
related to the detection of melanomas. An adaptation to
another database only requires going through the training
phase 2 (final perceptron classifier). In our experiments,
images from two databases were used (ISIC 2019 and PH2).
Thus, the learning time for PH2 has been reduced by elimi-
nating the training phase 1.

Four issues remain to be addressed in the future: a) finding
a more efficient methodology to determine the evolution
(such as, for example, the use of the ABCDE criterion instead
of ABCD); b) Answering the question of why 5 subjective
classifiers and not more? c) The use of appropriate manual
segmentation (currently, these segmentations are subjective
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in public databases; for this reason the learning of segmen-
tation by neural networks is subjective); d) Finding another
user of subjective information (instead of perceptron) which
can lead to a more objective decision.

As a next goal, we want to consider the dynamic evolution
of the skin lesion over a short time, in order to make a
better classification and prediction. Consequently, we want to
extend the taxonomy with other types of skin lesions possibly
related to a cancer diagnosis.

VI. CONCLUSION
In this article, an efficient solution based on multiple classi-
fiers has been proposed for melanoma detection from lesion
images. As a novelty, in choosing the classifiers the following
aspects were taken into account: a) the classifiers to be placed
on two hierarchical levels: a subjective level and an objective
level, b) the classifiers on the first level to exploit different
characteristics of the lesions c) each classifier based on char-
acteristics was considered subjective due to specific learning,
and d) the existence of a final classifier, called objective,
to learn from subjective classifiers and make a final decision
that can compensate for certain subjective errors of the first
level classifiers. Another contribution was the introduction
of a conditional GAN for segmentation of lesions for the
classifier based on the ABCD rule. This led to an increase
in the accuracy of the classifier. In order to be connected
to the final classifier, the TDS score was transformed into
probability. An advantage of the proposed two-level sys-
tem was the faster transition from one database to another
(or from one device to another) by simply learning the second
level (final perceptron PF). The proposed method exceeds
the performance of other methods presented in references.
Thus, the objective neural network achieves anACC of 97.5%
and an F1 score of 94.47%, compared to the highest values
reported in the references, 97% for ACC and 93.67% for F1
score.
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