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ABSTRACT In this paper, a fractional-order new generation of nk ±m-order harmonic repetitive controller
(FO-NG-nk ±m RC), composed of a proposed new generation of nk ±m RC (NG-nk ±m RC) and a Taylor
Series expansion based fractional delay (FD) filter using Lagrange interpolation with Farrow structure,
is proposed. Compared with conventional nk±m RC, NG-nk±m RC has more advantages while achieving
the same performance as the conventional nk±m RC. Different FD approximation algorithms are compared
for the first time from the perspective of controller computational burden. The inner relationship between
Taylor Series expansionmethod and Farrow structure FDfilter is explained, detailed mathematical derivation
is provided, and a complete set of FD filter design methods is formed. When the fundamental frequency is
not constant, the performance of nk ±m RC to track or eliminate any specific nk ±m-order harmonics will
be seriously degraded. However, without changing the sampling rate, the proposed FO-NG-nk ±m RC can
be used to improve the frequency adaptive performance. What’s more, FO-NG-nk±m RC provides a unified
framework for integer/fractional-order nk ±m RCs. Experimental results of FO-NG-nk ±m RC controlled
three-phase PWM inverter system show the effectiveness and advantages of the proposed FO-NG-nk ± m
RC scheme.

INDEX TERMS Error convergence rate, fractional order, nk ± m-order harmonic, repetitive control, pulse
width modulation (PWM) converter.

I. INTRODUCTION
In various industrial applications of PWM converters, e.g.
programmable alternating current (AC) power supply [1],
uninterruptible power supply (UPS) [2], [3], the harmonic
control is an important research problem. Repetitive control
(RC) [4], based on internal model principle [5], is an effective
control scheme for power converters to track/eliminate peri-
odic reference signal/harmonic disturbance. Compared with
conventional RC (CRC), nk±m-order harmonic RC (nk±m
RC) proposed in [6] is more effective for dominating nk±m-
order harmonics’ applications with less data memory and
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much faster error convergence rate, such as 4k ± 1 RC for
single-phase power electronics systems [7] and 6k ± 1 RC
for three-phase power electronics systems [8]. However, the
nk ± m RC proposed in [6] is a nonstandard RC structure,
called 1st-generation nk±m RC in this paper. It is not conve-
nient and easy to design nk ± m RC controller using many
existing design approaches and skills of CRC controller.
Therefore, in this paper, a new generation of nk±m RC (NG-
nk ± m RC) is firstly proposed with standard RC structure.

In many PWM converter applications, the working fre-
quency is not always constant, for example, the grid fre-
quency is practically not a constant but within a certain range
(e.g. 59 Hz-61 Hz) [9]. Under such condition, the value of N
or N /n in the delay element z−N of digital CRC or z−N/n of
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digital nk ± m RC will not be an integer, where N = fs/fo,
fs being the sampling frequency and fo being the fundamen-
tal frequency. Thus, the fractional delay (FD) problem in
the digital RC will inevitably cause serious degradation of
control performance, such as worsen output voltage/current
waveform quality and rising total harmonic distortion (THD).
Therefore, RC-controlled PWM converters not only need
good control performance in the case of integer delay under
constant working frequency, but also in the case of FD under
frequency variation.

Fractional-order repetitive control (FORC) [10]–[17] and
higher-order repetitive control (HORC) [18], [19] can be used
to solve the frequency variation problem. However, HORC
is usually used in slight frequency variation scenarios, and
FORC can not only deal with slight frequency variations, but
also be suitable for a wide range of frequency variations.
Therefore, compared with HORC, the FO scheme is more
suitable for various situations, especially for a wide range of
frequency variations.

A FD algorithm based on the finite impulse response (FIR)
filter can be used to solve the FD problem [10]–[17], which
makes FORC controller be adaptive to the frequency varia-
tion. FORC can be widely used in many situations even work-
ing frequencies not being constant, such as programmable
AC power supply [10], active power filter (APF) [11], [12],
off-grid power converter [13], [14], grid-connected power
converter [15], [16]. However, FO-CRC still occupies a large
amount of data memory cells and has slow dynamic response.
Compared with FO-CRC, the conventional FO-nk ± m RC
[17] can save the memory space and quicken the dynamic
response. But, it is based on the 1st-generation nk ± m RC
and still has the drawback of 1st-generation nk ±m RC, such
as nonstandard RC structure. Moreover, for the Lagrange
interpolation polynomial FIR filter used in [17], all (M + 1)
coefficients of the M -order FIR filter need to be updated in
real-time to approximate different FDs, which will increase
the real-time computational burden of the control system.

Therefore, in this paper, a new generation of nk ± m RC-
based FO-nk ± m RC (FO-NG-nk ± m RC), using Lagrange
interpolation FD filter based on Taylor Series expansion
with Farrow structure to accurately approximate the FD,
is proposed. Compared with conventional FO-CRC, FO-NG-
nk±m RC has faster error convergence rate, compatible with
non-integer value of N or N /n. What’s more, its excellent
frequency robustness and good dynamic response greatly
expand its usable range to more practical applications.

To emphasize the originality and contribution of our
approach, the main contributions of the presented research
work are as follows.

1) This paper proposed a new structure of nk ± m RC,
i.e. NG-nk ± m RC. Compared with conventional nk ± m
RC, it has more streamlined controller structure and more
convenient RC design method. While achieving the same
controller performance as the conventional nk ± m RC, NG-
nk±m RC has more advantages. Moreover, a complete set of
RC design methods is given, which is helpful for RC design.

FIGURE 1. Standard RC structure or CRC.

2) This paper proposed a Taylor Series expansion-based
FD filter with Farrow structure. In this paper, different FD
filter coefficient updating methods are analyzed. The reason
why the proposed Taylor Series expansion-based FD filter
is superior to the conventional Lagrange interpolation FIR
FD filter is explained from the perspective of the controller’s
computational burden for the first time. The inner relationship
between Taylor Series expansion method and Farrow struc-
ture FD filter is explained, detailed mathematical derivation
is provided, and a complete set of FD filter design methods is
formed.

3) The fractional-order scheme is combined with the new
structure nk ±m RC (NG-nk ±m RC) for the first time, FO-
NG-nk±mRC system is described, and the stability criterion
and stability proof of FO-NG-nk ± m RC system are given.
The remainder of this paper is organized as follows: In

Section II, NG-nk±m RC is proposed, whose structural nov-
elty with standard RC structure is introduced and explained.
Section III introduces the approximation method of FD used
in RC controller. Lagrange interpolation FD filter based on
Taylor Series expansion is used to accurately approximate the
FD, and Farrow structure makes it efficient. The comparisons
between Taylor Series expansion-based FD filter and conven-
tional Lagrange interpolation method FIR FD filter are given.
In Section IV, digital FO-NG-nk±m RC is proposed, and the
general design steps for digital FO-NG-nk±m RC are given.
In Section V, an application case for RC-controlled three-
phase PWM inverter, with four RC controllers, i.e. CRC,
6k ± 1 RC, FO-NG-CRC, FO-NG-6k ± 1 RC, is introduced,
and their performances are experimentally compared in the
case of integer-order delay and fractional-order delay. Exper-
imental results show the effectiveness and advantages of the
proposed FO-NG-nk ± m RC control scheme. Section VI
concludes the paper.

II. NEW GENERATION OF nk ± m RC
A. STANDARD RC STRUCTURE & 1ST -GENERATION OF
nk ±m RC
Standard RC structure, i.e. conventional RC (CRC) structure,
is shown in Fig. 1, whose transfer function is as follows:

Grc (z) = krc ·
z−N

1− z−N
(1)

Standard RC structure has many advantages. For example,
it enables RC to easily realize the phase lead compensation
filter with noncausal component.

However, the 1st-generation of nk ± m RC proposed in
[6] shown in Fig. 2 does not conform to the standard RC

VOLUME 8, 2020 180707



W. Wang et al.: Fractional-Order New Generation of nk ±m-Order Harmonic Repetitive Control for PWM Converters

FIGURE 2. 1st-generation of digital nk ±m RC.

FIGURE 3. New generation of nk ±m RC.

structure, whose transfer function is shown as follows:

Gnk±m (z) = krc ·
cos (2πm/n) · z−N/n − z−2N/n

z−2N/n − 2 cos (2πm/n) · z−N/n + 1
(2)

where n, m ∈ N with n > m ≥ 0.
The structure of 1st-generation of nk ± m RC is complex,

including a negative feedforward gain module and a posi-
tive feedforward gain one. Due to its non-standard structure,
the complexity of realizing the lead compensator is also
increased.

Therefore, it is necessary to present a new generation of
nk ± m RC with standard and simplified RC structure.

B. NEW GENERATION OF nk ±m RC
The new generation of nk±m RC (NG-nk±m RC) is shown
in Fig. 3, whose transfer function is exact the same with that
of the 1st-generation of nk ± m RC in (2). So, both nk ± m
RCs can achieve complete tracking/elimination of nk ± m-
order harmonics.

As shown in Fig. 3, three delay elements and a positive
feedforward gain module form a whole, analogous to z−N

in Fig. 1, placed in the forward path. Therefore, NG-nk ± m
RC conforms to the standard RC structure.

Compared with 1st-generation nk ±m RC, the structure of
NG-nk ± m RC is more streamlined and more convenient to
be designed and used, which is only composed of three iden-
tical time delay elements, a RC gain module and a positive
feedforward gain module.

Similar with the 1st-generation nk ± m RC, by assigning
specific values to n andm in Fig 3 and (2), various NG-nk±m
RCs can be obtained. For example, letting n = 1 and m = 0,
NG-CRC (equivalent to CRC) can be achieved; letting n =
4 and m = 1, NG-4k ± 1 RC (equivalent to odd-harmonic
RC, i.e. OHRC [7], [20]) can be achieved; letting n = 6 and
m = 1, NG-6k ± 1 RC can be achieved.
FromFig. 3, the longest delay length in the forward channel

is 2N /n times of the sampling period (<N , when n > 2),
and the total memory cells are (3N /n) (<N , when n > 3).

FIGURE 4. Conventional Lagrange interpolation method FIR FD filter.

Obviously, compared with CRC, the proposed NG-nk ± m
RC occupies less memory space and can offer better transient
response.

III. TAYLOR SERIES EXPANSION-BASED FD FILTER WITH
FARROW STRUCTURE
A. CONVENTIONAL LAGRANGE INTERPOLATION FD
FILTER
The conventional Lagrange interpolation FIR FD filter used
in [17] can be expressed as:

z−p ≈
M∑
l=0

Dlz−l (3)

and

Dl =
M∏
i=0
i6=l

p− i
l − i

, l = 0, 1, 2, . . . ,M (4)

where M is the order of the FD filter and Dl is the Lagrange
interpolation polynomial coefficient.

Fig. 4 shows the structure of conventional Lagrange inter-
polation method FIR FD filter. The conventional Lagrange
interpolation method FD filter requires different number of
multiplications and summations (depending on the orderM )
to update its output. When the desired approximate FD
changes, the whole FD filter needs to be redesigned online,
allM + 1 coefficients needs to be updated using (4), and the
fractional number p needs to participate in the calculation,
which greatly increase the design difficulty and complexity
of the filter, and even affects the stability of the system.

In order to simplify the structure of FD filter and reduce the
computational burden of controller, it is necessary to adopt
an efficient FD filter, i.e. Taylor Series expansion-based FD
filter with Farrow structure.

B. TAYLOR SERIES EXPANSION-BASED FD FILTER AND
ITS DESIGN METHOD
In the implementation of conventional 1st-generation of nk±
m RC [6], the working fundamental frequency is assured to
be constant and the value of N /n in the time delay z−N/n is
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also taken as an integer to make the RC controlled system
work well. If the working frequency fo is varied from the
constant value and thus the actual value of fs/fo/n is non-
integer, a serious degradation of the control performance
will be brought out from a constant integer value of N /n.
Therefore, it is necessary to apply a FD z−p to the time delay
z−N/n, i.e. z−N/n = z−round(N/n) · z−p.

According to the design method of FD filter [21], the FD
z−p can be well approximated by a FD filter with a linear
combination of integer order delays.

Using Taylor Series expansion, the FD an(p) = z−p =
e−jωp, where 0 ≤ p < 1, can be expressed as a polynomial of
p as follows [22]–[24]:

e−jωp =
∞∑
k=0

(−p)k

k!
(jω)k

=

M∑
k=0

(−1)k

k!
(jω)k pk + pM+1

×

 ∞∑
k=M+1

(−p)k

k!
(jω)k pk−(M+1)


=

M∑
k=0

(−1)k

k!
(jω)k pk + O

(
pM+1

)
(5)

where M is the polynomial order, the term O(pM+1)
approaches zero whenM is large. So, we can get:

an (p) = e−jωp =
M∑
k=0

ankpk ≈
M∑
k=0

(−jω)k

k!
(p)k (6)

In [21] and [25], the FD filter has the following standard
form:

Gp (z) =
S∑
n=0

an (p) z−n (7)

where S is the order of the FD filter, an(p) is a polynomial
function of p.

Substituting (6) into (7), FD filterGp(z) with Farrow struc-
ture [25] can be obtained:

Gp (z) =
M∑
k=0

S∑
n=0

ankz−npk =
M∑
k=0

Lk (z)pk (8)

where Lk (z) (k = 0, 1 . . .M ) is the k th sub-filter in
Gp(z), which can be implemented by IIR or FIR fil-
ter [21], [26]–[28], and is included into Gp(z) as shown
in Fig. 5 [23], [29].

From (5)-(8), the inner relationship between Taylor Series
expansionmethod and Farrow structure FDfilter is explained.

The sub-filter Lk (z) (k = 0, 1 . . .M ) with Farrow structure
can be expressed using an S-order polynomial with constant
coefficients, where S ≥ M . To calculate these sub-filters, S is
usually selected to be S = M for convenience. The sub-filter

FIGURE 5. Taylor Series expansion-based FD filter Gp(z) with farrow
structure.

based on Lagrange interpolation can be calculated as follows
[30], [31]:

U =


00 01 02 · · · 0S

10 11 12 · · · 1S

20 21 22 · · · 2S
...

...
...

. . .
...

M0 M1 M2
· · · MS

 (9)

zsub =
[
1 z−1 z−2 . . . z−M

]T (10)

fsub = U−1zsub =
[
L0(z) L1(z) L2(z) . . . LM (z)

]T (11)

where fsub is the sub-filter matrix, zsub is the delay operator
matrix, U is a Vandermonde matrix.

For example, a first-order Farrow structure FD filter can be
expressed as:

Gp (z) =
1∑

k=0

Lk (z)pk = L0 (z)+ L1 (z) p

= 1+
(
z−1 − 1

)
p (12)

and a second-order Farrow structure FD filter as:

Gp (z)=
2∑

k=0

Lk (z)pk = L0 (z)+ L1 (z) p+ L2 (z) p2

= 1+(−1.5+2z−1−0.5z−2)p+(0.5−z−1+0.5z−2)p2

(13)

Fig. 6 shows the magnitude response of a first- and second-
order Taylor Series expansion-based FD filter Gp(z) using
Lagrange interpolation. As can be seen from Fig. 6 that the
filter is capable of FD estimation in the low frequency band
up to nearly 50% (1500 Hz/3000 Hz, shown in Fig. 6(a))
and 63.5% (1904 Hz/3000 Hz, shown in Fig. 6(b)) of the
Nyquist frequency, i.e. 3000 Hz if the sampling frequency
being 6000Hz, for first and second order, respectively. That is
to say, the FD can be effectively approximated using the Tay-
lor Series expansion-based FD filter with Farrow structure.
It is recommended to choose a second-order filter since it is
enough to compromise the complexity and the approximate
accuracy.
In contrast, when two FD filters have the same order,

using Taylor Series expansion-based FD filter with Farrow
structure shown in Fig. 5, only the value of parameter p
needs to be adjusted with different frequency conditions and
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FIGURE 6. The magnitude response of Taylor series expansion-based FD
filter Gp(z): (a) First-order FD filter; (b) Second-order FD filter.

thus different FDs. Each sub-filter Lk (z) can be designed
offline in advance and do not need to be changed nor any
other mathematical calculations, thus greatly reducing the
computational burden of the controller.

IV. FO-NG-nk ± m RC
A. DIGITAL FO-NG-nk ±m RC
The digital FO-NG-nk ± m RC can be obtained with the
Farrow structure FD filter Gp(z) shown in Fig. 5 embedded
in the digital NG-nk ± m RC shown in Fig. 3. With the low-
pass filter Q(z) and phase lead compensation filter Gf (z),
the improved digital FO-NG-nk±m RC can be achieved and
shown in Fig. 7, whose transfer function can be derived as
follows:

GFO−NG−nk±m (z) = krc ·
Gy (z)
Gx (z)

· Gf (z) (14)

where

Gy (z) = cos (2πm/n) · z−[N/n] · Gp (z) · Q (z)

− z−[2N/n] · G2
p (z) · Q

2 (z) (15)

Gx (z) = z−[2N/n] · G2
p (z) · Q

2 (z)+ 1

− 2 cos (2πm/n) · z−[N/n] · Gp (z) · Q (z) (16)

and [N/n] means N/n is rounded down to the nearest integer,
e.g. [5.8] = [5.2] = 5.

From (14), the transfer function of the improved FO-NG-
CRC can be obtained as follows:

GFO−NG−CRC (z) = krc ·
z−[N ] · Gp (z) · Q (z)

1− z−[N ] · Gp (z) · Q (z)
· Gf (z)

(17)

The transfer function of the improved FO-NG-6k ± 1 RC
can be obtained as follows:

GFO−NG−6k±1 (z)

= krc · Gf (z)

·
(1/2) z−[N/6] · Gp (z) · Q (z)− z−[N/3] · G2

p (z) · Q
2 (z)

z−[N/3] · G2
p (z) · Q2 (z)− z−[N/6] · Gp (z) · Q (z)+ 1

(18)

It should be pointed out that the NG-nk ± m RC proposed
in this paper is a special case of FO-NG-nk ± m RC when
p = 0 (Gp(z) = 1).

B. PLUG-IN DIGITAL FO-NG-nk ±m RC SYSTEM
The FO-NG-nk ± m RC proposed in this paper is usu-
ally plugged into the closed-loop control system as shown
in Fig. 8.

Fig. 8 shows a typical closed-loop control system
with a plug-in FO-NG-nk ± m RC controller, where
GFO−NG−nk±m(z) is a complete improved digital FO-NG-
nk ± m RC controller shown in Fig. 7; GP(z) is the plant;
Gc(z) is the conventional feedback controller; yref (z) is the
reference input; y(z) is the output; e(z) = yref (z)− y(z) is the
tracking error; c(z) is the output of GFO−NG−nk±m(z); u(z) is
the output of Gc(z) and d(z) is the disturbance.
The actual output of the digital FO-NG-nk±m RC system

shown in Fig. 8 can be derived into:

y (z) = G (z) yref (z)+ Gd (z) d (z)

=
[1+ GFO−NG−nk±m (z)] · H (z)
1+ GFO−NG−nk±m (z) · H (z)

yref (z)

+
[1+ GcGP]−1

1+ GFO−NG−nk±m (z) · H (z)
d (z) (19)

whereH (z) is the conventional feedback control systemwith-
out FO-NG-nk ±m RC controller GFO−NG−nk±m(z) plugged
into and

H (z) =
Gc (z)GP (z)

1+ Gc (z)GP (z)
(20)

The error transfer function of the digital FO-NG-nk ± m
RC system can be derived into:

T (z) =
e (z)

yref (z)− d (z)

=
[1+ GcGP]−1

1+ GFO−NG−nk±m (z) · H (z)
(21)
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FIGURE 7. Improved digital FO-NG-nk ±m RC.

FIGURE 8. Plug-in digital FO-NG-nk ±m RC system.

From (19)-(21), two stability criteria of the plug-in digital
FO-NG-nk ± m RC system shown in Fig. 8 can be obtained:

1) The poles of H (z) are inside the unit circle.
2) RC gain krc (krc > 0) meets the following constraint

(See appendix for proof):

0 < krc <
2 cos

(
θfH (ω)

)
1+ ε

(22)

where cos(θfH (ω)) is the phase angle of Gf (z)H (z) and ε
denotes the uncertainty due to model uncertainties of the
control plant GP(z) with ε > 0.
Therefore, two stability criteria for the plug-in digital FO-

NG-nk ± m RC system is obtained.

C. GENERAL DESIGN STEPS FOR DIGITAL
FO-NG-nk ±m RC
Using the general design steps of standard RC structure, it is
very easy and convenient to design FO-NG-nk ± m RC,
usually consisting of three parts: Low pass filter Q(z), phase
lead compensation filter Gf (z), and the selection of repetitive
control gain krc.

1) LOW PASS FILTER Q(z)
In practice, it is usually necessary to add a low-pass filterQ(z)
and a phase lead compensator Gf (z) [32]–[35] on the basis of
a digital RC controller to improve the stability and robustness
of the controller. The design objective ofQ(z) is to makeQ(z)
satisfies |Q(z)| → 1 at low frequency band and |Q(z)| → 0
at high frequency band. The low-pass filter Q(z) is usually

selected as a zero-phase low-pass filter:

Q (z) =

[
m∑
i=0

αizi +
m∑
i=1

αiz−i
]/[

2
m∑
i=1

αi+α0

]
(23)

where α0 + 2
m∑
i=1
αi = 1, and αi > 0.

In practical use, the first-order filter is sufficient, and Q(z)
can be selected as:

Q (z) = α1z+ α0 + α1z−1 (24)

where 2α1 + α0 = 1, α0 ≥ 0 and α1 ≥ 0.

2) PHASE LEAD COMPENSATION FILTER Gf (z)
First, H (z) can be described by

H (z) =
B (z)
A (z)

=
z−cB+ (z)B− (z)

A (z)
(25)

where c presents known delay steps with c ∈ [0,N /n], all
characteristic roots of A(z) = 0 are inside the unit circle,
B+(z) and B−(z) are the cancelable and un-cancelable parts of
B(z), respectively [36]. B−(z) comprises roots on or outside
the unit circle and undesirable roots which are in the unit
circle, and B+(z) comprises of roots of B(z) which are not
in B−(z).

The lead compensation filter Gf (z) can be chosen as [38]:

Gf (z) =
zcA (z)B−

(
z−1

)
B+ (z) b

(26)

where b ≥ max |B−(ejω)|2.
Therefore, the product ofGf (z) andH (z) can be written as:

GfH (z) = Gf (z)H (z) =
B−

(
z−1

)
B− (z)

b
(27)

In practical application, there are usually many uncertain
factors leading to system delay, and only theGf (z) determined
by actual situation can optimize the performance of RC.
Finally, the best Gf (z) needs to be selected through experi-
mental debugging.
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FIGURE 9. The implementation of phase lead compensation filter Gf (z): (a) Conventional FO-nk ±m RC;
(b) FO-NG-nk ±m RC.

Fig. 9 shows the specific method to implement the phase
lead compensation filter Gf (z) of conventional FO-nk ± m
RC (Fig. 9 (a)) and FO-NG-nk ± m RC (Fig. 9 (b)). The
implementation of Gf (z) in FO-NG-nk ± m RC is easier and
more convenient than conventional FO-nk ± m RC (com-
posed of 1st-generation of nk ± m RC and Lagrange inter-
polation method FD filter). As shown in Fig. 9 (a) and (b),
compared with conventional FO-nk±m RC, FO-NG-nk ±m
RC only needs to realize the lead step zc after one time
delay, which greatly simplifies the implementation com-
plexity of Gf (z) and is hard to make mistakes in actual
application.

3) RC GAIN krc

The selection of repetitive control gain krc should meet the
stability condition of the system, i.e. the stability criteria 2),
and finally determined by actual requirements.

V. APPLICATION CASE: FO-NG-nk ± m RC-CONTROLLED
3-PHASE PWM INVERTER
In order to verify the effectiveness and advantages of the
proposed FO-NG-nk ± m RC, an application case of RC-
controlled three-phase PWM inverter is carried out, in which
system performances are compared between CRC, 6k ± 1
RC, and proposed FO-NG-CRC, FO-NG-6k±1 RC in terms
of error convergence rate, steady-state performance, load
change, and sudden frequency variation. All experiments are
based on the new structure of nk±mRC (i.e. NG-nk±mRC).

A. SYSTEM MODELING AND STATE FEEDBACK
CONTROLLER
Fig. 10 shows a three-phase voltage-source PWM inverter
system, where E is the DC bus voltage; L and C are

FIGURE 10. RC-controlled three-phase PWM inverter.

inductor–capacitor filter; R is the linear load; and Cr , Lr , and
Rr are capacitor, inductor, and resistor in the rectifier load,
respectively.

The discrete-time state space equation of the three-phase
inverter system in Fig.10 can be written as [37]:(
x1 (k + 1)
x2 (k + 1)

)
=

(
ϕ11 ϕ12
ϕ21 ϕ22

)(
x1 (k)
x2 (k)

)
+

(
g1
g2

)
u (k) (28)

where x1 = vα or vβ , x2 = iα or iβ , u = uα or uβ , and ϕ11 =
1 − Ts/(RC) + T 2

s /(2R
2C2) − T 2

s /(6LC), ϕ12 = Ts/(3C) −
T 2
s /(6RC

2), ϕ21 = −Ts/L+T 2
s /(2RLC), ϕ22 = 1−T 2

s /(6LC),
g1 = ET 2

s /(6LC), g2 = ET s/L.
The state feedback controller (SFC) [6] has the form as:

u = −(k1x1 + k2x2)+ hyref (29)
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TABLE 1. System parameters.

where k1, k2, and h are controller parameters; yref is the
reference sinusoidal voltage. With SFC controller, the state
equation of the closed-loop system can be derived into:(
x1 (k + 1)
x2 (k + 1)

)
=

(
ϕ11 − g1k1 ϕ12 − g1k2
ϕ21 − g2k1 ϕ22 − g2k2

)(
x1 (k)
x2 (k)

)
+

(
g1h
g2h

)
yref (k) (30)

The closed-loop system transfer function from yref to y can
be written as:

H (z) =
m1z+ m2

z2 + p1z+ p2
(31)

where p1 = −[(ϕ11 − g1k1)+ (ϕ22 − g2k2)], p2 = −[(ϕ12 −
g1k2) (ϕ21 − g2k1)− (ϕ22 − g2k2) (ϕ11 − g1k1)], m1 = g1h,
m2 = (ϕ12 − g1k2) g2h− (ϕ22 − g2k2)g1h.
The poles of the closed-loop system (31) can be arbitrarily

configured by adjusting the SFC gains k1 and k2.

B. EXPERIMENTAL SETUP
An experimental setup of dSPACE 1103-controlled three-
phase PWM IGBT inverter system is established. System
parameters are shown in TABLE 1.

The following SFC controllers are selected:

u = −(1.5606x1 + 1.775x2)+ 2.322yref (32)

For a typical three-phase power electronic system, 6k± 1-
order harmonics are dominant. Therefore, the values of n and
m are assigned with n = 6 and m = 1.
To test the control performance under varied frequency

and FD condition of RC controllers, reference fundamental
frequency is varied from 50 Hz in this paper, andQ(z) = 0.5z
+ 0.25 + 0.5z−1 is selected.

The magnitude response of Q(z) is shown in Fig. 11. It can
be seen from Fig. 11 that the cutoff frequency of Q(z) is

FIGURE 11. Magnitude response of LPF Q(z).

1090 Hz ≈ 1100 Hz, which satisfies the design requirement
of Q(z). The phase lead compensation filter Gf (z) = z8 and
krc = 0.3 are selected by experiments.

C. EXPERIMENTAL RESULTS
Fig.12 (a) and (b) show the steady-state response and error
convergence rate of CRC and 6k ± 1 RC with reference
frequency being 50 Hz under integer delay condition. CRC
and 6k ± 1 RC are plugged into the SFC controlled three-
phase inverter system at t = 5.375 s and t = 5.677 s,
respectively. It should be point out that when the reference
frequency is 50 Hz, N = 120 for CRC and N /6 = 20 for
6k ± 1 RC, which is the special case of FO-NG-nk ± m RC
when p = 0. Detailed performance comparisons are listed
in Table 2.

From Fig. 12 and Table 2, we can get that THDs of output
voltage vab of CRC and 6k ± 1 RC are 1.77% and 1.88%,
respectively; output voltages’ RMS tracking errors of CRC
and 6k ± 1 RC are 2.30 V and 2.60 V, respectively. It shows
that both CRC and 6k ± 1 RC have very good steady-state
tracking accuracy under integer delay condition. Moreover,
from Fig. 12, we can get that the error convergence times
of CRC and 6k ± 1 RC are 0.73 s and 0.25 s, respectively.
The error convergence time of 6k ± 1 RC is nearly one third
of that of CRC. It shows that 6k ± 1 RC has three-time
faster error convergence rate than CRC under integer delay
condition.

Fig. 13 (a) and (b) show the magnitude response of four
controllers with 46Hz fundamental (reference) frequency and
the details of their 5th harmonic frequency, respectively.

As can be seen from Fig. 13 (a), when FD N or N /n occurs,
the actual frequency of RC deviates from the ideal frequency.
The deviation will increase along with the increase of fre-
quency, which means that the performance of the controller
will be seriously affected. Therefore, it is necessary to adopt
FO scheme to solve the FD problem.

The 6k ± 1-order harmonics are the dominant harmonics
in the three-phase system. Taking the 5th harmonic frequency
(230 Hz) of 46 Hz as an example, Fig. 13 (b) shows the details
at 5th harmonic frequency. From Fig. 13 (b), we can see that
when the fundamental frequency is 46 Hz, the gain of CRC
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FIGURE 12. Steady-state response and error convergence rate comparison with different plug-in RCs with 50 Hz reference frequency under
rectifier load: (a) CRC (N = 120, p = 0); (b) 6k ± 1 RC (N/6 = 20, p = 0).

TABLE 2. Performance comparisons.

and 6k ± 1 RC at 5th harmonic frequency are 72.3 dB and
18.5 dB, respectively. It also shows that 6k ± 1 RC is more
sensitive to FD than CRC, so it is necessary to adopt FO
scheme. As shown in Fig. 13 (b), with the FO scheme, FO-
NG-CRC and FO-NG-6k ± 1 RC can compensate the gain at
5th harmonic frequency to 119 dB and 129 dB, respectively.
Obviously, FO-NG-nk±mRCwill have a better performance
than the non-FO one.

Fig. 14 (a) and (b) show the steady-state response and error
convergence rate of CRC and FO-NG-CRC with reference
frequency being 46 Hz under non-integer delay condition.
Under such condition,N = fs/fo = 130.4. Thus,N = 130 has
to be taken for CRC. And [N ]+ p = 130 + 0.4 = 130.4 for
FO-NG-CRC, where [N ] is an integer, and the fractional part
p is approximated by a second-order FD filter with Farrow

structure using (13) shown as follows:

z−N = z−[N ]
· z−p = z−130 ·

2∑
k=0

Lk (z) (0.4)k

= z−130 ·
[
1+ (−1.5+ 2z−1 − 0.5z−2) (0.4)

+ (0.5− z−1 + 0.5z−2) (0.4)2
]

(33)

From Fig. 14 and Table 2, we can get that THDs of out-
put voltage vab of CRC and FO-NG-CRC are 3.19% and
1.90%, respectively; output voltages’ RMS tracking errors
of CRC and FO-NG-CRC are 7.57 V and 2.25 V, respec-
tively. It shows that FO-NG-CRC has much better steady-
state tracking accuracy than CRC under non-integer delay
condition. Moreover, from Fig. 14, we can get that the error
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FIGURE 13. Magnitude response of the four controllers and their 5th harmonic frequency with 46 Hz fundamental frequency: (a) CRC (N = 130)
and FO-NG-CRC (N = 130.4); (b) 6k ± 1 RC (N/6 = 22) and FO-NG-6k ± 1 RC (N/6 = 21.7).

convergence times of CRC and FO-NG-CRC are both about
0.65 s. It shows that both CRC and FO-NG-CRC have the
same error convergence rate.

Fig. 15 (a) and (b) show the steady-state response and
error convergence rate of 6k ± 1 RC and the proposed FO-
NG-6k ± 1 RC with reference frequency being 46 Hz under
non-integer delay condition. Under such condition, N/6 =
fs/fo/6 = 21.7. Thus, N /6 = 22, the nearest integer, has to be
taken for 6k ± 1 RC. And [N /6] + p = 21 + 0.7 = 21.7 for
FO-NG-6k ± 1 RC, where [N /6] is an integer, the fractional
part p is approximated by the second-order FD filter with
Farrow structure using (13) shown as follows:

z−
N
6 = z

−

[
N
6

]
· z−p = z−21 ·

2∑
k=0

Lk (z) (0.7)k

= z−21 ·
[
1+ (−1.5+ 2z−1 − 0.5z−2) (0.7)

+ (0.5− z−1 + 0.5z−2) (0.7)2
]

(34)

Similarly, from Fig. 15 and Table 2, we can get that THDs
of output voltage vab of 6k ± 1 RC and FO-NG-6k ± 1 RC
are 5.28% and 2.37%, respectively; output voltages’ RMS
tracking errors of 6k±1 RC and FO-NG-6k±1 RC are 9.10 V
and 2.80 V, respectively. It shows that FO-NG-6k±1 RC has

much better steady-state tracking accuracy than 6k ± 1 RC
under non-integer delay condition. Moreover, from Fig. 15,
we can get that the error convergence times of 6k ± 1 RC
and FO-NG-6k ± 1 RC are both about 0.23 s. It shows that
both 6k ± 1 RC and FO-NG-6k ± 1 RC have the same error
convergence rate.

It should be noted that the steady-state tracking accuracy
of 6k ± 1 RC/FO-NG-6k ± 1 RC is slightly lower than that
of CRC/FO-NG-CRC. That is because 6k ± 1 RC/FO-NG-
6k ± 1 RC only tracks/eliminates the dominant 6k ± 1-order
harmonics in the three-phase system, but greatly improves
the error convergence rate. Therefore, 6k ± 1 RC/FO-NG-
6k ± 1 RC can achieve a good compromise between tracking
accuracy and dynamic response rate.

Fig. 16 and 17 show the transient performance of FO-NG-
CRC and FO-NG-6k± 1 RC with 46 Hz reference frequency
under load changes from no load to resistor load and from
resistor load to no load, respectively. From Fig. 16, we can see
that FO-NG-CRC-controlled output voltages recover from
the sudden load changes within twelve cycles, i.e. 0.24 s,
while from Fig. 17, FO-NG-6k ± 1 RC-controlled output
voltages recover within four cycles, i.e. 0.08 s, which is
one third of that of FO-NG-CRC. It shows that FO-NG-
6k ± 1 RC has three-time faster voltage recovering rate than
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FIGURE 14. Steady-state response and error convergence rate comparison with different plug-in RCs with 46 Hz reference frequency under rectifier
load: (a) CRC (N = 130); (b) FO-NG-CRC (N = 130, p = 0.4).

FO-NG-CRC from the step load change under FD condi-
tion. Moreover, both FO-NG-CRC and FO-NG-6k ± 1 RC
have a good tracking performance after recovering from
the sudden load changes. Therefore, FO-NG-RCs also has
excellent adaptability for step load change under fractional
order delay.

Fig.18 (a) and (b) show the transient responses of sudden
frequency change of 6k±1 RC and proposed FO-NG-6k±1
RC under rectifier load when the reference frequencies are
changed from 50 Hz to 60 Hz, i.e. N /6 changed from 20 to
16.7, at t = 10.32 s and t = 10.48 s, respectively. From
Fig.18 (a), we can get that the THD of 6k ± 1 RC is changed
from 1.88% to 2.71% and its RMS error of output voltage vab
changes from 2.60 V to 11.41 V. From Fig.18 (b), we can get
that the THD of FO-NG-6k ± 1 RC is changed from 1.88%
to 2.23% and its RMS error of output voltage vab changes
from 2.60 V to 2.89 V. Both recovering times of frequency
changes of 6k ± 1 RC and FO-NG-6k ± 1 RC are 0.2 s.
It shows FO-NG-6k±1 RC can achieve much higher tracking
accuracy when frequency is changed, compared with 6k ± 1
RC, and excellent performance of frequency adaptive even
the frequency fluctuation being up to 10 Hz. It should be
noted that it needs to update FO-NG-6k±1 RC’s coefficients
online to achieve the good tracking performance with FD.

TABLE 3. Computational burden comparisons.

Moreover, the proposed FO-NG-6k ± 1 RC is capable of
quickly updating coefficients online.

Table 2 lists the experimental results. The data in Table 2
clearly indicate that FO-NG-nk ± m RCs-controlled inverter
can accurately track the reference signal with fractional delay
under rectifier load, and has a fast dynamic response in
specific applications.

In order to show the computational burden of various
control schemes for the hardware controller more clearly,
the turnaround time in DSP of the seven control algorithms
mentioned in this paper are compared (Table 3) and the
performance indicators are summarized (Table 4).
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FIGURE 15. Steady-state response and error convergence rate comparison with different plug-in RCs with 46 Hz reference frequency under
rectifier load: (a) 6k ± 1 RC (N/6 = 22); (b) FO-NG-6k ± 1 RC (N/6 = 21, p = 0.7).

FIGURE 16. Transient performance of FO-NG-CRC with 46 Hz reference frequency under load change: (a) from no load to resistor load; (b) from
resistor load to no load.

Table 3 shows the turnaround time of different controllers.
As can be seen from Table 3, in the case of integer delay,
the value of turnaround time of CRC (18.2 µs) is larger than
that of conventional 6k ± 1 RC (14.5 µs)/NG-6k ± 1 RC
(14.2 µs). That is because the number of delay units used in
CRC is larger than that of conventional 6k ± 1 RC and NG-
6k ± 1 RC. Moreover, NG-6k ± 1 RC, which has a simpler
structure and a new phase lead compensation implementation

method, can reduce the memory occupation of the controller
to a certain extent.

In the case of fractional delay, the fractional delay filter
used in conventional FO-nk ± m RC needs to update its
M+ 1 coefficients, which increases the computational burden
of the controller and occupies more digital resources (22.5 µs
and 17.1 µs for conventional FO-CRC and conventional
FO-6k ± 1 RC, respectively).
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FIGURE 17. Transient performance of FO-NG-6k ± 1 RC with 46 Hz reference frequency under load change: (a) from no load to resistor load;
(b) from resistor load to no load.

FIGURE 18. Sudden frequency change of different plug-in RCs under rectifier load: 50 Hz→ 60 Hz. (a) 6k ± 1 RC; (b) FO-NG-6k ± 1 RC.

The control scheme proposed in this paper with Farrow
structure fractional delay filter only needs to update one
coefficient, i.e. p, which greatly reduces the computational
burden of the controller (20.3 µs and 16.0 µs for FO-NG-
CRC and FO-NG-6k ± 1 RC, respectively), and is a low-cost
control scheme. The value of turnaround time of conventional
FO-CRC/FO-NG-CRC is larger than that of conventional
FO-6k±1 RC /FO-NG-6k±1 RC is also caused by the large
number of delay units.

From Table 3, the NG-nk ± m RC/FO-NG-nk ± m RC
proposed in this paper occupies fewer digital resources than
conventional nk ± m RC/FO-nk ± m RC, which is a more
efficient structure.

Table 4 summarizes the control schemes mentioned in
the paper. In Table 4, more ‘‘+’’ means that the con-
troller occupies more memory space, has higher tracking
accuracy, faster error convergence speed or more complex
implementation.
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TABLE 4. Summary of different control schemes.

As can be seen from Table 4, the FO-NG-nk ± m RC
proposed in this paper has high tracking accuracy, fast error
convergence speed, low memory occupation, and low com-
plexity, which is a cost-effective control scheme and can be
fully implemented in microcontrollers.

VI. CONCLUSION
In this paper, a fractional-order new generation of nk ± m-
order harmonic repetitive controller (FO-NG-nk±m RC) for
PWM converters is proposed. FO-NG-nk ± m RC is com-
posed of NG-nk ± m RC and Taylor Series expansion-based
FDfilter with Farrow structure. NG-nk±mRC overcomes the
structural defects of conventional nk±m RC (1st- generation
of nk ±m RC). The structure of NG-nk ±m RC is simplified
and conforms to the standard RC structure, making it easier
and more convenient to be designed and used in practical
application. Farrow structure FD filter can approximate FD
z−p (0 ≤ p < 1) using Lagrange interpolation with high
accuracy and is easy to be designed and used. The inner
relationship between Taylor Series expansion method and
Farrow structure FD filter is explained, and detailed math-
ematical derivation is provided. Different FD approximation
algorithms are compared for the first time from the perspec-
tive of controller computational burden.

The proposed FO-NG-nk ± m RC can improve the fre-
quency adaptive ability of the nk ± m RC controller and
increases its usage range. Moreover, FO-NG-nk ± m RC
provides a general RC structure for various integer/fractional-
order RCs. The effectiveness and advantages of NG-nk ± m
RC and FO-NG-nk±mRC are verified from the experimental
results of NG-RCs- and FO-NG-RCs-controlled three-phase
PWM inverter.

Furthermore, the FO-NG-nk ± m RC proposed in this
paper can also be applied to grid-connected inverter/rectifier
systems and active power filters to solve non-integer delay
problems.

APPENDIX
First, H (z) can be expressed by (25), the lead compensation
filter Gf (z) can be expressed by (26).

In practice, due to model uncertainties and load variations,
it is impossible to obtain the exact transfer functionH (z). The
practical transfer function of Gf (z)H (z) can be written as:

GfH (z) = Gf (z)H (z)

=
B−

(
z−1

)
B− (z)

b
(1+3(z))

=

∣∣∣GfH (ejω)∣∣∣ 6 θfH (ω)
=

∣∣∣GfH (ejω)∣∣∣ ejθfH (ω) (35)

where1(z) denotes the uncertainties assumed to be bounded
by |1(ejω)| ≤ ε with ε being a positive constant, and 1(z) is
stable.

From (20), since H (z) is assumed to be asymptotically
stable, the poles of (1+Gc(z)Gp(z))−1 are then located inside
the unit circle. Therefore, from (19), if all the poles of
(1+GFO−NG−nk±m(z)H (z))−1 are also located inside the unit
circle, the overall closed-loop FO-NG-nk ± m RC system
shown in Fig. 8 will be asymptotically stable.

The denominator of (1 +GFO−NG−nk±m(z)H (z))−1 can be
written as:

z2[N/n] +
(
1− krc · GfH (z)

)
· G2

p (z) · Q
2 (z)

+
(
krc · GfH (z)− 2

)
· Gp (z) · Q (z) · cos (2πm/n) · z[N/n]

(36)

which can be factorized as:(
z[N/n] − αeβj

) (
z[N/n] − αe−βj

)
(37)

where

α = ±
(
1− krc · GfH (z)

)1/2
· Gp (z) · Q (z)

β = ±

(
krc · GfH (z)− 2

)
2
(
1− krc · GfH (z)

)1/2 · cos (2πm/n)
Therefore, the poles of (1 + GFO−NG−nk±m(z)H (z))−1 are

located inside the unit circle if |α| < 1, i.e.:

|α| =
∣∣Q (z) · Gp (z)∣∣ · ∣∣∣(1− krc · GfH (z))1/2∣∣∣ < 1 (38)

And then∣∣∣Q (ejω) · Gp (ejω)∣∣∣4 · ∣∣∣(1− krc · ∣∣∣GfH (ejω)∣∣∣ ejθfH(ω))∣∣∣2<1

(39)

Gp(z) is the FD filter, assuming that the bandwidth of the
FD filter is larger than the bandwidth of the low-pass filter
Q(z) in practical applications, due to Q(z) → 1, Gp(z) → 1,

then |Q(ejω)||
M∑
k=0

Lk (z)pk | → 1, thus from (39), if

1−2krc
∣∣∣GfH (ejω)∣∣∣ cos (θfH (ω))+k2rc ∣∣∣GfH (ejω)∣∣∣2<1 (40)

holds, the poles of (1+GFO−NG−nk±m(z)H (z))−1 are located
inside the unit circle.
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Since

b ≥ max
(∣∣∣B− (ejω)∣∣∣2) = max

(
B−

(
ejω
)
B−

(
e−jω

))
>0

(41)

from (35), we have∣∣∣GfH (ejω)∣∣∣=
∣∣∣∣∣B−

(
ejω
)
B−

(
e−jω

)
b

(
1+1

(
ejω
))∣∣∣∣∣ ≤ 1+ε

(42)

Therefore, from (39) and (42), we can obtain that, if

2pπ −
π

2
< θfH (ω) < 2pπ +

π

2
, p = 0, 1, 2, . . .

then

0 < krc <
2 cos

(
θfH (ω)

)
1+ ε

(43)

which will enable the closed-loop FO-NG-nk±m RC system
shown in Fig. 8 to be asymptotically stable; if

2pπ +
π

2
< θfH (ω) < 2pπ +

3π
2
, p = 0, 1, 2, . . .

then

2 cos
(
θfH (ω)

)
1+ ε

< krc < 0 (44)

which will enable the closed-loop FO-NG-nk±m RC system
to be asymptotically stable.
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