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ABSTRACT Various failure mechanisms of rolling bearing under different working conditions involve
important nonlinear dynamic characteristics. And the incipient fault detection of the complex and
non-stationary rolling bearing signal is difficult, especially with multiple interference source components.
To address this issue, a novel fault feature extraction method which integrates chaos theory and mathematical
morphology is proposed. Firstly, the smooth multi-scale morphological filtering (SMMF) is adopted to
reduce the noise in chaotic rolling bearing signals without destroying its original nonlinear dynamic structure.
In addition, a method of generalized estimation of morphological fractal dimension called composite
multi-scale morphological fractal dimension (CMMFD) is proposed, and applied to quantify the complexity
of those orbits reconstructed from rolling bearing signals. The CMMFD improves the identification ability
of the original morphological fractal dimension (MFD). Then, CMMFD features are extracted from SMMF
denoised signal. Different conditions of rolling bearing signals are distinguished in this feature space. Finally,
the CMMFD features are input into a Hidden Markov Model (HMM) training and diagnosis to distinguish
different faults of rolling bearing signals. The new diagnosis approach based on SMMF and CMMFD is
compared with some existing methods in analysis of simulated signals and experimental rolling bearing
signals. Accuracy and efficiency of different approaches are contrasted by analyzing the results of simulation
and experiments. Comparative results demonstrate that the proposed diagnosis approach based on SMMF
and CMMFD can reliably recognize different fault types at the early stage and have more accurate results.

INDEX TERMS Composite multi-scale morphological fractal dimension, smooth multi-scale morphological

filtering, rolling bearing, fault feature extraction.

I. INTRODUCTION

Rolling bearing is a hinge part of the mechanical transmis-
sion system, which is wide-ranging in industry. Most of the
rolling bearing failure that caused equipment outage or major
accidents were not detected in the early stage [1]. Therefore,
early fault detection of rolling bearing is valuable for pre-
venting equipment failure caused by its gradual evolution
into a serious fault [2]. Vibration analysis is the most com-
monly utilized non-destructive detecting method for rotating
machinery failure [3]. The incipient fault detection of the
bearing signal using vibration analysis technique is respected
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by many researchers owing to the advantages of improved
fitness and efficiency [4], [5].

The faulty rolling bearing system is categorized a into non-
linear vibration system. The nonlinear characteristics caused
by wear, crack, rupture, and plastic deformation failure can
exhibit rich, dynamic behavior, including sub-harmonics and
super-harmonics, quasi-periodic, chaotic vibration [10]. The
traditional time-domain analysis and frequency-domain anal-
ysis techniques were successfully devoted to stationary and
linear signals with periodic phenomenon. But the vibration
data collected from the mechanical device is complicated,
non-stationary, and nonlinear. Time-domain analysis or
frequency-domain analysis alone can not show detailed
information from complex fault signals. Time-frequency
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analysis feature techniques [6]-[9], which are more capa-
ble of simultaneously extracting detailed time-varying fre-
quency contents from rolling bearing signals. However, the
non-stationarity and nonlinearity of the fault signals are
weakened to some degree by the aforementioned methods.
Therefore, it is requested to research efficient methods for
extracting novel fault features of signals based on nonlinear
dynamics. Vibration features based on chaos theory such as
the Lyapunov exponent, the entropy, and the fractal dimen-
sion are able to quantify the strange attractor characteristics of
different rolling bearing healthy/faulty conditions. Nonethe-
less, a single-scale feature is not enough to represent all infor-
mation of nonlinear signal. The division of fault state space
may overlap if the feature values of two fault signals are close.
Hence, it is necessary to analyze the signal with composite,
multi-scale techniques to provide more comprehensive signal
information for fault diagnosis.

On the other hand, the vibration signal is inevitably pol-
luted by noise in the process of acquisition and transmission.
The chaotic dynamic characteristics contained in the data
may be masked by the interference of noise. And the attractor
with disordered and irregular orbits means that the signal of
the nonlinear dynamical system is contaminated by noise.
On the contrary, the attractor with legible orbits means that
the nonlinear dynamical structures of the system are not
damaged. Which is useful to acquire nonlinear features effec-
tively. Hence, effective noise suppression is often the premise
of a vibration signal analysis. Conventional methods of noise
reduction such as linear low-pass filtering do not work well
for chaotic data since the signal and the noise often have
overlapping bandwidths [11]. A few researchers have been
trying to deal with noise reduction of chaotic signals by using
various nonlinear methods [12]-[14]. Denoising technology
of chaotic signals has been used extensively in other fields
such as information systems and physiological systems. But
there are few papers in literature that have discussed the noise
reduction of chaotic mechanical vibration signals so far.

Mathematical morphology (MM) is an effective nonlinear
analysis technique, which is different from these regular time-
frequency signal analysis techniques. It can be applied to
make translation matching and local correction of signal from
front to back by a certain structural element (SE) [15]. Typical
morphological filter (MF) uses a single-scale to analyze the
signal [16]. Nevertheless, the effect of MF for noise suppres-
sion is unapparent when the scale of SE is relatively small.
Conversely, the effect of MF for suppressing the noise is
obvious when the scale of SE is overly large, but the detailed
information of the clean signal can not be preserved well,
and the waveform of the filtered signal has serious distor-
tion. For complex signals like rolling bearing fault signals,
MF with single-scale SE has limited accuracy in preserv-
ing the detailed characteristics of the original signal while
suppressing noise [17]. Thus, the multi-scale morphological
filtering (MMF) [18] was put forward to analyze signal at
multiple scales. The effect on the MMF analysis of rolling
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bearing signal gains an advantage over that of single-scale
MF [19].

The application of MMF in processing the rolling bear-
ing signals for fault diagnosis is able to be divided into
two categories: Suppressing the noise and fault feature. One
category is using the MMF technology to reduce the noise
of vibration signals and enhance fault features of signals.
Zhang et al. [19] introduced the average MMF analysis
in recovering impulsive features from the one-dimensional
rolling bearing signal contaminated by strong noise. And
afterwards, the MMF has been widely used for reducing
noise and enhancing features of rolling bearing fault signal.
Dong et al. [20], Raj et al. [21], and Li et al. [22] respectively
used maximum signal-to-noise ratio (SNR), maximum kur-
tosis, and maximum spectral kurtosis criterion to select the
optimal analysis scales of MMF for processing fault signal.
Shen et al. [23] adopted an adaptive scale MMF based on
local peaks of raw signals. Li et al. [24] compared the noise
suppressing performance of different types of MFs as well
as envelopes, concluding that MMF has great potential of
denoising signals. The other category is employing Mathe-
matical morphological techniques to extract morphological
features for realizing the identification of fault signals. The
concepts of pattern spectrum [25] and morphology covering
(MC) [26] are proposed originally by Maragos according to
MM. Li et al. [27] and Zhao et al. [28] respectively employed
morphological erosion operator and high-order differential
morphological gradient to improve pattern spectrum. The MC
technique has been adopted by Li er al. [29] to estimate
morphological fractal dimension (MFD). Wang et al. [30]
used the mathematical morphological fractal dimension to
distinguish the performance degradation condition of the
rolling bearing.

The focus of this paper is to research the denoising technol-
ogy which can reduce the noise hidden in chaotic rolling bear-
ing signals without destroying its original nonlinear dynamic
structure. And then extract the chaotic feature for rolling
bearing fault diagnosis. However, these denoising methods
based on MMF are all based on the analysis of fault char-
acteristic frequency, the denoising results of these methods
mainly enhance the impact characteristics of fault signals.
And in the progress of noise suppressing, the top-weakening
distortion appears in the denoised waveform. The non-
linear dynamical structures of the system might be
damaged.

In order to effectively distinguish faults of rolling bearing
in the early stages. We propose a novel feature extraction
method for rolling bearing early fault detection, which is
based on chaos theory and mathematical morphology anal-
ysis. Firstly, the smooth multi-scale morphology filtering
(SMMF) [31] method is employed to suppress the noise of the
raw signal. SMMF solves the problem of topping distortion
in morphological filtering. And the vibration signal of rolling
bearing is able to be denoised and smoothed by SMMF
without destroying its original nonlinear dynamic. Results
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of SMMF denoising are compared with that of traditional
denoising method to show its denoise ability for process-
ing the simulation and experimental rolling bearing signals.
And the denoised rolling bearing signals are reconstructed to
obtain the phase plane. The existence of the strange attrac-
tor is testified that the vibration signal is chaotic. Besides,
the composite multi-scale morphological fractal dimension
(CMMEFD) is proposed to quantify fractal characteristics of
nonlinear rolling bearing signals under various conditions.
Finally, the CMMFD feature is input into the classifier to
achieve fault diagnosis. Hidden Markov model (HMM) [32]
is an application of dynamic bayesian network, which has
success in fault identification of rotating machinery. The
HMM is a probabilistic statistical model with strong time
series modeling ability, which can accurately represent the
data characteristics in various states and is suitable for the
recognition of time-varying nonstationary signals [33], [34].
HMM has a rich mathematical foundation, and features are
able to be modeled by HMM as a random progress which can
be estimated accurately by its related technology. Combined
with feature engineering, HMM is easy to realize the learning
and training of small data sets. In this paper, the chaotic
features are trained and classified by HMM method to achieve
an intelligent fault diagnosis system. The designed system
is investigated on simulation and two data sets from rolling
bearing test to evaluate the proposed technique.

To summarize, the novelties and contributions of this arti-
cle mainly include four points:

1) To denoise rolling bearing signals without destroying
its original nonlinear dynamic structure. The SMMF is first
introduced to reduce the noise of bearing vibration data,
which leverages the cubic B-spline interpolation algorithm
to eliminate the top-weakening distortion of MMF denoised
signal.

2) The CMMEFD is first proposed measuring the
self-similarity and irregularity of nonlinear signal, which can
reflect the fractal characteristics and obtain more information
about the signal by composite multi-scale analysis.

3) We propose a SMMF-CMMEFD algorithm to extract
chaotic features from vibration data set for rolling bear-
ing fault diagnosis. And the CMMFD feature is input into
the HMM classifier to achieve an intelligent fault diagnosis
system.

The summary organization of the paper is as follows:
The theory of SMMF is described in Section 2. Moreover,
the corresponding optimization scheme of the algorithm is
analyzed. Section 3 mentioned the concept of CMMFD.
In Section 4, the scheme of the proposed method for fault
diagnosis of rolling bearing is presented. The simulated, con-
taminated rolling bearing signals are analyzed in Section 5.
Section 6 utilizes the proposed method and several compar-
ison technologies to diagnose experimental data collected
from the rolling bearing. Ultimate conclusions are presented
in Section 7.
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Il. SMMF

A. MMF

Supposing that f () is a one dimensional sequence, its domain
isover the F = (0,...,N — 1), and g(m) is a unit SE with
the domain G = (0, ..., M — 1), the defined value of M is
supposed to be greater than the value of N. Four basic MF
operations, the dilation, the erosion, the opening and closing,
can be formulated as follows [35]:

fbgmn =max[f(n—m)+gm)], meO0,1,.... M —1

()
fOg)(n) = min[f(n —m) — gm)], meO0,1,...,.M — 1
2
(f o &)n) = (fOL @ g)(n) 3)
(f e 8)(n) = (f ® gOL)(n) )

where @ and ® denote the dilation operation and the erosion
operation, respectively. The dilation increases the valleys and
enlarges the maxima of the processed object and the erosion
reduces the peaks and enlarges the minima [36]. The symbol o
and symbol e indicate the closing operator and the opening
operator, respectively. The opening operator flats the positive
impulses and matches the negative impulses and the closing
operator has the opposite effect [37]. In fact, it is difficult to
obtain the prior information of a signal before processing.
Therefore, according to four basic operations, a variety of
combined morphological operators are proposed to process
different actual signals. Such as the morphological gradient
(MG) operator [38], is defined as:

MG(f(m) = (f & )(n) — (fOg)(n) (&)

Filters of the open-closing operation (FOC) [39] and filters
of close-opening operation (FCO) [40] are based on the ordi-
nal opening and closing operation, are defined as following:

FOC(f(m) = (f o g e g)(n) (6)
FCO(f(n)) = (f @ g o g)n) )

The combined morphological filter (CMF) is proposed
to overcome problems of statistical bias of FOC and FCO.
The CMF can flat signals by suppressing positive pulses and
negative pulses of signals in the meantime. Which can be
expressed as:

FOC(f (n)) + FCO(f (n))

CMF (f(m) = > ®

MF in single-scale SE has limited efficiency in filtering
the complex signals. The MMF is utilized to filter the tar-
get signal at different scales. Suppose Ag is a SE at scale
AMA =1,2,...k), the Ag can be defined as:

A=gDgD...bg )
N— —
A — 1 times
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The multi-scale MG, FOC, FCO, and CMF are separately
expressed as:

MG(f(n)g) = (f ® 29)(n) — (fOLg)(n) (10)
FOC(f(n)yg) = (f o Ag @ Ag)(n) (11
FCO(f(n)g) = (f @ Ag o Ag)(n) (12)

oAg e A eAgoA
CMF(f () = (f o rg @ Ag)(n) -; (f @ AgoAg)n) (13)

The morphological filter constructed by a SE at small scale
can retain more detailed information of complex signals, but
the effect of noise reduction is not obvious, while the morpho-
logical filter constructed by a SE at big scale has the obvious
noise reduction ability, but it is possible to blur the details
and cause waveform distortion. A single-scale MF filtering
result represents a specific component hidden in the signal.
Therefore, the morphological filtering at various scales is
aggregated to obtain the multi-scale morphological analysis
result of the noisy signal. The final output is expressed as:

j j
Y=Y oy|d o=1 (14)
j=1 j=1
Y R; ()’

J

Rj(n) =f () —y;(m) (15)

where y; is an output of MF at scale j(j = 1,2, ..., Apax)-
w;j denotes the weight coefficient of y;. Y denotes the aggre-
gate result. R;(n) is the residual amplitude difference (RAD)
of MF.

B. THE CUBIC B-SPLINE INTERPOLATION

The output of the multi-scale morphological analysis is
not smooth enough. That is to say, the local waveform
of the signal denoised by MMF is undesirable rough. The
top-weakening distortion appears in the large scale MF
denoised waveform. However, it is finds that the distortion
is regular all through. There is a distortion in local waveform,
but the general shape of the entire waveform is retained.
On the basis of the regularity of the distortion, the cubic
B-spline interpolation algorithm is implemented to eliminate
the influence of top-weakening distortion. The k-th B-spline
function is expressed as following [41]:

n
P(t) = Y diBix(1).t € [0, 1] (16)
i=0
1 (<t=<g
Bi,O(t) _ (z > = l+1) (17)
0 (others)
— 1 tipk — 1
Bix(t) = Bix-1() + ————Biy1.4-1(0)
tijk—1 — 4 tivk — tit1
(18)
where d; (i =0, 1, ..., D) is the De Boor points, i is the

serial-number of De Boor points, D is the total number.
to, t, ..., Ip+k+1 are node vectors, B; x(f) is a basic function,
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Provide the 0/0 is zero. Let k be equal to 3, the B-spline
function is the cubic polynomial over the domain [0,1], which
is able to divide signals into some uniform segments. The
processed signal has the advantage of detail smoothness. The
cubic B-spline function is expressed as:

3 3 2
(1) = a 6t) do+ 3t Zt +4d1

334324+ 3+ 1 3
< dy + €d3 (19)

C. THE PROCESS OF SMMF

In order to solve the issue of the top-weakening distortion
existing in traditional MMF and improve the precision of
chaotic fault feature extraction, this section presents a method
called SMMF to suppress the noise of contaminated chaotic
vibration signals. The noise suppression process is shown
in Fig. 1.

Observe and analyze
signals

Smooth the signal by
B-Spline interpolation

Select the maximum

Resample the signal ‘
scale ‘ P &

*

‘ Reconstruct the signal

Obtain morphological
filtering at multiscales

Calculate the weight
coefficient

Caculate the MPE of
residuals

Calculate the sum of
squares of residuals

Select the appropriate
scale combination

FIGURE 1. The flowchart of SMMF.

Work steps of SMMF are formulated as following:

Step 1: Observe and analyze the collected data.

Step 2: Select the shape of structural element. The flat SE
is selected for deniosing rolling bearing signal. It can retain
characteristics of the waveform as much as possible [36]. The
linear SE with a height of 0 is defined as the flat SE. Set the
unit SE to {0, 0, 0}, which has the simplest algorithm and
higher operational efficiency [20].

Step 3: Select the maximum scale of SE. The maximum-
scale of SE is defined as Amax. Experiments demonstrate that
the Amax should be smaller than the sampling point in the
fault period. Set f; as the sampling frequency, and fy denotes
the characteristic frequency. f; / fo denotes the total number
of sample points in a period. The characteristic frequency is
defined as [42]:

27N
fo=3 2O (20)

P t

where N(T) is defined as the number of turns performedin 7'.
The maximal analytical scale of SE is determined to:

Amax = LfA/fOJ (21)

where symbols | e] represents round down the number.
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Step 4: Conduct CMF operation at different scales for
morphological filtering, Amax results are obtained.

Step 5: Choose the optimal structural element scale com-
bination. Calculate the residual of each MF result. Then,
calculate the multi-scale permutation entropy (MPE) [43] of
residuals. The MPE is ultimately defined as following:

m!
PO = -3 p Inp” (22)
k=1

where P is utilized to estimate the complexity and irreg-
ularity of the signal at the scale 7. k denotes the index of
each element, m is the embedded dimension. The Apeg; 1S
defined as the optimal-scale of filtering rolling bearing signal
at 7, which is the A corresponding to the maximum value
of P, The optimal combination is originally identified as
A = {Apest1s Mbest2s - - - » Abestr }- Remove recurring scales to
ensure that each scale is used at most once.

Step 6: The weight coefficient of each scale is calculated.

Step 7: Reconstruct the signal.

Step 8: Smooth the signal. The MMF denoised signal is
processed by the cubic B-spline interpolation technology.

lIl. MORPHOLOGICAL FEATURE EXTRACTION

A. MFD

The morphological covering technology proposed by
Magaros and Schafer is used to calculate the fractal
box dimension instead of Minkowski covering technology,
the coverage area depends on the SE of morphological
operators [26]. Compared with rule partition grid covering
method, MC leads a more stable and preferable result [30].
The MFD is applied to measure self-similarity complexity of
nonlinear signal. Its value is able to reflect the self-similarity
and irregularity of chaotic signals. It is expressed as follows:

log(Aj.. /22
MFD — Tim 28/ s/ 1)
2—0  log(1/2)

where A;, is the measurement of MC, namely morpho-
logical covers an area with SE on the scale 1. f(n) is a
one-dimensional discrete signal as mentioned in the previous
section. The formula of A, is

(23)

N N
Arg= Y ((f ® AW~ (FOLYM) =Y MGig(f(m) (24)
n=1 n=1
The slop obtained by the least square linear fitting of
log(Asg /A?) and log(1 /) can be employed as the morpho-
logical fractal dimension of f(n) [29].

B. CMMFD

On most occasions, different types of faults lead to various
changes in terms of morphological fractal dimension.
Therefore, the MFD as a feature can be applied to classify
different fault signals. However, different from the strict
fractal structure, fault signals are not strictly self-similar,
the assumption of a constant fractal dimension at all scales
may not be strictly accurate [44]. A single-scale MFD is
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not enough to represent all information of nonlinear sig-
nal [45]. The division of fault state space may overlap if the
fractal dimension values of two fault signals are close. The
multi-scale analysis can reflect the complexity characteristics
and obtain more information about the signal. The CMMFD
is proposed to measure the self-similarity and irregularity or
complexity of nonlinear signal.

Supposing that the scale ¢ is defined as the window length
of coarse-grained process. Firstly, the f(n) is coarsely gran-
ulated with a scale . The process of the composite coarse
granulation of time series is expressed as:

le+h—1
Gn== > fm (25)
n=(—1)e+h

where [ = 1,2,...,|N/e], h = 1,2,...,¢, |e] denotes
downward rounding. The composite multi-scale technology
is adopted by CMMFD to coarse grain the sequence f(n).
Then, the MFD of each composite coarse-grained sequence
under this scale is calculated. Finally, the CMMFD under
scale factor ¢ is obtained by averaging. We define the com-
posite multi-scale morphological fractal dimension as:

1 &
CMMFD(f ). g. &)= — Y MFD(}.g.%)  (26)
&
h=1

IV. THE PROPOSED FAULT DIANOSIS SCHEME

In order to achieve fault classification of chaotic rolling
bearing data. The SMMF is employed to denoise the chaotic
signal. And the CMMFD feature is extracted to quantify the
rolling bearing signals. Then the features are input into HMM
for fault diagnosis. The whole diagnostic scheme is shown
in Fig. 2.

As shown in Fig. 2, the process is formed from four parts:

(1) Vibration signal collection. Rolling bearing vibration
data is collected through the signal acquisition device. Then,
reconstruct the phase plane for rolling bearing vibration
signals, observe the attractors of figures under different
conditions.

(2) Noise reduction. The SMMF denoise the signal without
improving the problem of topping distortion in morphological
filtering. And it is superior to other methods for the noise
suppression performance of contaminated chaotic signals.
In order to retain the nonlinear dynamical structures of the
original signal. The noise of collected fault rolling bearing
signal is adaptively suppressed by the denoising method
SMMF.

(3) Chaotic feature extraction. The CMMFD feature can
reflect the fractal characteristics and obtain more information
about the signal by composite multi-scale analysis. Thus,
we extract CMMFD as a chaotic feature to measure the
self-similarity and irregularity of nonlinear signal. Firstly,
the denoised rolling bearing was coarsely granulated at the
scale of ¢ by a composite multi-scale coarse-grain tech-
nology, and ¢ coarse-grain sequences are obtained. Then,
calculate the A of each coarse-grained sequence under this
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vector HMM
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diagnosis

Identify the type of fault
signal

[ o ™
( End )

FIGURE 2. The flowchart of fault diagnosis scheme.

scale &, and the slope obtained by the least square linear
fitting of log(A;, /%) and log(1 /1) can be employed as the
estimation of MFD of each coarse-grain sequence. Finally,
the CMMFD under scale factor € is obtained by averaging
the MFDs at scale factor 1, 2, ..., &.

(4) Fault diagnosis. HMM is easy to combine with fea-
ture engineering and it has success in fault identification
of rotating machinery. We select HMM algorithm to realize
the learning and training of rolling bearing data sets. The
CMMFD feature extracted from a part of different rolling
bearing data sets used as the input vector to train a HMM
fault classifier. Then, all rolling bearing data sets are tested
by the classifier.

V. NUMERICAL VALIDATION

A. NUMERICAL SIMULATION MODEL WITH BEARING
LOCALIZED DEFECT

The simulation of rolling bearing was taken to verify the
effectiveness of the proposed scheme. Consider the dynamic
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model of a rolling bearing developed by Rafsanjani [46],
which is shown in Fig. 3.

FIGURE 3. The model of rolling bearing.

This bearing vibration numerical model with a local dam-
age is simulated by a nonlinear two-degree of freedom vibra-
tion system. The differential equations are as follows:

mx + cx + fy = Wy + f,, cos wt
my +cy +f, = Wy, + fy sinwt (27)

where m denotes the equivalent mass of the inner race along
with the rotor to prop up by rolling bearing. ¢ represents
equivalent damping. W, and W, indicate the radial load
component in the x and y directions of rotor, f, represents
unbalance force. f, and f, are the restoring force, and the
formulas are:

V4
=K Z yqél}'s cos 0,
q=1
V4
fi =K 817 sing, (28)
q=1

where Z denotes the number of rolling elements, and K is
defined as the contact stiffness, which can be calculated based
on Hertzian deformation local to the contact zone [46]. §,
represents the overall contact deformation of the g-th rolling
element, y, is defined as the loading area variable, 6, indi-
cates the angular position, which can be calculated according
to the cage frequency w. and the initial position of rolling
element.

The Runge-Kutta-Felhberg method which corresponds
to the function ode45 in MATLAB was utilized to solve
dynamic equations. The 6205 deep groove ball bearing was
applied in the simulation. The sampling frequency is set to
48kHz. The shaft rotational speed is 1800 rpm. The maxi-
mum defect depth is 0.1 mm, the defect diameter is 1 mm.
Dimensions of the bearing were presented in Table 1.

TABLE 1. The dimensions of the ball bearing.

Roller Pitch Number of Contact
diameter diameter rolling elements angle
8.0 mm 38.5 mm 9 0°
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FIGURE 4. The vertical accelerations of simulated bearing system: (a) original normal bearing signal, (b) noisy normal
bearing signal, (c) original inner race fault signal, (d) noisy inner race fault signal, (e) original outer race fault signal,
(f) noisy outer race fault signal, (g) original ball fault signal, (h) noisy ball fault signal.

The acceleration response of simulated bearing system
usually takes a period of time to achieve a stable state.
So the simulated experimental data are collected from 1 s.
The simulated signal was superimposed with Gauss white
noise to simulate the real rolling bearing fault signal as far
as possible. The Gaussian white noise denotes the running
noise interference of the device. The contaminated bearing
signal consists of corresponding clean signal and Gaussian
white noise. The SNR is expressed as following:

Y1)
t
Y (x@) -2 )

t

SNR = 10log, (29)

where X(7) and x(¢) indicates the clean signal and contami-
nated time series in the progress of calculating the input signal
to noise ratio (SNRj,). For the output signal to noise ratio
(SNRoyt), x(t) indicates the and denoised signal and x(¢) is
contaminated signal.
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The simulated original and the contaminated horizon-
tal acceleration response of normal bearing are illustrated
in Fig. 4 (a) and (b). The original signal of the bearing
system with a localized defect on the inner raceway is illus-
trated in Fig. 4 (c), and the contaminated signal is shown
in Fig. 4 (d). The original and contaminated outer race
fault signals are shown in Fig. 4 (e) and (f). The horizontal
acceleration responses with a localized defect on the rolling
elements are shown in Fig. 4 (g) and (h).

Different faults cause various influences on non-linear
dynamics of the rolling bearing system. These phase planes
can be used to represent the obvious nonlinear change of sys-
tem dynamic. Fig. 5 (a) -(h) illustrate the reconstructed phase
plane of the simulated original and contaminated rolling
bearing vibration signals. The attractors are observed from
phase plane of different conditions. For clean signals, the tra-
jectories of attractors are self-similar and regular, and the
shape of strange attractors for different conditions is different.
The normal rolling bearing and defective rolling bearing
can be distinguished by comparing the attractors of different
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FIGURE 5. The phase plane for simulated rolling bearing vibration signals: (a) original normal bearing signal, (b) original inner race fault signal,
(c) original outer race fault signal, (d) original ball fault signal, (e) noisy normal bearing signal, (f) noisy inner race fault signal, (g) Noisy outer

race fault signal, (h) noisy ball fault signal.

clean signals. But for contaminated signals, the trajectories
of attractors are disordered and irregular. It is hard to classify
different fault signals.

B. NOISE SUPPRESION

These simulated signals above are analyzed by the mentioned
SMMF algorithm to verify its effectiveness for contaminated
nonlinear rolling bearing vibration signals. For a comparison,
three common noise suppression methods are used to process
the same simulated rolling bearing vibration signals. The first
denoised method is the clear first iterative thresholding based
on EMD (EMD-CIIT) [47], and the iteration is set at 15.
The second method is wavelet threshold (WT) [13]. The soft
threshold is used to process signals, and the noise reduc-
tion was done under the following conditions: db8, level 4
decomposition. The traditional MMF without smoothing is
also compared with SMMEF, as one of the common noise
suppression methods.

Fig. 6 illustrates the projection of phase trajectories
for the signal denoised by the mentioned algorithms.
Fig. 6 (al) -(a4) show the denoising results by EMD-CIIT for
four contaminated rolling bearing signals. Fig. 6 (bl) -(b4)
show the denoising results by WT algorithm. As seen in
these figures, the shape of the reconstructed phases are almost
approximately the same as the original signals, but the phase
trajectories of denoised signals are obviously rougher than
that of the original signal. Fig. 6 (c1) -(c4) show the filter-
ing results of MMF, the phase trajectories of the restored
attractor are obviously deformed, which makes the original
ordered self-similar structures appear disorderly. The denoise
results for 4 simulated contaminated rolling bearing sig-
nals by SMMF algorithm are illustrated in Fig. 6 (d1)-(d4).
Attractors of four types rolling bearing signals processed by
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SMMF are similar to those reconstructed by the original sig-
nals, and the orbits are more regular than the orbits obtained
by other denoising technologies.

The SNRyyt, the root mean square error (RMSE) [14], and
the MFD indexes are applied to assess the effect of noise
suppression for the sake of verifying the effectiveness of
denoising algorithms intuitively. The RMSE is expressed as:

1
— _% 2
RMSE = \/N Et (x(1) — x(2))

Table 2 and Table 3 show the SNR and RMSE of different
rolling bearing signals before and after noise reduction by
4 algorithms. The SNR;, of contaminated signals is 10 dB.
From the tables, it can be seen that the output SNR of all
denoising methods are increased compared with the input
SNR, and the RMSE of signals are decreased after denoising
by three algorithms. In addition, the proposed SMMF is the
highest SNR and RMSE improvement, especially in terms of
SNR, increased at least 13 dB. This proves that the SMMF can
effectively remove the noise hidden in the chaotic simulated
signal.

(30)

TABLE 2. The SNR,,; comparison among different algorithms.

Algorithms Normal  Inner race Outer Ball bearing
bearing fault race fault fault
EMD-CIT  17.4305 19.5185 20.2283 19.8155
wr 18.7322 17.9833 19.0486 16.0846
MMF 17.4733 18.6007 18.5652 17.5664
SMMF 24.2632 24.2093 24.9270 24.1135

The MFD can reflect the self-similarity and irregular-
ity of chaotic signals. Set the analytical scale as A =
[2',22,...,28]. Table 4 shows the MFD of different rolling
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FIGURE 6. The reconstructed phase plane for denoised rolling bearing signals: (a1) -(a4) are signals denoised by EMD-CIIT, (a1) normal bearing,
(a2) inner race fault, (a3) outer race fault, (a4) ball fault, (b1) -(b4) are signals denoised by WT, (b1) normal bearing, (b2) inner race fault,

(b3) outer race fault, (b4) ball fault, (c1) -(c4) are signals denoised by MMF, (c1) normal bearing, (c2) inner race fault, (c3) outer race fault, (c4) ball
fault, (d1) -(d4) are signals denoised by SMMF, (d1) normal bearing, (d2) inner race fault, (d3) outer race fault, (d4) ball fault.

TABLE 3. The RMSE comparison among different algorithms.

Algorithms Norrjnal Inner Outer Ball bearing
bearing  race fault race fault fault
EMD-CIIT 0.0966 0.1300 0.2129 0.4449
wT 0.1219 0.1673 0.2648 0.4845
MMF 0.1454 0.1479 0.2749 0.4582
SMMF 0.0665 0.0725 0.1223 0.2137

bearing signals before and after noise reduction by 4 algo-
rithms. The noise of signals leads to increase in space-filling
means that noise results in an increase in the MFD. As shown
in Table 4, the MFD for non denoised signal is higher than
denoised signal. The MFD of the signal rolling bearing for
different conditions after denoising by above methods was
decreased. The MFD of the signal which is denoised by
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SMMF is the closest to the original signal. It means the fractal
dimensions measuring and self-similarity or irregularity of
signal denoised by SMMF is the most similar to the original
signal.

As seen in Table 4, the MFD of faulty rolling bearing
signals are lower than the MFD of healthy bearing signals.
It indicates that the projection of the normal bearing contains
a higher density attractor. Different types of faults have vari-
ous shapes and density of attractors. Therefore, morphologi-
cal fractal dimensions of diverse faults are different. However,
the noise of signals leads to increases of space-filling, then,
the density of attractors increases. Which leads to an increase
in the MFD. The MFD of contaminated healthy/faulty signal
is close to each other, which indicates that the MFD of
signal is susceptible to noise. Thus, the morphological fractal
dimension should be extracted after noise reduction.
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FIGURE 7. The MFD of original signals and denoised bearing signals: (a) original bearing signals, (b) EMD-CIIT denoised signals, (c) WT denoised

signals, (d) MMF denoised signals, (¢) SMMF denoised signals.

TABLE 4. The MFD comparison among different algorithms.

Inner Outer Ball
. Normal .

Algorithms bearing race race bearing

fault fault fault
Contaminated signal 1.5293 1.5113 1.5151 1.5367
Original signal 1.3172 1.2808 1.3003 1.2650
EMD-CIIT 1.3836 1.3040 1.3071 1.2878
wTr 1.3325 1.3003 1.3060 1.2833
MMF 1.3403 1.3114 1.3275 1.3143
SMMF 1.3169 1.2790 1.3004 1.2660

C. FEATURE EXTRACTION

After the noise reduction process, the existence of attrac-
tors was observed for healthy/faulty signals. These orbits in
the phase plane indicate the dynamics characteristic of non-
linear vibration. The morphological fractal dimension was
exacted to quantify complexity of those orbits. The sampling
length of each simulated normal/fault rolling bearing was
409600. Each signal is divided into 100 samples. Thus a total
of 400 samples were collected in the simulated experiment.
The MFD for each group simulated signal was calculated.
Fig. 7 demonstrates the MFD for different types rolling bear-
ing signals and which were denoised by the mentioned 4 tech-
nologies. For fractal signal, the fractal dimension should be
close to a constant, even if the faulty bearing signal isn’t
an expected self-similarity. Clearly, these signals denoised
by SMMF algorithm achieve the best result for calculated
the MFD of 100 samples. The MFD of signals denoised by
WT also gives some promising values. However, the variation
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from the MFD is much more significant than that of SMMF
denoised signals, and the state space of the inner fault signals
and ball fault signal coincides seriously. The signals denoised
by EMD-CIIT and MMF failed to obtain reasonable MFD.
The range of features that are exacted from each type of
signal processed by EMD-CIIT has an evident fluctuation.
The state space of different faults is not clearly divided. The
MFD exacted from normal rolling bearing signal processed
by MMF method is far away from the MMF of the original
signal. The division of fault state space may overlap if the
fractal dimension values of two fault signals are close.

In order to comprehensively measure the complexity of
the signal. The CMMFD was applied to characterize the
chaotic feature of simulated rolling bearing signals for four
conditions. Fig. 8 illustrates the CMMFD for different types
clean /denoised rolling bearing signals. As seen in the figures,
the fractal dimension at different scale factors of the same
signal is not the same with each other. Even if the MFD at
some scale factor of different type signals overlapped with
the other conditions, it can be discriminated from different
scales.

D. DIAGNOSIS RESULTS

According to the mentioned feature extraction scheme. The
MFD and CMMFD extracted from signals denoised by differ-
ent methods were used to form features space. To evaluate the
performance of four denoised technology and two nonlinear
features. These fractal features were used as input of training
HMM for fault identification. A classifier consists of four
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signals, (d) MMF denoised signals, () SMMF denoised signals.

TABLE 5. Fault identification results.

Normal Inner Outer Ball
Algorithms bearing race fault  race fault bearing
(%) (%) (%) fault (%)
EMD -MFD 89 77 73 67
WT -MFD 100 72 85 69
MMF-MFD 100 50 88 77
SMMF -MFD 100 98 100 89
EMD -CMMFD 98 85 91 92
WT -CMMFD 100 91 95 88
MMF-CMMFD 100 99 90 98
SMMF -CMMFD 100 100 100 100

HMM models, which are trained by the first 40 samples of
each type of faulty/normal signal. Then 100 samples were
input into classifiers for testing. Finally, the HMM classifier
specifies output the fault type as the output. Fault identifica-
tion results of simulated rolling bearing data are presented in
Table 5.

As seen in Table 5, most samples are identified as the
correct type by using MFD features. The identification results
of the MFD feature extracted from EMD denoised signals are
the worst performance among four denoisng methods. MFD
features extracted from WT denoised signals are good for a
normal data set. However, other types of fault signal perfor-
mance a poor classification. Also, results of MFD features
extracted from MMF signals are good for normal data sets,
but the identifying result of the other faults are not desirable.
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Although the success rate of rolling ball identification is 90%.
MEFD features extracted from SMMF denoised data sets show
the best results among the four denoising algorithm.

Using the CMMFD features, the classification perfor-
mance of CMMFD features extracted from the noise reduced
signal by the same denoising technology are much better
than that of MFD features. The CMMFD features extracted
from EMD denoised signals can identify normal condition
with a 98% rate, and the success rate of other faults has
been greatly improved also. Classification results of CMMFD
features extracted from WT denoised inner race and rolling
ball fault signals increased by 19% correct rate, and outer
race fault by 10%. The identification performance obtained
by CMMFD features which extracted from MMF denoised
signals are good for most data sets except outer race fault.
The SMMF-CMMFD scheme shows best results among all
schemes for identifying different types of fault. This scheme
can classify different simulated rolling bearing faults with
a 100% rate. These identification results demonstrate that
the proposed scheme can classify different simulated rolling
bearing faults exactly.

VI. EXPERIMENTAL VERIFICATION

In this section, two experimental rolling bearing data sets
were analyzed to verify the performance of the mentioned
approach. Also, the analysis results were compared with
some contrastive schemes to prove its advantages of feature
extraction.

179507



IEEE Access

X. Yan et al.: Chaotic Feature Extraction Based on SMMF and CMMFD for Early Fault Diagnosis of Rolling Bearing

F =

Accelerometer @

e W

FIGURE 9. The rolling bearing fault experimental bench.

A. CASE 1: ROLLING BEARING DATA WITH FUZZY ORBITS
OF ATTRACTORS

The QPZZ test device is illustrated in Fig. 9. The motor is
fixed on the test-bed, which is the power source of the bearing
simulation device, its speed was 1470 rpm in the experiment.
In the experiment, the LYC6205E deep groove ball bearing
was utilized as experimental bearing, which was mounted on
the far right end of the rotation shaft. Table 6 shows geomet-
rical parameters of experimental rolling bearing. The vibra-
tion experiment data are collected by accelerometer fixed on

TABLE 6. Parameters of experimental bearing.

. Pitch Number of
Roller diameter diameter balls Contact angle
7.94 mm 38.5mm 9 0°

bearing housing of the bench. The sampling frequency of the
vibration signal was 12800 Hz. The data collection for four
types of healthy/faulty conditions of rolling bearing: normal
bearing, localized defect on the inner race, localized defect on
the outer race, localized defect on rolling element. The fault
size is 0.2 mm in width and 1.5 mm in depth. Fig. 10 shows
the first 6400 points data collected in four conditions.

Fig. 11 shows the reconstructed phase plane of the original
vibration signals. It can be observed from Fig. 11 that the tra-
jectories of the original signals are disordered and irregular.
It is difficult to distinguish between different fault signals.
Also, it is difficult to quantify the complexity of those orbits
by fractal dimension. Disordered orbits of attractor repre-
sent that the signal is polluted by noise while the attractor
with smooth orbits is less polluted by noise, but these are
not strictly correlated. In general, denoising technology is
capable of suppressing the noise mixed with the ball bearing
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FIGURE 10. The experimental rolling bearing vibration signals: (a) normal bearing, (b) inner race fault, (c) outer race fault, (d) ball
fault.

x(t+T)

-100 0

100

x(t)

© 400

x(1+7)

-100

-100 0
x(t)

FIGURE 11. The reconstructed phase plane for rolling bearing vibration signals: (a) normal bearing, (b) inner race fault, (c) outer race fault,
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FIGURE 12. The reconstructed phase plane for denoised rolling bearing signals: (a1) -(a4) are signals denoised by EMD-CIIT, (a1) normal bearing,
(a2) inner race fault, (a3) outer race fault, (a4) ball fault, (b1) -(b4) are signals denoised by WT, (b1) normal bearing, (b2) inner race fault,

(b3) outer race fault, (b4) ball fault, (c1) -(c4) are signals denoised by MMF, (c1) normal bearing, (c2) inner race fault, (c3) outer race fault,

(c4) ball fault, (d1) -(d4) are signals denoised by SMMF, (d1) normal bearing, (d2) inner race fault, (d3) outer race fault, (d4) ball fault.

signal and obtaining a time series governed by deterministic
dynamics. Therefore, four denoisng technologies are applied
to progress the original experimental signal.

Fig. 12 shows the projection of phase trajectories of the
signal denoised by four mentioned algorithms. The processed
results by EMD-CIIT are illustrated in Fig. 12 (al) -(a4).
As seen in the figures, the attractors can be observed clearly
from the inner race fault signal, outer race fault signal, and
ball bearing fault signal. But for the reconstructed normal
signal, trajectories of reconstructed normal rolling bearing
signal are disorderly as before denoising. The shape of attrac-
tor can not be observed at all. Fig. 12 (bl) -(b4) shows
denoising results of WT method. The trajectories of the
reconstructed normal signal are smoother than EMD-CIIT
processing signal. But the denoised results of the other signals
are not expected. Fig. 12 (cl) -(c4) illustrate the projection
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of phase trajectories of the signal denoised by MMF. The
shapes of attractors reconstructed by the four types of signals
are clear, but the trajectories of attractors are not smooth.
The phase diagrams for the reconstructed SMMF denoising
signals are illustrated in Fig. 12 (d1) -(d4). It is clear to
see that the attractor of the signal denoised by SMMF can
be observed easily. And trajectories of attractors are smooth
and the shape is clear. By comparing the denoising results
of different methods, it can be inferred that the SMMF has
better denoising effect on noisy rolling bearing signals than
the other three methods.

MFD and CMMFD features are extracted from the sig-
nal denoised by four mentioned methods, respectively.
Fig. 13 illustrates the MFD extracted from rolling bearing
samples. The MFD that exacted from each type of the sig-
nal processed by EMD-CIIT has an evident fluctuation as
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FIGURE 13. The MFD of denoised bearing signals: (a) EMD-CIIT denoised signals, (b) WT denoised
signals, (c) MMF denoised signals, (d) SMMF denoised signals.

(a) (b)
Q Q
8 8
= =
= — Normal bearing = Normal bearing
O QO z
14 —°— Inner race fault | ——°— Inner race fault
—— Outer race fault 1.4 —+— Outer race fault
13 ~ Ballfaul | 13 ~ Ballfaul
1.2 L L L L L L L L
2 4 6 8 10 2 4 6 8 10
Scale Scale
(©) (d)
Q Q
3 ke
= =
= —* Normal bearing = Normal bearing
S} O
1.5 —%— Inner race fault 1.5 ——©— Inner race fault
14 — " Outer race fault 14 — " Outer race fault
’ ~* Ballfault ’ % Ball fault
1.3 : : - : 1.3 : : - :
2 4 6 8 10 2 4 6 8 10
Scale Scale
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it can be observed in Fig. 13 (a). We can find a striking WT, the fluctuation of the results is smaller than that of
overlap among the state space of different faults. Fig. 13 (b) EMD-CIIT. But the state space division of 3 types of fault
shows the MFD that exacted from the signal processed by bearing signals is still intersecting. Fig. 13 (c) shows the
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FIGURE 15. The rolling bearing fault experimental bench.

MED exacted from signals processed by MMF method. The
state space of MMFs extracted from fault signal and normal
signal are overlap. It is worth noting that the value of MFDs
extracted from normal signals denoised by WT or MMF are
smaller than the value of outer race fault signal, which is
not reasonable. Fig. 13 (d) illustrates the MFD exacted from
signals processed by SMMF. The state space of inner race
signal and the state space of ball fault signals are slightly
crossed. CMMFD features extracted from denoised signal are
expressed in Fig. 14. It can be observed that, for 7 = 1,
all the four methods give a overlap state space of 4 four
bearing states, which is the same as the MFD. For t > 2,
the CMMEFD obtained from the EMD-CIIT denoising signal
still present worse discriminative capacity to four bearing
signals, as shown in Fig. 14 (a). The CMMFD features
extracted from the WT technique denoising signal are dis-
played in Fig. 14 (b). CMMFD features of outer race fault
signals and ball fault signals can be differentiated from other
types. But for normal bearing and inner race fault signals,
it gives almost all overlap CMMFD features. The CMMFD
which is extracted from MMF and SMMF denoising signals
are depicted in Fig. 14 (c) and (d). The state space composed
of CMMFD feature vectors extracted from the MMF and
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SMMF denoised signals are superior than that of EMD-CIIT
and WT denoised signals.

The MFD and CMMFD extracted by 4 methods are
employed as feature vectors for distinguishing bearing states,
they are applied as input to train the HMM classifier, then the
feature set is distinguished. Table 7 lists the fault classifica-
tion results of each feature vector as the input of HMM. Com-
paring the features extracted from the same rolling bearing
signals, the proposed SMMF-CMMFD technique achieves
better distinguish results. For the other compared techniques,
most samples are given the right classify results, but they can-
not distinguish all of rolling bearing data, and some samples
are given false results.

TABLE 7. Fault identification results.

Normal Inner race Outer Ball
Algorithms bearing fault (%) race bearing
(%) fault (%)  fault (%)
EMD -MFD 89 77 73 67
WT -MFD 100 72 85 69
MMF-MFD 100 50 88 77
SMMF -MFD 100 98 100 89
EMD -CMMFD 98 85 91 92
WT -CMMFD 100 91 95 88
MMF-CMMFD 100 99 90 98
SMMF -CMMFD 100 100 100 100

B. CASE 2: BEARING DATA WITH CLEAR ORBITS OF
ATTRACTOR

The second data set is collected from the ball bearing test
device of Case Western Reserve University bearing data
center [48]. As shown in Fig. 15, the electric motor, the trans-
ducer/encoder and the dynamometer are fixed on the test
bench. The fault/normal test rolling bearing are used to sup-
port the shaft of an electric motor. And an accelerometer is
mounted to collect acceleration data. A deep groove rolling
bearing SKF 6205 with 0.007 in. (0.178 mm) diameters and
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FIGURE 16. The experimental rolling bearing vibration signals: (a) normal bearing, (b) inner race fault, (c) outer race

fault, (d) ball fault.
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FIGURE 17. The reconstructed phase plane for rolling bearing vibration signals: (a) normal bearing, (b) inner race fault, (c) outer race fault,
(d) ball fault.
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FIGURE 18. The reconstructed phase plane for denoised rolling bearing signals: (a1) -(a4) are signals denoised by EMD-CIIT, (a1) normal
bearing, (a2) inner race fault, (a3) outer race fault, (a4) ball fault, (b1) -(b4) are signals denoised by WT, (b1) normal bearing, (b2) inner race
fault, (b3) outer race fault, (b4) ball fault, (c1) -(c4) are signals denoised by MMF, (c1) normal bearing, (c2) inner race fault, (c3) outer race fault,
(c4) ball fault, (d1) -(d4) are signals denoised by SMMF, (d1) normal bearing, (d2) inner race fault, (d3) outer race fault, (d4) ball fault.

0.011 in. (0.279 mm) depth defect single-point fault on the The dynamometer is used to measure the load of motor,
inner race, the outer race, the ball, and normal bearing were and the transducer/encoder is capable to record rotational
adopted in the experiment. The bearing geometry is shown speed. In the experiment, the load of O hp is utilized to
in Table 8. verify the effectiveness of the mentioned method. The shaft
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FIGURE 19. The MFD denoised bearing signals: (a) EMD-CIIT denoised signals, (b) WT denoised
signals, (c) MMF denoised signals, (d) SMMF denoised signals.

TABLE 8. Parameters of experimental bearing.

. Pitch Number of Contact
Roller diameter .
diameter balls angle
8.18 mm 38.5 mm 9 0°

rotation speed is 1797 rpm, the vibration data of healthy and
faulty bearing were collected at 12000 Hz and 48000 Hz,
respectively. Fig. 16 shows the time-domain waveform of the
first 6000 points data collected in four conditions.

Fig. 18 (al) -(a4) shows the denoised results by EMD-
CIIT, as seen in figures, there is no obvious change in
the reconstructed phase diagram of normal bearing signals,
outer race fault signals, and ball fault signals, while the
attractor of inner race fault signal has a significant change.
Phase trajectories of denoising results by WT are plotted in
Fig. 18 (bl) -(b4). After noise reduction, the projection of
all signals changes, but the trajectories of attractors are not
smooth and clear. The phase diagrams for the MMF denois-
ing signals are shown in Fig. 18 (c1) -(c4), the trajectories
of attractors reconstructed by the four types of signals are
clear but not smooth. The projection of phase trajectories for
SMMF denoising signals are shown in Fig. 18 (d1) -(d4). Itis
clear to see that the orbits of the attractor obtained by SMMF
technology are more regular than the orbits obtained by other
denoising technologies. It was also observed that the orbits
are the smoothest of all denoised normal bearing vibration
signals.

VOLUME 8, 2020

The MFD and CMMFD extracted by four methods are
employed as feature vectors for distinguishing bearing states,
they are applied as input to train the HMM classifier, then
the feature set is distinguished. Table 9 lists the fault classifi-
cation results of each feature vector as the input of HMM.
It can be seen from Table 9. Most samples are given the
right classify results by using different feature extracting
techniques. Compared with the same feature extracted from
different denoising techniques, SMMF achieves the highest
accuracy. And CMMFD achieves better distinguish results by
comparing the MFD feature and CMMFD feature extracted
from the same signal.

TABLE 9. Fault identification results.

Normal Inner Outer Ball
Algorithms bearing race race fault bearing
(%) fault (%) (%) fault (%)
EMD -MFD 89 77 73 67
WT -MFD 100 72 85 69
MMF-MFD 100 50 88 77
SMMF -MFD 100 98 100 89
EMD -CMMFD 98 85 91 92
WT -CMMFD 100 91 95 88
MMF-CMMFD 100 99 90 98
SMMF -CMMFD 100 100 100 100

The results of the above simulation and experiments veri-
fied that the proposed SMMEF can effectively reduce the noise.
For the original signal with fuzzy attractor, SMMF is able
to suppress the noise hidden in the chaotic signal effectively.
For the original signal with clear attractor, SMMF is able to
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FIGURE 20. The CMMFD denoised bearing signals: (a) EMD-CIIT denoised signals, (b) WT denoised
signals, (c) MMF denoised signals, (d) SMMF denoised signals.

smooth the orbits without destroying the dynamic of rolling
bearing signals. And CMMFD feature based on chaotic
dynamic can reflect the change of dynamic rolling bearing
system sensitively. The effectiveness of SMMF-CMMFD to
distinguish the normal/faulty rolling bearing is verified.

VIl. CONCLUSION

In this paper, we propose a novel feature extraction method
based on SMMF and CMMFD for fault detection and identi-
fication in rolling bearing signals. Firstly, to suppress noise
without destroying the dynamics of rolling bearing sig-
nals, the modified method called SMMF which adopts the
B-Spline to smooth the MMF is introduced to denoise the
rolling bearing vibration signals. Afterward, a new set of
features referred to as CMMFD is proposed for quantifying
the change in dynamics behavior of ball bearing vibration
signals. By using SMMF and CMMFD, a novel fractal feature
space is constructed, and different types of fault bearing
signals are distinguished from each other. To evaluate the
proposed method. Fractal features space is input into a HMM
classifier for detection and classification of rolling bearing
signals. The results of simulation and experiment demon-
strated that the proposed method is capable in extraction of
fractal characteristics and identification of the type of rolling
bearing signals. The ability of SMMF method to suppress
noise without damaging nonlinear dynamics of rolling rear-
ing signals is satisfactory, better than the EMD-CIIT, WT, and
MMEF. The CMMEFD feature contains a wealth of information
from rolling bearing vibration signals, which improves the

179514

classification ability of MFD. In the future, we will further
explore the application of this method in mixed fault types of
identification and the performance degradation assessment of
bearings.

REFERENCES

[1] R. Rubini and U. Meneghetti, “Application of the envelope and wavelet
transform analyses for the diagnosis of incipient faults in ball bearings,”
Mech. Syst. Signal Process., vol. 15, no. 2, pp. 287-302, Mar. 2001.

[2] Z.Huo, Y. Zhang, G. Jombo, and L. Shu, “Adaptive multiscale weighted
permutation entropy for rolling bearing fault diagnosis,” IEEE Access,
vol. 8, pp. 87529-87540, 2020.

[3] C.Zhang and Y. Liu, “A two-step denoising strategy for early-stage fault
diagnosis of rolling bearings,” IEEE Trans. Instrum. Meas., vol. 69, no. 9,
pp. 6250-6261, Sep. 2020.

[4] Z. Huo, Y. Zhang, L. Shu, and M. Gallimore, “A new bearing fault
diagnosis method based on fine-to-coarse multiscale permutation entropy,
Laplacian score and SVM,” IEEE Access, vol. 7, pp. 17050-17066, 2019.

[5] A.Glowacz, W. Glowacz, Z. Glowacz, and J. Kozik, “Early fault diagnosis
of bearing and stator faults of the single-phase induction motor using
acoustic signals,” Measurement, vol. 113, pp. 1-9, Jan. 2018.

[6] S.QianandD. Chen, ‘“Decomposition of the Wigner—Ville distribution and
time-frequency distribution series,” IEEE Trans. Signal Process., vol. 42,
no. 10, pp. 2836-2842, Oct. 1994.

[71 W.Sun, G. An Yang, Q. Chen, A. Palazoglu, and K. Feng, “‘Fault diagnosis
of rolling bearing based on wavelet transform and envelope spectrum
correlation,” J. Vib. Control, vol. 19, no. 6, pp. 924-941, Apr. 2013.

[8] Y.Lei,J. Lin, Z. He, and M. J. Zuo, “A review on empirical mode decom-
position in fault diagnosis of rotating machinery,” Mech. Syst. Signal
Process., vol. 35, nos. 1-2, pp. 108-126, Feb. 2013.

[9] K. Dragomiretskiy and D. Zosso, ‘“Variational mode decomposition,”
IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531-544, Feb. 2014.

[10] A.Soleimani and S. E. Khadem, ““Early fault detection of rotating machin-
ery through chaotic vibration feature extraction of experimental data sets,”
Chaos, Solitons Fractals, vol. 78, pp. 61-75, Sep. 2015.

VOLUME 8, 2020



X. Yan et al.: Chaotic Feature Extraction Based on SMMF and CMMFD for Early Fault Diagnosis of Rolling Bearing

IEEE Access

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

X. Han and X. Chang, ““An intelligent noise reduction method for chaotic
signals based on genetic algorithms and lifting wavelet transforms,” Inf.
Sci., vol. 218, pp. 103-118, Jan. 2013.

L. Shang and K. Shyu, “A method for extracting chaotic signal from
noisy environment,” Chaos, Solitons Fractals, vol. 42, pp. 1120-1125,
Oct. 2009.

M. Han, Y. Liu, J. Xi, and W. Guo, “Noise smoothing for nonlinear time
series using wavelet soft threshold,” IEEE Signal Process. Lett., vol. 14,
no. 1, pp. 62-65, Jan. 2007.

Y. Chen, X. Liu, Z. Wu, Y. Fan, Z. Ren, and J. Feng, “Denoising of
contaminated chaotic signals based on collaborative filtering,” Acta Phys.
Sinica, vol. 66, Nov. 2017, Art. no. 210501.

J. Serraand L. Vincent, “An overview of morphological filtering,” Circuits
Syst. Signal Process., vol. 11, no. 1, pp. 47-108, Mar. 1992.

J. Wang, G. Xu, Q. Zhang, and L. Liang, “Application of improved
morphological filter to the extraction of impulsive attenuation sig-
nals,” Mech. Syst. Signal Process., vol. 23, no. 1, pp.236-245,
Jan. 2009.

C. Li and M. Liang, “Continuous-scale mathematical morphology-
based optimal scale band demodulation of impulsive feature for bear-
ing defect diagnosis,” J. Sound Vib., vol. 331, no. 26, pp. 5864-5879,
Dec. 2012.

S. Mukhopadhyay and B. Chanda, “A multiscale morphological approach
to local contrast enhancement,” Signal Process., vol. 80, no. 4,
pp. 685-696, Apr. 2000.

L. Zhang, J. Xu, J. Yang, D. Yang, and D. Wang, “Multiscale morphology
analysis and its application to fault diagnosis,” Mech. Syst. Signal Process.,
vol. 22, no. 3, pp. 597-610, Apr. 2008.

Y. Dong, M. Liao, X. Zhang, and F. Wang, “Faults diagnosis of rolling
element bearings based on modified morphological method,” Mech. Syst.
Signal Process., vol. 25, pp. 1276-1286, May 2011.

A. S. Raj and N. Murali, “Early classification of bearing faults using
morphological operators and fuzzy inference,”” IEEE Trans. Ind. Electron.,
vol. 60, no. 2, pp. 567-574, Feb. 2013.

Y. Li, M. J. Zuo, J. Lin, and J. Liu, “Fault detection method for railway
wheel flat using an adaptive multiscale morphological filter,” Mech. Syst.
Signal Process., vol. 84, pp. 642—658, Feb. 2017.

C. Shen, Q. He, F. Kong, and P. W. Tse, “A fast and adaptive varying-
scale morphological analysis method for rolling element bearing fault
diagnosis,” Proc. Inst. Mech. Eng., C, J. Mech. Eng. Sci., vol. 227, no. 6,
pp. 1362-1370, Jun. 2013.

B. Li, P. Zhang, Z. Wang, S. Mi, and Y. Zhang, “Gear fault detection using
multi-scale morphological filters,” Measurement, vol. 44, pp. 2078-2089,
Aug. 2011.

P. Maragos, “Pattern spectrum and multiscale shape representation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 11, no. 7, pp. 701-716,
Jul. 1989.

P. Maragos and F.-K. Sun, “Measuring the fractal dimension of signals:
Morphological covers and iterative optimization,” IEEE Trans. Signal
Process., vol. 41, no. 1, pp. 108-121, Feb. 1993.

H. Li, Y. Wang, B. Wang, J. Sun, and Y. Li, “The application of a
general mathematical morphological particle as a novel indicator for the
performance degradation assessment of a bearing,” Mech. Syst. Signal
Process., vol. 82, pp. 490-502, Jan. 2017.

H. Zhao, R. Yao, L. Xu, Y. Yuan, G. Li, and W. Deng, “Study on a novel
fault damage degree identification method using high-order differential
mathematical morphology gradient spectrum entropy,” Entropy, vol. 20,
no. 9, p. 682, Sep. 2018.

B. Li, P-L. Zhang, Z.-J. Wang, S.-S. Mi, and P.-Y. Liu, “Morphological
covering based generalized dimension for gear fault diagnosis,” Nonlinear
Dyn., vol. 67, no. 4, pp. 2561-2571, Mar. 2012.

VOLUME 8, 2020

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(39]

[40]

[41]

[42]

(43]

[44]

[45]

[46]

[47]

(48]

B. Wang, X. Hu, and H. Li, “Rolling bearing performance degradation con-
dition recognition based on mathematical morphological fractal dimension
and fuzzy C-means,” Measurement, vol. 109, pp. 1-8, Oct. 2017.

G. Tang, X. Yan, and X. Wang, ‘““Chaotic signal denoising based on adap-
tive smoothing multiscale morphological filtering,” Complexity, vol. 2020,
pp. 1-14, Feb. 2020.

G. Zhao, Q. Liang, and T. S. Durrani, “UWB radar target detection
based on hidden Markov models,” IEEE Access, vol. 6, pp. 28702-28711,
May 2018.

Y. Li, L. Cui, and C. Lin, “Modeling and analysis for multi-state sys-
tems with discrete-time Markov regime-switching,” Rel. Eng. Syst. Saf.,
vol. 166, pp. 41-49, Oct. 2017.

J. Li, X. Zhang, X. Zhou, and L. Lu, “Reliability assessment of wind
turbine bearing based on the degradation-hidden-Markov model,” Renew.
Energy, vol. 132, pp. 1076-1087, Mar. 2019.

X. Yan, Y. Liu, and M. Jia, “A feature selection framework-based mul-
tiscale morphological analysis algorithm for fault diagnosis of rolling
element bearing,” IEEE Access, vol. 7, pp. 123436-123452, 2019.

C. Li, M. Liang, Y. Zhang, and S. Hou, “Multi-scale autocorrelation via
morphological wavelet slices for rolling element bearing fault diagnosis,”
Mech. Syst. Signal Process., vol. 31, pp. 428-446, Aug. 2012.

J. Wang, L. Cui, and Y. Xu, “Quantitative and localization fault diagnosis
method of rolling bearing based on quantitative mapping model,” Entropy,
vol. 20, no. 7, p. 510, Jul. 2018.

Z. Hu, C. Wang, J. Zhu, X. Liu, and F. Kong, “Bearing fault diagno-
sis based on an improved morphological filter,” Measurement, vol. 80,
pp. 163-178, Feb. 2016.

P. Maragos and R. Schafer, ‘“Morphological filters—Part I: Their
set-theoretic analysis and relations to linear shift-invariant filters,”
IEEE Trans. Acoust., Speech, Signal Process., vol. ASSP-35, no. 8,
pp. 1153-1169, Aug. 1987.

P. Maragos and R. Schafer, ‘““Morphological filters—Part II: Their relations
to median, order-statistic, and stack filters,” IEEE Trans. Acoust., Speech,
Signal Process., vol. ASSP-35, no. 8, pp. 1170-1184, Aug. 1987.

C.-W. Chen and M. Li, “Improved hydrodynamic analysis of 3-D hydrofoil
and marine propeller using the potential panel method based on B-spline
scheme,” Symmetry, vol. 11, no. 2, p. 196, Feb. 2019.

C.-U. Choe, K. Hohne, H. Benner, and Y. S. Kivshar, “Chaos suppres-
sion in the parametrically driven lorenz system,” Phys. Rev. E, Stat.
Phys. Plasmas Fluids Relat. Interdiscip. Top., vol. 72, no. 3, Sep. 2005,
Art. no. 036206.

J. Huang, X. Wang, D. Wang, Z. Wang, and X. Hua, “Analysis of weak
fault in hydraulic system based on multi-scale permutation entropy of
fault-sensitive intrinsic mode function and deep belief network,” Entropy,
vol. 21, no. 4, p. 425, Apr. 2019.

P. Maragos and A. Potamianos, “Fractal dimensions of speech sounds:
Computation and application to automatic speech recognition,” J. Acoust.
Soc. Amer., vol. 3, pp. 1925-1932. Apr. 1999.

A. R. Backes and O. M. Bruno, “Shape classification using complex net-
work and multi-scale fractal dimension,” Pattern Recognit. Lett., vol. 31,
no. 1, pp. 44-51, Jan. 2010.

A. Rafsanjani, S. Abbasion, A. Farshidianfar, and H. Moeenfard, “Non-
linear dynamic modeling of surface defects in rolling element bearing
systems,” J. Sound Vib., vol. 319, nos. 3-5, pp. 1150-1174, Jan. 2009.

Y. Kopsinis and S. McLaughlin, “Development of EMD-based denoising
methods inspired by wavelet thresholding,” IEEE Trans. Signal Process.,
vol. 57, no. 4, pp. 1351-1362, Apr. 2009.

(Jul. 20, 2012). Case Western Reserve University Bearings Data
Set. [Online]. Available: http://csegroups.case.edu/bearingdatacenter/
pages/download-data-file

179515



