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ABSTRACT Important physiological information is hidden in electroencephalography (EEG), which can
reflect the human brain’s activity. EEG, which is a kind of complicated signal, can be used for epileptic
seizure detection and epilepsy diagnosis via machine learning. A large amount of effort, including raw signal
preprocessing and data preprocessing for machine learning, is required for constructing high-quality training
datasets because the classification performance highly depends on high-quality data. Feature extraction has
been widely used in EEG-based early epileptic seizure detection. Due to the complexity of data collection
and labeling, some of the training instances are inevitably mislabeled. That means some similar instances
have different labels. This is called the issue of class overlap, which leads to a poor class boundary for
classification models and makes constructing a high-quality classification model more difficult. However,
the previous studies investigating the impact of the class overlap for EEG data is quite limited. Our goal is
to investigate the impact of the class overlap on EEG-based early epileptic seizure detection. We propose a
special neighborhood cleaning rule (SNCR) to solve the class overlap issue. To alleviate the class overlap
issue, we conduct large-scale experiments on two widely-used EEG datasets and compare our proposed
SNCR strategy with a state-of-the-art data clean strategy, i.e., the improved k-means clustering cleaning
approach (IKMCCA). The experimental results show that the classification model can achieve significantly
better performance in terms of AUC, recall, and F1 metrics when using our proposed SNCR strategy.
Therefore, for EEG-based early epileptic seizure detection, we recommend researchers to apply the SNCR
strategy to mitigate the class overlap issue and use the SNCR strategy to perform data preprocessing in a
future related study.

INDEX TERMS EEG, early epileptic seizure detection, class overlap, class imbalance, empirical evaluation.

I. INTRODUCTION
Small metal discs (electrodes) are attached to the scalp to
detect the brain’s activity, which is called electroencephalog-
raphy (EEG). This method has been widely used in clinical
domain [1]. It can promote brain science research from the
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medical perspective by acquiring the mapping relationship
between brain information and behavioral information. Due
to the rapid development of the Internet of things (IoT) tech-
nology, EEG information can reflect the relationship between
brain activity information and behavior information. Human
brain cells communicate via electrical impulses and are active
all the time, even during sleep. This activity shows up as
wavy lines on an EEG recording, which can be collected
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using IoT. There are many related studies based on the EGG,
including sleep pattern recognition and epilepsy [2]. An EEG
is one of the main diagnostic tests for epilepsy. 1% of the
world’s population is affected by epilepsy, which can have
multiple effects on the human body, such as memory loss,
depression, and other psychological symptoms [3]. Epilepsy
is associated with brain disorders and involves recurrent,
unprovoked epileptic seizures resulting from the abnormal
firing of cortical neurons, recruiting neighboring cells into a
critical mass [4]. Therefore, it is necessary to detect epilepsy
as early as possible and respond to changes in brain waves in
advance to be able to provide medical care and assistance to
patients on time to prevent malignant results.

The detection of epilepsy can start with brain waves, which
are different from regular brain activity. A large number
of methods based on pattern recognition can analyze and
model the brain waves of patients from a statistical point
of view to predicting possible epileptic seizures in advance.
Many machine learning methods have been used to charac-
terize the dynamic behavior of EEG signals, like the linear
model [5], logistic model [6], Gaussian model [7], and deep
learning [8]. Feature extraction has been widely studied in
EEG-based early epileptic seizure detection. Some of the
training instances are inevitably mislabeled due to the auto-
matic data collecting method and a small sampling interval.
There may be some similar instances with different labels,
which is called the class overlap issue. High-quality data is
required for constructing a high-quality classification model.
However, the Class overlap issue has not been investigated
in previous studies for EEG-based early epileptic seizure
detection.

Similar instances may overlap densely in the space based
on different features. The class overlap issue has been inves-
tigated in other application domains, such as software defect
prediction [9]. That is to say, for EEG-based early epileptic
seizure detection, different epilepsy seizures may have the
same feature. The instances at the intersection of vector
space cause the class overlap issue. These instances resent
a serious challenge to the classification model of machine
learning.

The class overlap issue can be solved by data preprocessing
technology, and after cleaning the data, high-quality training
data can be provided for the classification model. In the pre-
vious related studies, the class overlap has been investigated
in many application areas, including credit card fraud [10],
text classification [11], and software defect prediction [12].
Moreover, the class imbalance problem often accompanies
the class overlap issue. The current commonly used strategies
include the neighborhood cleaning rule learning (NCR), and
the improved k-means clustering cleaning approach (IKM-
CCA) [9]. The NCRmethod removes the conflicting majority
instances to solve the class overlap issue, while the minority
instances are not processed to achieve the balance between
the majority class and the minority class [12]. The IKMCCA
method is based on the standard k-means algorithm. For each
cluster, the majority instances and the minority instances

are eliminated according to the ratio between the minority
instances and the majority instances [9].

In this paper, we propose a novel neighborhood cleaning
rule (SNCR) strategy. This strategy is divided into three
stages, considering data oversampling and NCR. The motiva-
tion for this strategy is that, intuitively, the EEG dataset has
a large amount of data, and the problem of the class overlap
is inevitable. Therefore, the class overlap is likely to exist for
each seizure type.

In our empirical studies, we design the following two
research questions (RQs):

RQ1: How is the prediction performance affected by the
class overlap problem of epilepsy seizures?

RQ2: Which classification model performs best on
epilepsy seizures in terms of different performancemeasures?

To achieve an objective estimation of the class overlap
issue, we conduct the experiments on two widely used EEG
datasets and compare our proposed SNCR strategy with a
state-of-the-art data clean strategy [9]. Performance evalua-
tion measures (i.e., AUC, recall, and F1) are used to compare
the performance of different strategies.

In this study, we aim to identify and remove overlap-
ping instances and find a crosponding effective method for
epilepsy seizures. In summary, the contributions of this paper
can be summarized as follows:

• To the best of our knowledge, we are the first to investi-
gate the impact of the class overlap problem on epilepsy
seizures.

• We are the first to investigate how the class overlap prob-
lem influences the prediction performance on epilepsy
seizures.

• We are the first to propose our SNCR strategy for the
class overlap problem on epilepsy seizures.

• Empirical results on two real-world datasets show the
effectiveness of our proposed SNCR strategy.

The rest of this paper is organized as follows. Section II
introduces the background of EEG and previous studies on
the class overlap problem in machine learning. Section III
describes the method in detail, including EEG data prepro-
cessing and data cleaning strategies. Section IV reports our
experimental setup, including experimental subjects, perfor-
mance evaluation measures, strategies for experimental com-
parison, and experimental design. Section V discusses the
results of our experiments. Section VI analyzes the potential
threats to validity for our empirical results. Section VII con-
cludes the paper with some future work.

II. BACKGROUND AND RELATED WORK
In this section, we mainly discuss the related studies on
EEG-based early epileptic seizure detection and the class
overlap issue.

A. ELECTROENCEPHALOGRAPHY
The brain-computer interface is a technology used to obtain
information from the user’s brain, control external designs,
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or communicate. The data can reflect the information or com-
mand that the user wants to send. The signal processing tool
uses electrodes and other methods to identify the information
or command and send it to the corresponding output device.
The current four common brain-computer interfaces include
EEG, electrocorticography, deep electrodes, and functional
magnetic resonance imaging. EEG is a micro-current detec-
tion technology that detects the activity in the brain through
the measurement of micro-currents. This technology is a
non-invasive detection technology. Its implementation is
equipped with contact electrodes on the scalp of the brain.
Multiple electrodes record the patient’s brain wave activity
overtime on the scalp in many medical fields.

Currently, research on user intentions using EEG technol-
ogy is still evolving and continuing. The creation of the user
intention model contains three challenging issues. The first
problem is how to effectively and reasonably map the user’s
emotional expression to the labeled state; the second problem
is to perform signal denoising, transformation, and other pre-
processing on the input data; finally, the third is manual data
annotation of the EEG state [13]. The effect of preprocessing
methods on downstream EEG has been researched. Although
the general structure of the results is similar across these
preprocessing methods, there are significant differences, par-
ticularly in the low-frequency spectral features and in the
residuals left by blinks [14].

EEG-based early epileptic seizure always includes three
key steps, as shown in Figure 1. Raw EEG data are first col-
lected using IoT technology. In the first step, these instances
are preprocessed, like data normalization. The second step
is feature engineering so that the distinguishing features are
selected. The third step is constructing the classification
model using the preprocessed data.

FIGURE 1. EEG-based early epileptic seizure detection framework.

In the original EEG data, due to factors such as errors
collected by the device, there may exist data noise and arti-
facts in the original dataset [15]. Although EEG data is used
to record the brain’s wave activity, it also records some
other weak currents. These noise instances are called artifacts
and must be preprocessed using two common techniques,
including physiologic and extra physiologic artifacts cleaning
technology.

For EEG-based early epileptic seizure classification, two
popular methods have been used to preprocess EEG data
from TUH EEG Seizure Corpus [16]. The fast Fourier trans-
form (FFT) method has been used in the TUH dataset [17].
The FFT preprocessing technology for the TUH dataset is
shown in Figure 2. For non-periodic signals, discrete Fourier
transform based on discrete signals can meet the require-
ments of signal processing. However, only handle discrete

FIGURE 2. FFT preprocessing technology for TUH dataset.

and finite-length data can be handled, so here we use FFT
in our study.

On all electrode channels, we trim the EEG data and
sample every s seconds. Then, we use a log function with a
base of 10 to process the data at different frequencies. The
minimum processing frequency is 1HZ, and the highest is
f (max)HZ (max means the max sample frequency). Finally,
the data is entered into the model as raw data.

B. MACHINE LEARNING-BASED EEG ANALYSIS
With the rapid development of mobile devices, patient infor-
mation can be collected efficiently and quickly. The status
information of these patients can be sensed in real-time
through the Internet of things technology and transmitted
back to the Internet of things cloud platform. High-quality
user data has laid a good foundation for the creation of a
patient information management system. Machine learning
technology has been successfully applied in many fields,
including medical image recognition, cancer diagnosis, and
so on. In recent years, there have been reports that the use of
optimized machine learning techniques can divide EEG data
into normal or abnormal data [17]. Using supervised learning
to construct classification models for EEG data has recently
played an increasingly important role in EEG diagnosis [18].

The diagnosis and treatment system based on human-
machine communication interface technology has been
widely used at present. The treatment prediction technology
for epilepsy has also been applied [19], and the EEG analysis
technology for epilepsy has also been proposed. This new
technology is highly innovative and applicable, and it is being
accepted by more and more nerve brain scientists [20], [21].

For EEG-based early epileptic seizure detection, the devel-
opment of miniaturized and standardized equipment has
made the monitoring of patients’ pre-seizure status more
accurate. The automated epilepsy prediction system uses
machine learning models to classify EEG data [22]. The clas-
sification model uses typical features to distinguish whether
there is epilepsy or to predict epilepsy. The feature used in
the machine learning model must have a very high degree of
discrimination. This feature should be used not only for the
status analysis of the same patient in a period but also for
different patients’ status analysis at different times. There-
fore, effective feature engineering technology is essential for
EEG-based early epileptic seizure detection.

So far, there has been a series of studies to detect seizures
from EEG data. Zandi et al. [23] proposed wavelet-transform
technology to distinguish seizure or non-seizure states using
feature extraction preprocessing technology. Deep learning
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FIGURE 3. The distribution of TUH EEG dataset.

has been used in many fields because of its high performance.
Vidyaratne et al. [24] used bidirectional recurrent neural net-
works to extract features for seizure analysis. Unsupervised
learning in deep learning, such as autoencoders, has also
been introduced to learn features from EEG data for seizure
detection [25] automatically.

C. CLASS OVERLAP
The class overlap issue can be described as instances with
the same characteristics but with different class labels. The
existence of the class overlap issue makes it difficult for
the classifier to effectively establish classification bound-
aries, which significantly affects classification performance,
including accuracy, recall rate, and so on. In other fields
of machine learning, such as software defect prediction, the
class overlap issue is mainly related to the quality of the
data or the noise in the samples [12]. Tang and Khoshgof-
taar [26] used outlier removal technology to detect potential
noise modules and improve data quality, and the experiment
revealed that the total error rates decreased with decreasing
noise examples. Chen et al. [12] proposed a new classifi-
cation model for software defect prediction that combines
class overlap reduction and ensemble imbalance learning.
The neighbor cleaningmethod was first applied to remove the
overlapping non-defective samples. The whole dataset was
then randomly sampled several times to create an ensemble
classification model. Gong et al. [9] proposed an improved
k-means clustering cleaning approach (IKMCCA) to solve
the class overlap issue and the class imbalance problem. The
experiment revealed that it is better to consider both the class
overlap problem and the class imbalance problem.

To our best knowledge, there is no consideration of class
overlap for EEG data. Many instances from the TUH EEG
Seizure Dataset are overlapping, as shown in Figure 3, which
impact the prediction performance of the constructed models.
EEG data comes from an automated data collection system.
However, EEG data is subject to current interference from
various sources, such as current interference from the col-
lection system itself, abnormal current interference from the
body itself, and errors that may occur during data transmis-
sion. Therefore, it is essential to perform an overlap analysis
of EEG data. At the same time, there is an obvious kind of
imbalance in the type of epilepsy. By using noise-cleaning
techniques, it is also possible to achieve a balanced sampling
of the dataset.

III. OUR PROPOSED METHOD
In this section, we briefly describe the EEG data prepro-
cessing technology and then the whole experimental pro-
cess, especially data cleaning strategies. Figure 4 provides an
overview of the steps in our study. Based on an automated
brain wave acquisition system, raw egg data is gathered, and
FFT preprocessing is performed on the original dataset to
obtain the training dataset. The popular classification models,
including random forest (RF), naive Bayesian model (NB),
logistic regression (LR), and k-nearest neighbor (KNN), are
trained on the training set. Experimental results are gathered
based on the test set in terms of AUC, recall, and F1 perfor-
mance measures.

A. EEG DATA PREPROCESSING
The Fourier transform was firstly used for brain wave analy-
sis in 1932. The successive development of classic analysis
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FIGURE 4. An overview of our study.

methods, such as time-domain analysis, frequency-domain
analysis, and time-frequency analysis, has effectively pro-
moted the study of brain wave signals [27]. Fast Fourier
transform (FFT) can be used to analyze the frequency domain
characteristics of the signal, and it is now one of the most
popular methods to preprocess EEG data [17], [28].

Fourier transform is derived from the Fourier series by
introducing a spectral density function. The calculation pro-
cess can be defined as follows:

F(ω) =
∫
+∞

−∞

f (t)eiωtdt (1)

where t is the time domain, and ω represents the frequency.
However, FFT can only be used for the analysis of station-
ary signals. For non-stationary signals, a short-time Fourier
transform (STFT) must be used to perform analysis. For
non-stationary signals, the short-time Fourier transform strat-
egy is to add a window to the signal, which is generally
a hamming window. Of course, it can also be other types
of window functions. The signal after windowing is divided
into a set of short-length sequences, and subsequences can
be viewed as stationary sequences, which can be analyzed
by Fourier transform. The common method of EEG signal
analysis using STFT is to use STFT to separate the bands of
EEG signals, to obtain the energy of each band as a feature
(such as alpha, beta, theta, gamma, and delta).

B. DATA CLEANING STRATEGIES
Since the class overlap issue exists in the EEG dataset, it is
essential to preprocess the EEG data. In other fields, like soft-
ware defect prediction, class overlap issue is often considered
as the data quality or noise detection. In our experiment, the
special neighborhood cleaning rule (SNCR) and improved k-
means clustering cleaning approach (IKMCCA) [9] methods
have been used to remove the class overlap instances.

Gong et al. [9] improved the k-means clustering clean-
ing approach for the class overlap issue. This innovative
method uses the standard k-means algorithm on the training
dataset to cluster the dataset, which is divided into k clusters.

For each cluster, they calculate the ratio of the number of
defective modules to the number of non-defective modules.
If the ratio is higher than the distribution value of the defective
modules on the training dataset, they delete all non-defective
modules; if the ratio is less than the distribution value of
the defective modules on the training dataset, they remove
all defective modules on the cluster. Finally, the processed
dataset is merged into the final training dataset.

Considering the vast amount of EEG data and the high
degree of the class overlap issue found from data visualiza-
tion analysis, we conjecture that the class overlap problem
exists in the current clusters. Therefore, we design a special
neighborhood cleaning rule (SNCR). The pseudo-codes for
the simulation experiments are provided in Algorithm 1 to
evaluate the impact of the class overlap and then answer RQ1
and RQ2. The SNCR algorithm is shown in Algorithm 1.

The motivation for this strategy is that, intuitively, the EEG
dataset has a large amount of data, and the problem of the
class overlap is inevitable. The class overlap is likely to exist
in each seizure type. Therefore, it is unreasonable to solve
the problem of class imbalance by undersampling only for
most classes. In this study, we think that oversampling should
be used to make different types in the datasets to reach the
class balance. Moreover, using oversampling can also likely
to worsen the class overlap problem.

SMOTE (SyntheticMinorityOversampling technique) [29]
algorithm is used to create artificial instances of the minority
class. An artificial instance of the minority class xi1 is based
on the randomly selected xi, then another neighbor xi(nn)
is chosen to calculate the distance between xi and xi(nn).
A randomly selected parameter δ is used to guarantee the
randomness.

xi1 = xi + δ × (xi(nn) − xi) (2)

At this time, the nearest neighbor learning is performed
on the current majority class and minority class at the same
time, and potential class overlap instances are eliminated.
Since the amount of EEG data is relatively large and uses
the above nearest neighbor method to find possible class
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Algorithm 1 Special Neighborhood Cleaning Rule
(SNCR)
Input: training set T = Cmax , Cmin, where Cmax is the

majority class, Cmin is the minority class, and d is
the ratio r of defective instances to all instances.

Output: a new cleaned training set T ′ = {C ′′′max ,C
′′′
min}

1 for data in Cmin do
2 Choose k neighbors using Euclidean distance;
3 Randomly choose a sample xi(nn), and then generate

a random number δ,δ ∈ {0,1};
4 Generate a new instance xi1 = xi + δ × (xi(nn) − xi );
5 end
6 for data in C ′min do
7 Find the top N -nearest neighbors Nx of x according

to the Euclidean distance;
8 if any neighbors Nx in Cmax then
9 N = N ∪ Nx ;
10 C ′max = Cmax-N ;
11 end
12 end
13 for data in Cmax do
14 Find the top N -nearest neighbors Nx of x according

to the defined Euclidean distance;
15 if any neighbors Nx in C ′min then
16 N = N ∪ Nx ;
17 C ′′min = C

′
min − N ;

18 end
19 end
20 Define the new input dataset = {C ′′min,C

′
max} ;

21 Calculate ratio δ = len(C ′′min)/len(C
′
max);

22 Use standard k-means algorithm to divide the dataset
into k cluster;

23 for cluster in k clusters do
24 calculate the new δ′ = len(C (i)′′

min)/len(C
(i)′
max) ;

25 if δ′ > δ then
26 delete the minority class instances in current

cluster;
27 end
28 if δ′ 6 δ then
29 delete the majority class instances in current

cluster ;
30 end
31 end
32 Merge the remained instances in each cluster;

overlap instances, we can also analyze the current dataset by
introducing standard k-means algorithms, then we perform
cluster analysis on the dataset and remove the abnormal
instances in each cluster. In the k-means algorithm, the dis-
tance between each object and the cluster center is calculated
using Euclidean distance.

d(x, x′ ) =

√∑
(x − x′ )2 (3)

For a fair comparison, we set the No Clean strategy as the
default data cleaning strategy in our study.

IV. EXPERIMENTAL SETUP
In this section, we first provide themotivation for our research
questions. Then, before answering this question, we intro-
duce the experiment setup, including experimental subjects,
performance evaluation measures, strategies for experimental
comparison, comparative classifications based on machine
learning, and experimental design.

A. RESEARCH QUESTIONS
Our study is to evaluate the effect of the overlapping instances
on EEG epilepsy seizures. To achieve this research goal,
we seek to answer the following two questions:

RQ1: How is the prediction performance affected by the
class overlap problem of epilepsy seizures?

RQ2: Which classification model performs best on
epilepsy seizures in terms of different performancemeasures?

RQ1 andRQ2 aim to compare the performance of the exist-
ing state-of-the-art learning models by removing overlapping
instances in the epilepsy seizure datasets. We studied popular
classification models for epilepsy seizures datasets. If the
class overlap instance is removed and the classifier’s per-
formance is improved, then practitioners can perform corre-
sponding preprocessing on the original EGG data to improve
the classifier’s performance in future studies on the epilepsy
seizures. Besides, by comparing the classifier’s performance,
it also helps to guide subsequent researchers to choose a
classification model suitable for their use.

B. EXPERIMENTAL SUBJECTS
To compare these data clean strategies, we used two publicly
available datasets.

The first dataset is the world’s largest publicly avail-
able dataset of epilepsy seizures, which is published and
maintained by Temple University Hospital. We chose the
sub-dataset of the TUH EEG Seizure Corpus as our research
object. These EEG records are sampled at a frequency
of 250 Hz and contain up to 20 electrode channels. The TUH
EEG Seizure Corpus contains 2,012 seizure cases, which
contain eight different types of epilepsy. Seizure of different
patients may be classified into the unified command seizure
type. For seizure type classification experiments, we exclude
only myoclonic seizures because of the small number of
seizures recorded (three seizure events). The seven types of
seizure selected for analysis are focal non-specific seizures
(FNSZ), generalized non-specific seizures (GNSZ), simple
partial seizures (SPSZ), complex partial seizures (CPSZ),
absence seizures (ABSZ), tonic seizures (TNSZ), and tonic
clonic seizures (TCSZ) [30]. Clinically SPSZ and CPSZ are
more specific subclasses of FNSZ, while ABSZ, TNSZ, and
TCSZ are more specific subclasses of GNSZ. ABSZ and
SPSZ seizure samples are selected respectively to represent
one seizure type to test the three strategies.
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After preprocessing the EEG dataset for the TUH EEG
Seizure Corpus, there are almost 60,000 instances. There are
3,087 instances for the ABSZ seizure type, labeled as ‘‘1’’;
meanwhile, there are 6,028 instances for the SPSZ seizure
type, labeled as ‘‘0’’. The ratio of the majority instances to
the minority instances is about 1.95. There are 3,087 samples
in the original absence seizure (ABSZ) group, and there are
6,028 samples in the original simple partial seizure (SPSZ)
group. Thus, there is a clear class imbalance problem. To bet-
ter test the impact of the class overlap issue on the dataset
and cleaning strategy, some noise data was artificially added
to the selected data.

The IBM TUSZ preprocessed dataset is inputted into the
classification model as the original EEG. For this dataset, the
temporal central parasagittal montage preprocessing was per-
formed on 20 electrode channels, and fixed-length windows
were used for FFT on all channels. The format of the input
dataset is [#data sample, #channels, #frequency bands].

TABLE 1. Statistics for each seizure type.

The second dataset is another publicly available dataset of
epilepsy seizures. The dataset is available on UCI’s machine
learning repository [31]. The dataset includes 4,097 EEG
readings per patient over 23.5 seconds, with 500 patients in
total [32].

In the epilepsy seizures dataset on UCI’s machine learning
repository, there is a total of 11,500 instances, in which
there are 2,300 epilepsy seizure instances labeled as ‘‘1’’.
The remaining instances are labeled as ‘‘0’’. Therefore, this
dataset also contains a class imbalance problem.

C. PERFORMANCE EVALUATION MEASURES
To investigate the impact of the class overlap on the per-
formance of the constructed models, we consider three per-
formance measures: the area under the receiver operating
characteristic curve (AUC), recall, and F1-measure (F1).

TABLE 2. Confusion matrix.

In Table 1, we can find that there is a significant class
imbalance in TUSZ datasets. Due to the imbalance distribu-
tion, multiple performance measures are usually adopted to
evaluate different aspects of constructed prediction models.
We measure the performance with F1-measure and AUC,
which have been widely used for the class imbalanced
datasets. For a binary classification problem, an unambiguous
way to present the prediction results of a constructed classifier

is to use a confusion matrix.

precision =
TP

TP+ NP
(4)

recall =
TP

TP+ FN
(5)

F1-measure =
2× (precision× recall)
precision+ recall

(6)

AUC is defined as the area enclosed by the ROC curve and
the coordinate axis. The maximum value cannot exceed 1.
The closer the AUC value is to 1, the higher the authenticity
of the classifier detection. Conversely, when it is close to
the minimum value of 0.5, it represents that there is no
application value. F1 is the harmonic mean of precision and
recall, and this performance measure can solve the trade-off
between precision and recall.

To statistically evaluate the detailed prediction results,
we first employ the Friedman test to determine whether
there are statistically significant differences among compared
methods. If there is a statistically significant difference, the
post-hoc Nemenyi test is applied to compare the difference.

When the null hypothesis is rejected, the average rank
should be calculated and is compared with the critical dis-
tance (CD).

CD = qa ×

√
k × (k + 1)

6N
(7)

In our experiment, k represents 12 different algorithms,
and N represents all 20 training datasets. qa is defined as 3.2.
Therefore, the result of CD is 2.5799.

In addition, to evaluate the degree of difference among the
compared methods in terms of AUC, recall, and F1-measure,
we apply Cohen’s d to measure the effect size.

Cohen′s d =
M1 −M2√

σ 21+σ
2
2

2

(8)

where M1 and M2 represent the mean of the statistic,
and σ represents the standard deviation of the statistic. If
d ∈ {0, 0.2}, this indicates the effect size is negligible.
If d ∈ {0.2, 0.5}, this indicates the effect size is negligible.
If d ∈ {0.5, 0.8}, this indicates the effect size is medium.
If d ∈ {0.8, 1}, this indicates the effect size is large.

D. STRATEGIES FOR EXPERIMENTAL COMPARISON
To compare the classification performance of the impact of
class overlaps on EEG-based early epileptic seizure detec-
tion, the special neighborhood cleaning rule (SNCR) strategy
is compared with the improved k-means clustering cleaning
approach (IKMCCA) strategy. For the sake of fairness, the
two strategies for data preprocessing are compared using
the case without data preprocessing. This strategy is named
the No Clean Strategy.

E. MODELING METHODS
In our experiments, three preprocessing strategies were eval-
uated and compared with four state-of-art classification algo-
rithms. The details of the models are introduced as follows:
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FIGURE 5. The comparison results via violin plot for the two datasets in terms of AUC.

RF. Random forest (RF) is a common classification model
that has been widely used in many machine learning fields.
This is an integrated learning classification model, which cre-
ates a series of decision trees by randomly dividing data and
uses the voting results of the decision tree for classification.
This model has a strong processing capacity for imbalanced
datasets.

NB. The naive Bayesian model (NB) is a simple but robust
classification model. This model is based on the Bayesian
principle and has been proven to have better classification
results than complex models in multiple application areas,
such as support vector machine models.

LR. Logistic regression (LR) is a variant of the regression
method that is essentially a linear classifier. This model has
strong interpretability, and the fitted parameters can represent
the impact of each feature on the result.

KNN. The k-nearest neighbor (KNN) algorithm is rela-
tively mature in theory. It considers the k nearest samples
to a certain example, and the voting result of most examples
determines the example category.

F. EXPERIMENTAL DESIGN
To evaluate the model performance of different query strate-
gies, we first divide the preprocessed dataset into m groups
and then use random stratified sampling to generate the
instances training set and test set.

The experiment is performed m times (m = 10). In our
experiments, we use the implementation of these classifiers
provided by scikit-learn to avoid internal threats to validity
and use the default value for the classifier’s hyperparameters.
The pseudo-code for the experimental setup is shown in
Algorithm 2.

Algorithm 2 Steps of the Experimental Setup
Input: dataset T = {IBM TUSZ preprocessed dataset,

epilepsy seizures dataset on UCI’s machine
learning repository } learning models = {RF,
NB, LG, KNN} strategies = {No Clean, SNCR,
IKMCCA }

Output: metrics = { AUC, recall, F1 }
1 for data in dataset do
2 Randomly stratify the current dataset into m folds;
3 Define training set and test set for classifier in

learning models do
4 for strategy in strategies do
5 train the classifier on the training set;
6 report performance AUC, recall, F1 on test

set;
7 end
8 end
9 end

V. EXPERIMENTAL RESULTS
In this section, we report experimental results for the compar-
ison with and without removing the overlapping instances to
answer RQ1 and RQ2.

A. RESULT ANALYSIS FOR RQ1
RQ1: How is the prediction performance affected by the
class overlap problem of epilepsy seizures?

To answer this RQ, we conduct the experiments on the two
EEG seizure datasets via RF, NB, LR, and KNN classifiers by
using the SNCR, IKMCCA, and No Clean strategies. In the
IKMCCA method, the ratio p% is set to the ratio of the
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FIGURE 6. The comparison results via violin plot for the two datasets in terms of F1.

FIGURE 7. The comparison results via violin plot for the two datasets in terms of recall.

number of instances in the minority class to the number of
instances in the majority class.

The comparison results via violin plot are shown for each
learning model in Figure 5 to Figure 7. From these figures,
we can observe that using the SNCR strategy can achieve
the best performance (i.e., median value) in terms of AUC,
recall, and F1-measure on the RF, NB, LR, and KNN classi-
fiers. In particular, (1) compared with the No Clean strategy,
it is better to solve the class overlap problem by using the
cleaning strategies, and (2) compared with IKMCCA, the

SNCR method performs better in the two epilepsy seizures
datasets.

The graphic display of comparison results in terms of
different performance measures does not clearly show the
differences between different strategies. Then, to com-
pare the performance of different strategies on the dif-
ference training datasets from a statistical point of view,
the non-parametric Friedman test at a confidence level
of 95% is used to conduct a statistical analysis of the
results.

180336 VOLUME 8, 2020



Y. Qu et al.: Empirical Evaluation on the Impact of Class Overlap

FIGURE 8. The violin plot on SNCR strategy in terms of AUC, recall, and F1.

Firstly, we define the null hypotheses (H0) and alternative
hypotheses (H1) as follows:

H0: There is no difference between the strategies on the
different datasets.

H1: There is a difference between the strategies on the
different datasets.

Secondly, we set the significance level α to 0.05.
Then, we find that the calculated value is smaller than the

critical value for a 0.05 significance level. Hence, the null
hypothesis is rejected and we can conclude that there is a
difference between these three strategies.

To reveal the differences between different strategies,
we further adopt a post hoc statistical analysis method. The
mean ranks results of 12 approaches in terms of AUC, recall,
and F1 are shown in Table 3.

In the end, to further compare these strategies, we com-
pared the effect size of the No Clean strategy with those of
the other two strategies. Cohen’s d effect size is used, and the
final results are shown in Table 4.

Summary for RQ1:We can find a statistically significant
performance improvement after removing the overlapping
instances. Therefore, removing the overlapping instances
before building the EEG-based early epileptic seizure detec-
tion prediction models is needed. Moreover, SNCR can
achieve better results than IKMCCA for all the classifiers.

Therefore, we recommend SNCR to consider the class over-
lap problem when dealing with EEG-based early epileptic
seizures.

B. RESULT ANALYSIS FOR RQ2
RQ2: Which classification model performs best on
epilepsy seizures in terms of different performance mea-
sures?

According to the violin plots of Figure 5 to Figure 7 and
Cohn’s d effect size in Table 4, the SNCR strategy can better
deal with the class overlap issue. Then, to answer which clas-
sifier has the best classification performance when using the
SNCR strategy, we select some of the previous experiments
by only focusing on the SNCR strategy in terms of AUC,
recall, and F1 for different classifiers (i.e., RF, NB, LG, and
KNN). We want to further reveal which of the four classi-
fiers has strong generalization ability and robustness when
dealing with the class overlap issue, which is a valuable and
meaningful exploration, which can guide other researchers to
use a more robust classifier in future studies.

Firstly, we use the violin plots of different classifiers
according to the experimental results in terms of different
evaluationmeasures. The violin plots on the SNCR strategy in
terms of AUC, recall, and F1 measures are shown in Figure 8.
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TABLE 3. The mean rank results of 12 approaches in terms of AUC, RECALL, and F1.

TABLE 4. The comparison results between the methods removing the
class overlap instances and the methods without removing the class
overlap instances in terms of AUC, Recall and F1.

TABLE 5. The mean ranks of results of four classifiers in terms of AUC,
Recall, and F1.

According to Figure 8, the NB classifier performs better than
other classifiers based on the median value.

Secondly, the non-parametric Friedman test with post-hoc
Nemenyi test at a confidence level of 95% is used to conduct
a statistical analysis of the results. We can find that there is a
difference between different classifiers.

In this scenario, the count of all the training datasets is 20,
and the count of compared algorithms is 4. The qa is queried,
and qa = 2.569. The CD is defined as 0.7416 according to
Equation (5). The mean ranks results of the four classifiers in
terms of AUC, recall, and F1 are shown in Table 5.

In addition, to perform a thorough comparison of the four
algorithms, we compare the effect size on the 20 training sets,
and the results are shown in Table 6.

TABLE 6. The comparison results among different classifiers in terms of
AUC, Recall and F1.

Summary for RQ2: After investigating which classifier
performs best on EEG-based early epileptic seizure detec-
tion datasets for SNCR, we can find a statistically signifi-
cant improvement in favor of the NB classifier. Therefore,
we recommend theNB classifier to build the EEG-based early
epileptic seizure detection prediction models in the future.

VI. THREATS TO VALIDITY
In this section, we mainly discuss potential threats to the
validity of our empirical study.

A. THREATS TO CONSTRUCT VALIDITY
Only two open datasets are evaluated in our empirical
studies. However, the first dataset is the world’s largest
publicly-available dataset of epilepsy seizures, and the repre-
sentativeness of our findings can be guaranteed. The second
dataset is downloaded from UCI’s machine learning reposi-
tory. This dataset is preprocessed, and its instances have not
been transformed by using FFT.

B. THREATS TO INTERNAL VALIDITY
We do not choose all the classification models, which have
been considered in the previous studies for EEG-based early
epileptic seizure detection. To alleviate this threat, we only
choose some representative classification models in our
empirical study.

C. THREATS TO EXTERNAL VALIDITY
The two datasets used in our study are free and open datasets.
Other commercial and private datasets have not been con-
sidered because of intellectual property issues. This may
threaten the generalization of our empirical studies.

VII. CONCLUSION AND FUTURE WORK
EEG-based early epileptic seizure detection prediction relies
on a large amount of labeled data; classifiers are used to
construct models to achieve early detection of an epilep-
tic seizure. However, in actual work, due to the many
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interference factors encountered in the EEG data collection
process, data label errors are inevitable. Some instances have
the same measured value but have different seizure types.
This kind of error is called the class overlap issue. From the
perspective of resolving the class imbalance problem and the
class overlap problem, we propose a novel SNCR strategy.
Then, we designed experiments to investigate whether using
this strategy to solve class overlap can improve the classifier’s
performance. We conduct the empirical studies to compare
the performance using different models on two open datasets.
The results show that the SNCR strategy can achieve sig-
nificantly better performance in terms of AUC, recall, and
F1. In other words, the class overlap issue has a performance
impact on prediction; it also shows that when removing the
class overlap instance, strategies such as oversampling should
be considered to solve the class imbalance problem.

This strategy can be used in other application domains,
such as software defect predictions, to solve the class imbal-
ance problem [33]. Also, for cross-project software defect
prediction, the class imbalance problem can be solved using
this SNCR strategy [34], [35]. Finally, the features of EEG
data in our study are constructed based on feature engineering
in a manual way. In contrast, deep learning can automatically
learn semantic features. Then analyzing the impact of the
class overlap problem on the leaned semantic features is
another interesting problem and can be investigated in our
future work.
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