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ABSTRACT This paper proposes a strategy for visual perception in the context of autonomous driving.
Humans, when not distracted or drunk, are still the best drivers you can currently find. For this reason,
we take inspiration from two theoretical ideas about the human mind and its neural organization. The first
idea concerns how the brain uses structures of neuron ensembles that expand and compress information to
extract abstract concepts from visual experience and code them into compact representations. The second
idea suggests that these neural perceptual representations are not neutral but functional to predicting the
future state of affairs in the environment. Similarly, the prediction mechanism is not neutral but oriented to
the planning of future action. We identify within the deep learning framework two artificial counterparts
of the aforementioned neurocognitive theories. We find a correspondence between the first theoretical
idea and the architecture of convolutional autoencoders, while we translate the second theory into a
training procedure that learns compact representations which are not neutral but oriented to driving tasks,
from two distinct perspectives. From a static perspective, we force separate groups of neural units in the
compact representations to represent specific concepts crucial to the driving task distinctly. From a dynamic
perspective, we bias the compact representations to predict how the current road scenario will change in the
future. We successfully learn compact representations that use as few as 16 neural units for each of the two
basic driving concepts we consider: cars and 1anes. We maintain the two concepts separated in the latent
space to facilitate the interpretation and manipulation of the perceptual representations. The source code for
this paper is available at https://github.com/3lis/rnn_vae.

INDEX TERMS Autonomous driving, convergence-divergence zones, deep learning, predictive brain,

variational autoencoder.

I. INTRODUCTION

Road traffic injuries are the leading cause of death for the
age group between 5 and 29 years [1]. The World Health
Organization reported that in 2018 the number of road traffic
deaths was 16 times larger than in war conflicts from that
same year [1]. This suggests that mitigation of motor vehicle
accidents will probably be one of the most beneficial out-
comes expected from artificial intelligence and automation
[2]. In fact, in the US only 2% of vehicle crashes are due
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to technical failures; the rest is attributable to the human
drivers. Among the major causes of accidents are inattention,
fast or reckless driving, illegal maneuvers, the influence of
alcohol or drugs, and tiredness [3].

Self-driving cars will be immune to all the risky fac-
tors depending on human drivers. The development of fully
autonomous vehicles has always been considered a coveted
achievement for modern society. The research on this field
has a long history that dates back to the late 70s [4], but
it became a reality — at an unusually fast pace — no longer
than a decade ago [5]. While most of the components of
a self-driving system (such as sensors) have improved at
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FIGURE 1. The idea behind our approach. (a) A first model learns to
represent visual scenarios into compact vectors that are at once
semantically organized and temporally coherent. By exploiting semantic
segmentation as a supporting task, the model forces separate groups of
neurons to distinctly represent the basic concepts of cars and lanes,
while self-supervision is adopted to bias the internal representation
towards the ability to predict the dynamics of objects in the scene. (b)
A second neural network uses the compact representations to perform
imagery and predict long-term future frames.

the typical rate of technological progress without any spe-
cific crucial innovations, the impressive advances have been
mainly fueled by the emerging “deep” versions of artificial
neural networks [6]-[8].

Since the early beginnings, the greatest challenge for
autonomous driving systems has been the perception and
understanding of the road environment. This is precisely one
of the successful fields of application of deep neural models
[9]-[11], which have quickly become the method of choice
for driving scene perception [12]-[15]. However, despite the
impressive progress, perception remains the major obstacle
towards fully autonomous vehicles. The core of this issue
can be identified in the narrow conception of “‘perception”
usually assumed in autonomous driving, which lacks a funda-
mental aspect: to gather knowledge about objects and events
in the environment oriented to plan future actions [16], [17].
Hence, perception is not a mere elucidation of objects in the
world but the detection of action possibilities.

In this respect, it might be useful to reflect on how humans
are able to drive. When not distracted, asleep, or deliberately
engaged in dangerous maneuvering, humans are excellent at
driving, as at many other complex and highly specialized
sensorimotor behaviors. How the human brain realizes such
sensorimotor behaviors is far from being fully understood,
but a few general neurocognitive theories try to shed light on
this. We believe it is useful to borrow in particular two theo-
retical ideas to design the perception strategy of autonomous
vehicles.
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The first neurocognitive theory we take inspiration from
concerns how sensory information is coded into low-
dimensional representations in the brain. These perceptual
representations can capture aspects related to the actions
that caused the perceptual stimulus. Because of the sensorial
information saved in the representations, the brain can recre-
ate the original stimulus in an approximated form, during a
phenomenon called mental imagery [18], [19]. One of the
first pieces of evidence of these internal representations was
found in the work of Damasio [20], who identified neuron
ensembles exhibiting a convergent structure, where neural
signals are projected onto multiple cortical regions in a many-
to-one fashion. Damasio later developed a broader theory [21]
identifying more sophisticated neural structures he called
convergence-divergence zones (CDZs). In this case, the very
same neuron ensembles can perform both convergent and
divergent projections, depending on the current action the
brain is engaged with: the convergent flow is dominant dur-
ing perceptual recognition, while the divergent flow occurs
during mental imagery. For this reason, CDZs have been rec-
ognized as a crucial component in the formation of concepts
in the brain [22]. Therefore, we believe it useful to design
an artificial model with a similar hierarchical architecture for
learning the abstract concepts relevant to the driving context.

The second theoretical idea concerns the nature of the
neural representations in the brain. In most cases, neural
representations are not abstract representations of the envi-
ronment but neural states functional to predicting the state
of affairs in the future environment. The ability to predict
appears to be the primary goal of intelligence [23], [24].
There is evidence for the existence in the brain of various
circuits that provide prediction from perceptual representa-
tions. In particular, two forms of prediction — procedural and
declarative — are typically acknowledged in different brain
structures [25]. However, one of the most popular theories
in the field interprets the mental mechanism of prediction in
mathematical terms [26], [27]. This theory, called predictive
brain, explains the behavior of the brain as the minimization
of free-energy, a quantity that can be expressed in mathemat-
ical form. We will show how this formulation can be adopted
as a loss function to train our model.

Our work aims to learn conceptual representations of the
driving scenario from visual information. We intend to learn
compact and informative representations that can be useful
for a variety of downstream driving tasks, primarily the tasks
requiring predictive capabilities. We propose a cognitive-
inspired approach that forces the representations to be ori-
ented to the driving tasks, under two distinct perspectives.

1) From a static perspective, we force separate groups
of neural units to encode specific concepts crucial in
the driving task distinctly. Specifically, we use as few
as 16 neurons for each of the two basic concepts we
adopt: cars and 1anes. The latent space is explicitly
partitioned in regions that encode different concepts so
that they can be manipulated individually.
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2) From a dynamic perspective, we bias the compact
representations to predict how the current road scene
would change in the future. Albeit this work does
not fully develop visual mental imagery, it constitutes
progress from mere perception to the creation of manip-
ulable concepts that may increase the cognition abilities
of intelligent vehicles, such as action-selection based
on online imagery or developing improved sensorimo-
tor abilities based on episodic simulation.

We achieve the conceptual representations by implement-
ing an artificial neural model in line with the two afore-
mentioned neurocognitive theories. We would like to note
the term ‘“‘neural” in artificial neural models by no means
implies a faithful replication of the computations performed
by biological neurons. On the contrary, the mathematics of
deep learning shares little resemblance with the way the
brain works [28], [29]. However, we identify two methods
within the framework of artificial neural networks (ANNs)
that appear, at least in part, rough algorithmic counterparts
of the neurocognitive theories described above. Specifically,
the CDZs may find a correspondence in the idea of convo-
lutional autoencoders [30], while the predictive brain theory
resonates with the adoption of Bayesian variational inference
in combination with autoencoders [31], [32].

This work is part of the H2020 project Dreams4Cars, !
aimed at developing an artificial driving agent inspired by
the neurocognition of human driving [33]. In the following
section, we further describe the objective of our work in more
detail, and we discuss in §III the most significant related
works. In §IV, we describe the implementation of 4 different
neural models that successfully learn informative and com-
pact representations. Lastly, Section §V presents the results
of our models on the SYNTHIA dataset.

Il. WHAT THIS PAPER IS (AND IS NOT) ABOUT

In the next section, we will review other works in the domain
of autonomous driving that share objectives or methods with
our proposal. Before that, we consider it useful to frame
our proposal within the broader context of computer vision,
trying to clarify similarities and differences between our
approach and other relevant works in the domain of computer
vision.

When looking at the results produced here, for example
Fig. 7 and 9, it may seem that the outcome of our model is
essentially image segmentation. Image segmentation is the
process of partitioning of an image into meaningful subsets,
and it has been one of the popular tasks in classical image
processing [34]-[36] and continues to be a major topic in the
era of deep learning for computer vision [37]-[40]. However,
image segmentation has limited relevance to our work. Even
if the outputs of the networks here presented indeed include
the segmentation of cars and lanes, this is not the objective of
the model.

1 www.dreams4cars.eu
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Our model aims at learning representations of the driving
scenario that can be exploited for imagination in the driv-
ing context. We want these representations to be, first of
all, meaningful. The representations must bear a semantic
explanation, i.e., parts of the latent space are associated with
concepts useful in the context of driving — cars and lanes
in this case, but the work is open to further extensions such
aspedestrians or bikes. The model learns these mean-
ingful representations by exploiting semantic segmentation
as a supporting task, as we will show in §IV-B, using a
multi-decoder network which forces the partitioning of the
internal representations into distinct concepts. In this context,
segmentation can be therefore considered a practical way to
achieve the separation of the semantic concepts in the latent
space. Albeit this idea of partitioning the latent space may
look as an expedient, we think however that it may be related
to the notion of topographic organization largely present in
the brain, where similar concepts are encoded in close groups
of neurons [41]-[43].

Besides having a semantic organization, the representa-
tions learned by our model have a second important feature:
they can be exploited for imagery, much like the brain’s
CDZs do, as described in §I. In this context, imagery is
essentially constructing a static scene with attention to the
conceptual entities considered — cars and lanes in our
case. This process can result from a latent representation of a
scenario seen before, or it can be triggered by a prediction of
a future scenario based on past ones. It can also results from
manipulating a latent space, generating scenarios the model
has never seen before. In conclusion, now it is evident how
semantic segmentation is just a byproduct of our entire model
and not its primary focus.

Having clarified the role of segmentation in our work,
we want to discuss the connection with another impor-
tant machine learning domain called self-supervision. Unlike
unsupervised learning, self-supervision is not motivated by
biological plausibility; it is instead a way around the ever-
present issue of manual data labeling in large datasets of
images [44], [45]. Usually, self-supervision is realized by
designing pretext tasks without any particular relevance for
the agent but useful for the automatic generation of pseudo-
labels. While learning to solve the pretext tasks, the model
is forced to capture certain visual features of images that are
ideally useful for the core task of the agent.

The computer vision community has proposed several
kinds of creative pretext tasks for self-supervision. A preva-
lent task is colorization [46], where a color image is first
converted to graylevel, and the model learns to reconstruct
the color version. Another kind of task is solving jigsaw
puzzles made from patches of the input image [47]. There
are also self-supervision tasks that are indeed useful to the
overall objective of the model, but the labeling is assumed by
analytical methods [48]: a common example is the exploita-
tion of the epipolar constrains in the stereo image pair as
supervision for training a monocular image depth estimation
model [49].
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On the other hand, a small number of approaches exploit
prediction as a self-supervision task. Our model adopts this
idea, using prediction of future frames to bias the inter-
nal representation towards the ability to learn the dynamics
of objects in the scene. In this sense, prediction for self-
supervision shows a connection with the cognitive idea of
predictive brain we mentioned before in §1.

Still, not all approaches maintain a sound cognitive account
of prediction in the context of vision. For example, [50]
arranges images in overlapping blocks by rows and columns,
scanned in sequence with recursive networks attempting
to “predict” the next block. This account of prediction is
clearly an artifact with no correspondence in a cognitive
agent. Instead, our work aims to include effective forms
of prediction: prediction as imagination, and prediction as
the construction of a probable future scenario. The Deep-
Mind research group also widely adopts prediction for self-
supervision [51]-[53] in a way more similar to ours.

One of the few works based on a cognitive account of
prediction is the model proposed by Ha and Schmidhuber
[54]. This model shares some fundamental components with
our architectures: the use of variational autoencoders and
recursive neural networks. There is, however, a significant
difference in the objectives of the models. The work of Ha
and Schmidhuber is a complete agent and includes other
components not considered in our model, like a controller
responsible for determining the course of actions of the
agent. Their wider architecture comes at the expense of a
very shallow perceptual capability. Much like complex neural
networks of the past generation, this model is an interesting
proof of concept working in synthetic simplified examples.
The simple game-like scenario on which the model has been
tested has an overly simplified visual appearance, not using
perspective and very low resolution. Conversely, our aim is
not training an agent, but learning the perceptual capability
needed for visual imagery, including the projection of hypo-
thetical driving scenarios in visual space.

Ill. RELATED WORKS

It is not uncommon for works adopting neural networks for
perception in autonomous vehicles to declare virtues of a neu-
rocognitive inspiration [55]-[57]. However, often these ideas
do not transfer the specific brain mechanisms into algorithms.
To the best of our knowledge, the two neurocognitive princi-
ples embraced by this work — Damasio’s CDZs and Friston’s
predictive brain — have not been proposed in any work on
perception for autonomous driving. Besides, the striking sim-
ilarity between the formulation of brain predictivity given by
Friston and the variational autoencoder algorithm seems to
remain unnoticed, with few exceptions [58].

The idea of autoencoder has been at the heart of the
“deep” turn of ANNs [59]-[61], and the variational version
has rapidly gained attention [62]. Still, in the domain of
autonomous vehicle perception, this architecture is not as
popular as other approaches like end-to-end. In the end-to-
end strategy, images from a front-facing camera are fed into a
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stack of convolutions, followed by feedforward layers which
generate the low-level commands. The first attempt in this
direction dates before the rise of deep learning [63], and it
has been the groundwork for the later popular NVIDIA’s
PilotNet [13], [64]. One of the most severe drawbacks of
end-to-end systems based on static frame processing is the
erratic variation of steering wheel angle within short time
periods. A potential solution is to provide a temporal con-
text in the models, combining convolutions with recurrent
networks [65].

Still, the most appealing feature of the end-to-end strat-
egy — to dispense with internal representations — is also the
primary source of its troubles. Learning the entire range of
road scenarios from steering supervision alone, considering
all possible appearances of objects relevant to the drive,
is not achievable in practical settings. For this reason, several
more recent proposals suggest the inclusion of intermediate
representations, such as the so-called mid-to-mid strategy
used in ChauffeurNet [66], Waymo’s autonomous driving
system. ChauffeurNet is essentially made of a convolutional
network that consumes the input data to generate an inter-
mediate representation with the format of a top-down view
of the surrounding area and salient objects. Besides, Chauf-
feurNet has several higher-level networks that iteratively
predict information useful for driving. Another work [67]
proposes to overcome the object agnosticism of the end-to-
end approach with an object-centric deep learning system for
autonomous vehicles. In this proposal, a first convolutional
neural module takes an image and produces an intermediate
representation. Then, other downstream networks are diversi-
fied depending on a taxonomy of objects-related structures in
the intermediate representation, and the structures are lastly
converted into discrete driving actions. The system proposed
by Valeo Vision also uses an internal representation [68] con-
structed using a standard ResNet50 model [69] with the top
fully-connected layers removed. The feature representation
is shared across many tasks relevant to visual perception in
automated driving such as object detection, semantic segmen-
tation, and depth estimation. All the downstream tasks are
realized using the top parts of standard models like YOLO
[70] for object detection or FCN-8 [37] for semantic segmen-
tation.

None of the works reviewed so far builds the inter-
nal representations through the idea of the autoencoder.
We found just two notable exceptions in the field of per-
ception for autonomous driving. The first one is by the
company comma.ai [71], where the latent representations
of 2048 neurons are obtained with a variational autoencoder
using input images of 160 x 80 pixels. Once trained, the latent
representations are used for predicting successor frames in
time with a recurrent neural network. The second exception
is a work by Toyota in collaboration with MIT [72] and
proposes a variational autoencoder learning representations
of 25 neurons. The entire internal representations are decoded
to restore the input image of 200 x 66 pixels as in a standard
autoencoder. Besides, one neuron of the representation is
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interpreted as steering angle, so end-to-end supervision for
this neuron is mixed in the total training loss.

There are similarities between these last two approaches
and the one we present, but also fundamental differences. The
latent representation of Amini et al. [72] does not take into
account the crucial time dimension of the perceptual driving
scenario. On the other hand, Santana and Hotz [71] include
their internal representation in a recursive network for pre-
diction, but time dependency is not exploited when learning
the compact representation. Moreover, the comma.ai’s model
is agnostic about the meaning of the neurons composing the
latent representation, while Amini et al. assign meaning to
just the single neuron coding steering angles. We already
discussed in §II how a key strategy of our model is to assign
conceptual meaning to separate groups of neurons in the
latent representation. In contexts different from autonomous
vehicles, the idea is not new. For example, in computer vision,
[73] proposed a work for the generation of head poses using
a latent space with separate representations for viewpoints,
lighting conditions, and shape variations. Also, in [74] the
latent vector is partitioned in semantic content and geometric
coding. We will show in IV-B how our partitioning of the
latent spaces differs from these approaches.

IV. THE NEURAL MODELS

In this section, we present the details of our approach. We
propose a model composed of two different networks: a first
network generates compact representations of visual scenar-
ios; a second network manipulates the latent vectors to predict
future scenarios and to perform a rudimentary form of mental
imagery.

Concerning the first part of the model, we have experi-
mented some different architectures, all sharing the common
feature of a hierarchical arrangement similar to the CDZs in
the brain and following the strategy described in §1 and §II.
We compare three of these architectures, and each can be
interpreted as a step forward in developing a more sophisti-
cated way to learn the internal representations. Note that this
series of steps can be interpreted as the opposite of what is
commonly referred to as ““ablation study ™.

To summarize, here we present:

« three different autoencoder networks (Netl, Net2, Net3)
with increasingly sophisticated approaches to learning
internal representations of the driving scenario;

« arecurrent neural network (Net4) which performs pre-
dictions and imagery, working exclusively with the
latent representations created by the previous networks.

A. NETI: VARIATIONAL AUTOENCODER
The first model we present is essential. When talking about
representation learning, the first architecture that comes to
mind is the autoencoder. This is the simplest model of the
family, composed of two sub-networks:

go X —> Z,

fo 1 Z2—> X.
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FIGURE 2. Architecture of our variational autoencoder (Net1).

The first sub-network is called encoder and computes the
compact representation z € Z of a high-dimensional input
x € X. This network is determined by its set of parameters
®. The second sub-network is the decoder (often called the
generative network) which reconstructs the high-dimensional
datax € X from the low-dimensional compact representation
z € Z. This network is determined by the set of parameters
®. When training the autoencoder, the parameters ® and ¢
are learned by minimizing the error between input samples X;
and the outputs f(g(x;)).

A substantial improvement in the architecture of autoen-
coders comes with the integration with variational Bayesian
methods. We refer to Appendix VI for a detailed mathemat-
ical definition. The variational autoencoder can learn a more
ordered representation compared to the standard autoencoder.
However, there is a much space for improvements, especially
in our case where we want to focus only on learning repre-
sentations of driving scenarios. Therefore, we present here
our implementation of variational autoencoder mainly as a
comparison with the next models.

Fig. 2 depicts the architecture of our variational autoen-
coder (Netl), while Table 6 shows the numbers of lay-
ers and the parameters adopted in the final version of the
model. The input of the network is a single RGB image
of 256 x 256 pixels. The encoder is composed of a stack
of 4 convolutions and 2 fully-connected layers, converging
to a latent space of 128 neurons. The decoder has a struc-
ture symmetric to the encoder, mapping the 128 neurons
back to an image of 256 x 256. The network is trained
to optimize the loss function in equation (15) in a totally
unsupervised way.
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FIGURE 3. Architecture of our topological autoencoder (Net2), where the
green color denotes the cars concept, and violet the 1anes concept.

B. NET2: TOPOLOGICAL AUTOENCODER

The next model we present shares most of its architecture
with the previous one. The crucial improvement is the intro-
duction of a semantic organization in the latent spaces. As
discussed in §1, the human brain projects sensory information
— especially visual — into compact representations through
the CDZ structures. Some of these representations consti-
tute the conceptual space, where neural activations encode
the entities in the environment that produced the perceptual
stimuli. We can take inspiration from this theory and use
the hierarchical architecture of CDZs as a “blueprint” to
design a more sophisticated neural network, which can learn
representations that are not only in terms of visual features
but also in terms of useful concepts.

In the driving context, the entire road scenario is infor-
mative. However, from a conceptual point of view, it is not
immediately necessary to infer categories for every entity
present in a scene. Within the aims and limits of this paper,
it is useful to project in conceptual space the entities mostly
relevant to the driving task. Therefore, for simplicity in this
model, we choose to consider the two main concepts of cars
and lanes.

Fig. 3 presents the architecture of the topological autoen-
coder (Net2), composed of one shared encoder and three
independent decoders. The choice of parameters is similar to
Netl, as Table 7 shows. The encoder and each of the three
decoders maintain the same structure as in Netl, and the
size of the latent space remains unchanged. Still, the internal
organization of the latent space is forcefully partitioned. The
grey decoder of Fig. 3 works in the visual space — just
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like the decoder of Fig. 2 — mapping all the 128 neurons
of the latent vector z altogether back into an RGB image.
This decoder learns to reconstruct the input image and is
trained in an unsupervised way. Instead, the decoder colored
in green takes only a sub-vector zc of 16 neurons from
the latent space and produces a matrix xc of 256 x 256
probability values. The sub-vector of 16 neurons is trained
to represent the cars concept, and the output matrix can be
interpreted as a semantic segmentation of the input image,
where values indicate the probability of the presence of cars
entities. Similarly, the violet decoder maps only a sub-vector
z1, of 16 neurons representing the lanes concepts into a
probability matrix X1, for 1anes entities. These two decoders
require supervised learning: their output is converted into
binary images by applying a threshold, and trained to min-
imize the reconstruction error with semantic segmentation of
the input images. As we mentioned in §1I, the segmentation
here can be considered a mere byproduct of the network, and
the goal remains the meaningful latent representations.

We already discussed in §1III that the idea of partitioning the
latent vector into semantic components is not new. However,
our approach is different: while we keep the two segments
zc and zp, disjointed, the entire z learns representations in
the visual space. That is why the grey decoder of Fig. 3
takes as input the entire latent space. In this way, we try to
adhere to the CDZ theoretical idea, as we explicitly force the
network to pay attention to the cars and lanes entities
in the environment. Another advantage of our approach in
partitioning the latent space concerns the well-known crucial
issue of lack of transparency in deep neural networks. In most
models, no information is available about what exactly makes
the models arrive at their predictions [75], [76]. We can
mitigate the issue by explicitly assigning semantic meaning
to the components of the inner representation.

To give a mathematical description of the model, it is
composed of four sub-networks:

go : X —> Z,
foy 1 2 — X,
Joc + Zc — Ac,
foL 1 ZL — AL,

with Z = RW, Zc = RN and 21 = RM.. The subscript V
denotes the visual space, and the subscripts C and L refer to
the cars and lanes concepts respectively. For each latent
vector zZ we have:

Z2€ 2 =zc,Z, 2],

where zc and zp are the two sub-vectors representing the
cars and lanes concepts, respectively. The segment in
between, Z, encodes the remaining generic visual features,
while the entire latent vector z is a representation in the visual
space. The final version of the model has Ny = 128 and
Nc = N1, = 16. We will discuss this choice in §V-B, while
other parameters and learning rate are included in Tables 7
and 8.
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By calling ® = [®vy, O¢, O] the vector of parameters of
all decoders, the loss functions of the model can be derived
from the basic equation (15). At each batch iteration b, a ran-
dom batch B C D is presented, and the following loss is
computed:

[,(@, CI>|B):EK+)‘VEV+)\CEC+)\LEL, (1)
where
B
Ec = (1= =ko®) D Axr(g0@®) Ipoy @),
X
B
Ev = =) Ergotaw [logpey (x12)]
X
B
Ec = - Z]Ezc~nc(q¢<z|x)> [log Pec (xclzc)] ,
X
B
EL = - ZEZLNHL(%(ZIX)) [logpe, (xL|zL)] .

X

Few observations are due for the differences between this loss
function (1) and the basic one (15). First of all, we apply a
delay in the contribution of the Kullback-Leibler divergence
in the term Ex. This strategy is called KL annealing and was
first introduced in the context of variational autoencoders for
language modeling [77]. The reason is the encoder at the
beginning of training is unlikely to provide any meaningful
probability distribution g4 (z|x). Therefore, there is a cost
factor for the KL component, which is set initially at a small
value ko and gradually increased up to 1.0 with a time con-
stant k.

A second difference in the loss function are the terms
Ev, Ec, EL. They represent the reconstruction errors of the
visual scenario and the conceptual entities. The term Ey com-
putes the error in the visual space using the entire latent vector
z, and it corresponds precisely to the second component in
the basic loss (15). The other two terms Ec and E, compute
the error in the conceptual space and are slightly different.
Only the relevant portion of the latent vector is considered,
as symbolized by the projection operators Ilc, ITy.

Another difference is the use of a variant of the cross
entropy in Ec, Er, indicated with the symbols pe.. and pe, .
This variant takes into account the large unbalance between
the number of pixels belonging to a concept and all the other
pixels, which is typical in ordinary driving scenes. Following
the method first introduced in the context of medical image
processing [78], we compensate this asymmetry by weighing
the contribution of true and false pixels with P, the ratio of
true pixels over all the pixels in the dataset, computed as
follows:

1 M N s
P = Nt Z Zyi,j , 2
J i

where M is the number of images in the dataset, N is the
number of pixels in an image, and s is a parameter used to
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smooth the effect of weighting by the probability of ground
truth: a value evaluated empirically as valid is 4. The term
i,j is the value of the i-th pixel (in a flatten order) of the j-th
target image of the dataset. We use a set of target images for
each semantic concept. Hence, we have a set of car labels
composed of binary images where white pixels indicate the
presence of cars in the scene, and a set of 1ane labels where
white pixels correspond to lane markings.

Lastly, in the loss equation (1) the contributions of the
terms Ev, Ec, EL are weighted by the parameters Ay, Ac, AL.
The purpose of these parameters is mainly to normalize the
range of the errors, which varies widely from visual space to
conceptual spaces. For this reason, typically Ay # Ac = AL.

C. NET3: TEMPORAL AUTOENCODER

The next model is the final step in our development of an
autoencoder able to learn meaningful representations of the
driving scenario. We made it clear in §I that our work aims
to learn representations oriented to the driving task from a
static and a dynamic perspective. In Ner2, we include the
static perspective, i.e., a conceptual organization of the latent
representations. In our third model, Net3, we also include the
dynamic perspective by forcing a temporal consistency in the
representations.

We achieve representations consistent in the temporal
dimension with the inclusion of a recursive module in the
architecture of Ner2 and the use of self-supervision, as already
mentioned in §II. In this way, the model learns how the
concepts represented in the latent space will change in future
driving scenarios. However, the predictions this model can
make are still short-term, whereas longer-term predictions
will be the subject of Net4.

Fig. 4 shows the architecture of Net3, and Table 9 describes
the parameters of the final model. The model shares substan-
tially the same architecture of Net2, except for an additional
module based on a simple recursive neural network. The
training procedure, however, is significantly different from
the previous network. Let us introduce the notation x*) to
indicate the frame ¢ steps ahead of frame x. Similarly, z*)
refers to the latent representation of the image ¢ steps ahead
of that represented by z. At each iteration of the training,
the inputs of the model are two consecutive frames x and xD,
which are fed to the common encoder. The encoder computes
two latent representations z and z", which are passed to
a RNN trained to predict the latent vector z») containing
the representation of the successive frame in the sequence.
Then, all three latent vectors are expanded using the same 3-
decoders structure already seen in Net2, so that the overall
model is trained to generate visual and segmented output
images for the three frames x, x(I), x®.

The novel recursive sub-network of the model can be
described by the function:

hy (z, z“)) —Z~?. 3)
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FIGURE 4. Architecture of our temporal autoencoder (Net3) in its final version, where the green color denotes the cars
concept and violet the 1anes concept. The decoders with dashed-line border are the same instances of the decoders with

solid-line border.

This module is implemented using a basic recursive neural
network (RNN) [79] with a time window of 2 and a set of
parameters .

The formulation of the loss used for training the network is
similar to equation (1) with additional terms for the recursive
prediction:

L(O, D, ¥|B)=L(O,PB)+E +E", “)

where the first term is the same loss of equation (1) and the
additional terms are:

E' =)\ Ey+AcEC+ AL E],
E" = M Ey +ACEC+ A B

For the sake of legibility, let z = hy (z, go(x")). The
expressions of the remaining terms are the following:

B
E\// - Z]EZqu>(Z|X(1)) I:Ing®v (X(l) | z):l ,
X

B
= (1
Ec =~ ZEzc~nc<qa><z|x“>)> [logl’@c (Xc |ZC)]’
X
B

= (D
B = =) By o) [logP®L (XL |ZL)] :
X
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B _
E\/; = - ZEZN(;@(le) _lOgPGV (X(z) | i)] s
X

B
L _
E¢ == Ergata _logmc(x(c) | “C(Z))]»
X

B
o 5
E{ = =) Ergea |l0gPoy (X(L) | HL(Z))]-
X

The contributions of the terms Ey,, E(., E] is similar to that of
Ev, Ec, E1, as they represent the errors in the reconstruction
of the frame successor of x. The temporal coherence is mea-
sured by the terms EY;, E’, E{' representing the error between
the frame 2 steps ahead of x and the images decoded from the
latent vector predicted by the recursive sub-network Ay .

D. NET4: RECURRENT NETWORK
The last network we present is an example of how the results
of the previous models can be exploited to perform long-term
prediction of driving scenarios. The previous three sections
(§IV-A to §IV-C) describe the steps we made towards the
design of a model able to learn latent representations that are
both conceptually organized and temporally consistent. Net3
is the result of this development.

Once trained, Net3 can be deployed in its encoding part to
generate a latent representation of any visual driving scenario.
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FIGURE 5. Architecture of our recurrent model (Net4), where the green color denotes the cars concept and violet the lanes
concept.

FIGURE 6. Samples from one of the tracks in the SYNTHIA dataset. The
images show the different results of rendering the same track using
different environmental and lighting conditions.

Therefore, the long-term prediction can be realized by work-
ing entirely in the latent space. The advantage of having a
compact latent representation allows the recurrent network
to have a complex architecture with a limited number of
parameters.

Fig. 5 shows the proposed recurrent network (Net4), which
has a first module composed of multiple levels of stacked
recurrent sub-networks, one for each latent vector in the input
sequence. A second module is composed of multiple parallel
recurrent sub-networks predicting successive latent vectors in
the sequence. In the first module, each stacked sub-network
sends its entire output sequence to the next sub-network input.
In the second module, instead, the parallel sub-networks yield
only the last output in the time sequence. All the sub-networks
of the model share the same core architecture implemented
with Gated Recurrent Units (GRUs) [80], and we will discuss
this choice in V-C.

The overall model can be described by the function:

ra :ZNI - ZNO’ (5)

ra <Z, z(l)’ e, Z(NI—1)> — [21,22’ - ”ZNO]
~ [Zwl)’ AN Z(N1+N0)] 7
(6)

where Ny is the length of the input sequence, No is the
length of the future predicted sequence, and E is the set of
parameters of the model. In the final version of the model,
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we choose N = 8 and No = 4. We use 2 stacked GRUs and
4 parallel GRUs, as described in Table 10.

Lastly, we want to note that this model does not use any
odometry or other kind of information for the prediction,
just the rich representation learned by the accompanying
autoencoder.

V. RESULTS

In the last section of our paper, we present and discuss the
results obtained by our models. We first spend a few words
about the dataset adopted in this work. Then, we show quali-
tative and quantitative results for two of the autoencoder net-
works we implemented (Ner2 and Net3) and for the recurrent
network (Net4). Lastly, we show further evaluation on the
latent representations learned by the different autoencoder
networks.

A. DATASET

The SYNTHIA dataset [81] consists of a large collection
of photo-realistic video sequences rendered using the game
engine Unity. It comprises about 100, 000 images of urban
scenarios recorded from a simulated camera placed on the
windshield of the ego car. Each video sequence is acquired
at 5 FPS and comes with semantic annotations or several
classes, including lane markings, which are not commonly
found in other datasets.

Despite being artificially generated, this dataset offers a
wide variety of reasonably realistic illumination and weather
conditions, occasionally resulting even in very adverse
driving conditions. The dataset features 5 sets of driving
sequences. Each set contains about 10 recordings of the same
track rendered under different environmental conditions: traf-
fic, weather, season, and time of the day. Fig. 6 gives an
example of the variety of data coming from the same driving
sequence with different conditions. Moreover, the tracks are
very diverse as well, including freeways, tunnels, congestion,
“New York-like cities”, and ‘“European towns” — as the cre-
ators of the dataset describe it.

We randomly allocated 70% of the video sequences to
the training set, 25% to the validation, and 5% to the test
set, ensuring no overlap among the three sets. For a more
interesting visualization of the results, we further organize
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categories of driving conditions. In the center row, the output of the network. In the last row, the same input frames plotted with a colored overlay

showing the target cars entities in cyan and the lanes entities in yellow.

the test set into four (overlapping) categories, based on the
driving scenarios: urban environments, freeways, sunny con-
ditions, and darkness or adverse weather conditions.

B. RESULTS OF NET2 AND NET3
We present the results of the two autoencoders — Ner2 and
Net3 — we described in §1V-B and §I1V-C. The networks are
trained for 200 epochs in their final version. Note that here
we omit the results of Net/ since it lacks any conceptual
information. However, in § V-D we will include a comparison
of all three networks based on their latent representations.

First, we present some quantitative results obtained by
the models when reconstructing an image and its cars and
lanes entities, measured with the IoU (Intersection over
Union) metrics. Table 1 displays the scores for the cars
and lanes classes grouped into the four driving conditions
mentioned above. The Table also includes the general scores
on the entire test set. We compare the performance of our two
autoencoders with two other well-known models” for pure
semantic segmentation, FCN-8 [37] and U-Net [82] (both
using VGG-16 as base model). The scores show how Net3
can learn a more consistent latent representation compared to
Net2 and the FCN-8 model, in all the categories of driving
sequences. The U-Net model outperforms all other models,
although the scores are still comparable. However, for both
Net2 and Net3, it is evident how the task of recognizing
the cars concept achieves better scores compared to the
lanes concept. An explanation of why the latter task is more
difficult can be the very low ratio of pixels belonging to the
class of Lanes over the entire image size, and consequently
how easily the lane markings get occluded by other elements
in the scene.

We would like to stress again that the purpose of our
networks is not mere segmentation of visual input, as we
discussed in §II. The segmentation operation must be consid-

2we used the Keras implementations available at

https://github.com/divamgupta/image-segmentation-keras
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ered a supporting task, forcing the model to learn a semantic
organization of its internal representations, which is totally
missing in the U-Net and FCN-8 models.

Second, we present two different qualitative results. Fig. 7
shows the images produced by Net3 for four different images
of the test set, one for each driving condition. Given an input
image (showed on the top row of the Figure), the network
produces its corresponding latent representation. The latent
vector is passed to the three decoders to reconstruct the
initial image and to extract the cars and lanes entities in
the scene (center row of the Figure). For easy visualization,
we show the output of the three decoders as a single image,
having as background the reconstruction in the visual space,
and as colored overlays the segmented entities of cars (in
cyan) and lanes (in yellow). The images on the bottom row
of the Figure are displayed as a reference, showing the target
images with the colored overlays of the two classes.

Another qualitative result of Net3 comes from interpolating
between different latent spaces. In Fig. 8, each column shows
what happens when taking the latent representation of a first
frame (first row in the Figure) and linearly interpolate it with
the latent representation of a second frame (last row). We gen-
erate 5 intermediate latent vectors, passed to the decoders
of Net3 to produce novel frames. The images prove to be a
smooth and gradual shift from the first input to the second,
and they successfully provide new plausible driving scenarios
not seen before by the network.

C. RESULTS OF NET4

Here we show the results of our recursive model Ne#4, trained
for 100 epochs on a corresponding dataset of latent repre-
sentations computed by our most advanced autoencoder Net3
over the initial SYNTHIA dataset.

Starting with the quantitative results, Table 2 contains the
IoU scores obtained by the model in the different categories
of driving sequences used before. As described in §IV-D,
the network takes as input a sequence of 8 frames and predicts

179725



IEEE Access

A. Plebe, M. Da Lio: On the Road With 16 Neurons

frame A
raw

frame A
overlayed

frame B
overlayed

frame B
raw

FIGURE 8. Two examples of interpolation between latent representations
learned by Net3. The first 2 rows show the first input frame, with and
without the colored overlay highlighting the cars and lanes entities.
Similarly, the last 2 rows show the second input frame. The 5 central rows
are the result of the linear interpolation between the latent
representations of the two inputs.

the 4 subsequent frames. Since the SYNTHIA sequences are
acquired at SFPS, the network is predicting 0.8 seconds in
the future. The table shows the scores for the 4 predicted
frames, separated as usual in the cars and lanes classes.
It is immediate to note the cars scores are always higher
than the lanes scores, just like we saw in Table 1. How-
ever, the cars predictions worsen more significantly for the
distant frames with a decay of 16%, while the 1anes scores
lose only 9%. This result can be explained by the fact that,
generally, in a driving sequence, the lane markings change
more smoothly and predictably compared to the cars, which
can suddenly change their trajectory.

Another quantitative comparison is presented in Table 3,
where we compare different implementations of Ner4 based
on the type of internal recursive node: basic RNNs [79],
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GRUs [80] and LSTMs [83]. The results indicate the GRUs
are the best choice in our case. While it is not surprising that
the basic RNNs obtain the lowest score, the fact that GRUs
outperform LSTMs might seem unexpected. We believe the
reason is twofold: first, the number of parameters in the
overall model increases by more than 30% when switching
from GRUs to LSTMs. Second, although it is well known that
LSTMs are the most powerful recursive node for long-term
prediction because of their ability to keep track of events in
the remote past, in the context of driving is not so crucial to
memorize scenarios occurred several seconds before. While
driving, the environment and the surrounding vehicles change
continuously. It is often useless to try to draw a connection
between the current scenario and, for example, the one seen
10 seconds before — note that the typical timescale of vehicle
dynamics is less than one second. This situation is clearly
opposite to Natural Language Processing, where LSTMs give
their best.

As regards qualitative results, Fig. 9 shows four examples
of visual predictions, one for each category of driving con-
ditions. We include in the Figure the 4 predicted frames and
their corresponding target frames, but we omit to show the
8 input frames to keep the Figure easy to read. The results in
the “freeway”” and “‘sunny” scenarios demonstrate that the
model can predict an overtake maneuver from the left as well
as from the right. Another interesting result is the different
kind of predictions when facing a crosswalk: in the “city”
scenario there is a car moving perpendicularly to the lane of
the ego car, so the network correctly predicts to hold still at
the crosswalk; in the ““‘dark™ scenario cars are driving in the
same direction of the ego car, so the model predicts not to
stop at the crosswalk and moves forward.

As a final qualitative evaluation, we try to replicate the
phenomenon of mental imagery using Net4. To mimic this
process, the network is called iteratively, and at each iteration,
the output is fed back as the input of the next iteration. In our
specific case, we choose to take the 1st of the 4 output vectors
and use it as the 8th input vector of the next iteration. Fig. 10
presents the results of 9 iterations of imagery for two different
scenarios, along with the corresponding reference frames (the
input images are, again, omitted for practical reasons). Note
that, while the imagery process must inevitably start with
all input frames taken from the original dataset, the results
provided in the Figure are obtained from forward iterations,
that is when the network computes all input vectors as results
of previous iterations. In both driving scenarios, it is possible
to appreciate how the model can predict a quite plausible
future from just its own representations of the world.

D. LATENT REPRESENTATIONS
We conclude our paper with a few more words on the latent
representations learned by our autoencoders with a quantita-
tive evaluation of their temporal consistency and a qualitative
visualization of their conceptual organization.

First of all, let us justify the title of our paper. Table 4 shows
the impact of the sizes Nc and N, on the performance of
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FIGURE 9. Results of Net4 in predicting 4 future frames from an input sequence of 8 frames, under four different driving conditions. 0dd
rows show the output of the network, even rows the corresponding target frames.

TABLE 1. loU scores of cars and lanes classes organized into four categories of driving conditions. We compare our two autoencoders with two other

well-known models for pure semantic segmentation.

Net2 Net3 FCN-8 U-Net
ToUcar | ToUlane | ToUcar | ToUlane | IoUcar | IoUlane | IoUcar | IoU lane
City 0.7834 0.6487 0.8305 0.7155 0.8033 0.6109 0.8552 0.7451
Freeway 0.7755 0.5840 0.7952 0.7490 0.7587 0.6959 0.7975 0.8666
Sunny 0.7736 0.6283 0.8077 0.6970 0.7741 0.6652 0.8351 0.8128
Dark 0.7682 0.6274 0.7943 0.7116 0.7450 0.6385 0.7914 0.7927
Al | 07702 | 06277 | 07992 | 07062 | 07558 | 0.6484 | 08076 | 0.8001

Net2, which are the number of neurons in the latent space
representing the cars and lanes concepts, as defined in
§IV-B. In the final version of the model, we choose to have
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Nc = N = 16, even if this does not correspond to the best

IoU score. The reason we prefer having a latent representation
of concepts as compact as possible is twofold: first, with
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FIGURE 10. Examples of mimicking mental imagery with Net4, for two different driving scenarios. 0dd columns show the result coming
from the model, even columns are a reference of the corresponding frames.

TABLE 2. loU scores of cars and lanes classes obtained by Net4 when

predicting 4 future frames, starting from an input sequence of 8 frames.

Frame 9 Frame

10 Frame 11 Frame 12

IoUcar | IoUlane | IoUcar | IoUlane | IoUcar | IoUlane | IoUcar | IoU lane

City | 0.7543 0.5692 0.7173
Freeway 0.6928 0.5197 0.6336
Sunny | 0.7223 0.5338 0.6768
Dark | 0.7000 0.5226 0.6570

0.5472 0.6799 0.5421 0.6381 0.5220
0.4698 0.5967 0.4487 0.5589 0.4296
0.5001 0.6661 0.4831 0.6106 0.4693
0.5120 0.6130 0.5014 0.5834 0.4832

All | 07078 | 0.5268 | 0.6639 |

05075 | 0.6315 | 04946 | 05931 | 04782

a lower dimensionality, we force the model to capture the
absolutely essential features from the data, discarding the
non-relevant information; second, if the representation of a
single concept occupies only a small fraction of the entire
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latent space, we can learn several different concepts at the
same time. Here, we decide to assign 16 neurons to each
concept with the idea that in the future, we can use the
same architecture to learn more than two concepts, adding for
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TABLE 3. Comparison of the performance of Net4 using different implementations of recursive nodes.

Frame 9 Frame 10 Frame 11 Frame 12
IoU car ‘ IoU lane IoU car ‘ IoU lane IoU car ‘ IoU lane ToU car ‘ IoU lane
RNN 0.6836 0.4884 0.5963 0.4231 0.5100 0.3957 0.4598 0.3668
GRU 0.7078 0.5268 0.6639 0.5075 0.6315 0.4946 0.5931 0.4782
LSTM 0.6810 0.5196 0.6604 0.4911 0.6426 0.4696 0.6119 0.4623

TABLE 4. loU scores of cars and lanes classes obtained by Net2 using
different numbers of neurons for the cars and lanes concepts in the
latent space, while keeping the overall size Ny = 128. The final choice
adopted in the model is marked in bold.

Nc = N | ToUcars | IToU lanes

48 0.7814 0.6460
32 0.7768 0.6334
24 0.7709 0.6440
16 0.7702 0.6277
12 0.7539 0.6139
8 0.7194 0.5965
4 0.6162 0.5123

TABLE 5. Statistics on the latent representations learned by our
3 autoencoder models. For both indicators, the lower the better.

| Temporal coherence £z | Predictivity error p z/

Netl 0.299 0.186
Net2 0.297 0.189
Net3 0.180 0.077

example pedestrians and bikes. Therefore, the final
model adopts the most compact size not causing a severe drop
in the performance, like in the cases of Nc = N, < 12.

Then, we present a statistical evaluation of the latent repre-
sentations measuring the consistency for the temporal dynam-
ics and their predictability. Table 5 reports the results for all
our 3 autoencoder models. A first indicator £ evaluates the
degree of temporal coherence by measuring the ratio between
the difference of two latent vectors that are contiguous in
time, and the variance over the entire dataset Z of latent
vectors. The evaluation is done independently for each com-
ponent of the latent vector and then averaged:

2
1
| NZ Yoez (2 —4") o
§z = Nl ” ,

i

where z; is the i-th element of z, zgl) is the i-th element of the
successor of z, v; is the i-th element of the variance vector of
z over Z, and M is the cardinality of Z. A second indicator
p measures the “predictability”” of the representations, and
it is computed as the mean square of the residual obtained
when using two consecutive latent vectors to predict one
neuron of a third vector by linear regression. In order to make
computation time acceptable, this index is computed on a
subspace Z’ ten times smaller than Z. By calling (A, b)
the residual of the least squares approximation of the normal
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equation Ax = b, p can be written as follows:

1 MW (1) (2)
w=st z z |4 ®)
! o zeZ L' dgzez

Therefore, Table 5 clearly shows how Netl and Net2 have

comparable scores, while Net3 performs significantly better.

In fact, only with Net3 we introduce the temporal consistency

inside the latent representations, and this is nicely reflected in
the results.

Moving to a more qualitative analysis, we present in Fig. 11
a visual inspection of the latent representations learned by
Net2 and Net3. For each model, the left column of the Fig-
ure shows four images depicting the same driving scenario
under different lighting conditions. For each input image,
we plot the values of the 128 neurons composing the latent
representation computed by the model, separating the 16 neu-
rons representing the cars entities (second column from the
left), the 16 neurons representing the lanes entities (last
column), and the remaining 96 neurons representing generic
visual features (third column). Ideally, only the generic
96 neurons should change in the four cases, because the input
images differ only in the lighting conditions while having
almost identical cars and lanes entities. Comparing the
performance of Net2 (a) and Net3 (b), it is immediately clear
how the latter learns a more robust representation. In the case
of (b), the variation in the neurons representing the cars
and lanes concepts is minimal. The variation in the general
96 neurons is also very localized: the neurons exhibit a similar
overall distribution. This fits with the fact that the four images
have the same surrounding (the trees, the soil on the right).
Conversely, the representations learned by Net2 do not appear
as consistent. The cars and lanes neurons visibly change
for each input, and even the other 96 visual features do not
share any particular pattern in the 4 cases. Therefore, we can
conclude that forcing a semantic organization at once and a
temporal coherence leads to more robust and disentangled
representations.

Lastly, we include the interesting outcome of exchanging
parts of latent representations of different images. Fig. 12
shows the imaginary scenarios created by swapping between
two input images the neurons corresponding to the cars and
lanes concepts. Fig. 12(c) is produced by the decoders of
Net3 from a latent vector composed of z¢ and zp, taken from
the representation of (a), and Z coming from the representa-
tion of (b). Similarly, Fig. 12(d) is the result of combining
zc and z, from the representation of (b) together with Z from
the vector representing (a). This is a nice example of how our
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FIGURE 11. Visualization of the latent representations learned by Net2 (a) and Net3 (b). Each row depicts the values of the 128 neurons of the latent
representation of the image on the left. The neurons corresponding to the cars and lanes concepts are plotted separately.
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FIGURE 12. Result of swapping the conceptual parts of the latent spaces
between two images using Net3. Image (c) is obtained by combining the
cars and lanes neurons of (a) with the rest of the vector of (b). Image
(d) is the opposite, combining the cars and 1anes neurons of (b) with

the rest of the vector of (a).

TABLE 6. Parameters describing the architecture of the variational
autoencoder (Net1).

Encoder convolution 7XT7x16
convolution 7T X7 x32
convolution 5 X5 x 32
convolution 5 X5 x 32
dense 2048
dense 512
Latent space 128
Decoder dense 2048
dense 4096
deconvolution 5 X5 x 32
deconvolution 5 X5 x 32
deconvolution 7X7x16
deconvolution TXTx3
Total parameters 18 million

TABLE 7. Parameters describing the architecture of the topological
autoencoder (Net2).

Encoder convolution 7XTx16
convolution 7T X7 x32
convolution 5 X5 x 32
convolution 5 X5 x 32
dense 2048
dense 512
Latent space [16, 96, 16]
Each decoder dense 2048
dense 4096
deconvolution 5 X5 x 32
deconvolution 5 X5 x 32
deconvolution 7X7x16
deconvolution TXTx3
Total parameters 35 million

model can perform another form of mental imagery, in the
sense of creating artificial — although plausible — scenarios.

VI. CONCLUSION AND FUTURE WORKS

This paper presented a novel approach to the perception of
driving scenarios loosely inspired by two theories on how
the human brain works. We mimic the neurocognitive the-
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TABLE 8. loU scores of cars and lanes classes obtained by the
topological autoencoder (Net2) using different values of learning rate.
The final choice adopted in the model is marked in bold.

Learning rate ‘ ToU car ‘ IoU lane

1x 1072 | 0.0000 0.0000
1x107% | 0.7583 0.6568
5x 1074 | 0.7391 0.6599

1x107% | 0.7702 0.6277
5x107° | 0.7584 0.6083
1x107° | 0.7086 0.5502
1x1076 | 0.1187 0.1734

TABLE 9. Parameters describing the architecture of the temporal
autoencoder (Net3).

Encoder convolution 7TXT7x16
convolution 7TXTx 32
convolution 5 X5 x 32
convolution 5 X5 x 32
dense 2048
dense 512

Latent space [16, 96, 16]

Recurrent layer 128 x 2 — 128

Each of the 3 dense 2048

individual decoders dense 4096
deconvolution 5 X5 x 32
deconvolution 5 X5 x 32
deconvolution 7XT7x16
deconvolution TXTx3

Total parameters 35 million

TABLE 10. Parameters describing the architecture of the recurrent
network (Net4).

Stacked recurrency GRU 128 x 8 =+ 128 X 8
GRU 128 x 8 = 128 x 8

Parallel recurrency GRU 128 x 8 — 128
GRU 128 x 8 — 128
GRU 128 x 8 — 128
GRU 128 x 8 — 128

Total parameters 600.000

ories with the tools available within the deep learning frame-
work. Specifically, we choose the autoencoders to emulate
the theoretical idea of convergence-divergence zones, which
code perceptual concepts using low-dimension representa-
tions. Then, we follow the theory of the predictive brain by
forcing the probabilistic representation learned by variational
autoencoders to capture information about the dynamics of
the scenario.

We proposed a method to learn to represent visual sce-
narios into compact vectors that are at once semantically
organized and temporally coherent. Our approach differs
from other related works precisely in the learning of the
representations: first, there is a semantic organization in the
sense that distinct parts of the representation are explicitly
associated with specific concepts useful in the context of driv-
ing; second, the temporal coherence that is achieved through
self-supervision allows the representation to be exploited for
mental imagery and prediction of plausible future scenarios.

Our work aims to learn compact and informative repre-
sentations that can be useful for various downstream driving
tasks. Here we presented the example of predicting long-term
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future frames in a video sequence. However, once learned,
the representations can be deployed in many possible con-
texts. For example, we are currently working on using the
representations to predict future occupancy grids. Moreover,
since we achieve to assign only 16 neurons to each con-
cept in the representation, it is possible to include in future
works more than two concepts inside the latent representa-
tions. It would be interesting, for example, to include con-
cepts of vulnerable road users, such as pedestrians and
bikes. One more future development we have planned is
the adoption of a dataset of real-world video sequences.
One of the reasons we adopted the SYNTHIA dataset at the
beginning of our research, besides its large size and variety,
was the availability of lane marking annotations, which are
very rare among the classical datasets for autonomous driv-
ing. Recently, UC Berkeley introduced the Berkeley Deep-
Drive dataset [84], including several types of lane marking
annotations from high-quality real video sequences. Hence,
the adoption of this novel dataset could be an interesting
future addition to our work.

VARIATIONAL INFERENCE

The variational inference framework takes up the issue of
approximating the probability distribution p(x) of a high
dimensional random variable x € X". This approximation can
be performed by a neural network like the decoder part of
Netl. The neural network by itself is deterministic, but its
output distribution can be easily computed as follows:

Poxiz) = N (xlfo(2). o’1). ©)

where NV (x|, o) is the Gaussian function in x, with mean
and standard deviation o. Using this last equation it is now
possible to express the desired approximation of p(x):

o) = / po(x, 2)dz = / polDp@dz.  (10)

It is immediate to recognize that the kind of neural network
performing the function fg(-) is exactly the decoder part in
the autoencoder, corresponding to the divergence zone in
the CDZ neurocognitive concept. In the case when X is the
domain of images, f(-) comprises a first layer that rearranges
the low-dimension variable x in a two dimensional geometry,
followed by a stack of deconvolutions, up to the final geom-
etry of the x images.

In equation (10) there is clearly no clue on what the distri-
bution p(z) might be, but the idea behind variational autoen-
coder is to introduce an auxiliary distribution g from which
to sample z, and it is made by an additional neural network.
Ideally, this network should provide the posterior probability
peo(z|x) — which is unknown — and should be a network like
the decoder part of Net!. Its probability distribution is:

qo(zlx) = N (2lga(0. 71). (a1

While the network fg(-) behaves as decoder, the network
gao(+) corresponds to the encoder part in the autoencoder, pro-
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jecting the high-dimensional variable x into the low dimen-
sional space Z. It continues to play the role of the conver-
gence zone in the CDZ idea.

The measure of how well pg(x) approximates p(x) for a
set of x; € D sampled in a dataset D is given by the log-
likelihood:

(D)= ) log / po(xi|z)p(z)dz. (12)
X,'ED

This equation cannot be solved because of the unknown p(z),
and here comes the help of the auxiliary probability g¢(z|X).
Each term of the summation in equation (12) can be rewritten
as follows:

LOfx) = IOg/P@(X, z)dz

_ / pe(X, 2)qo(z[x)
=log | —————dz
qo(z|X)

pro(x, Z)} ’ (13)

qo(z|x)
where in the last passage we used the expectation operator

E[-]. Being the log function concave, we can now apply
Jensen’s inequality:

= 10g Bz~ g (zix) [

(x,2)
6O, DIx) = logEzye(z1x) [p@ }

qo(z[x)
> Esgotaiv [l0gpo(x, 2)] +
— Esgo [logqo@x)].  (14)

Since the derivation in the last equation is smaller or at
least equal to £(®|x), it is called the variational lower
bound, or evidence lower bound (ELBO). Note that now in
£(®, ®[x) there is also the dependency from the parameters
@ of the second neural network defined in (11).

Itis possible to rearrange further £(®, ®|x) in order to have
po(X|z) instead of pe (X, z) in equation (14), moreover, we can
now introduce the loss function L£(©, ®|x) as the value to be
minimized in order to maximize ELBO:

L(O, P|x)

—U(©®, %)
= —/q®(z|x)10gp®(x, Z)dz
qo(z|X)
B _/qd’(Z'X)lOg rolxizpo(@
qo(z|X)
AKL(q¢(Z|X)”p®(Z))+

— Eznqgoav [logpo(x|2)]. (15)

where the last step uses the Kullback-Leibler divergence
Axr.. Still, this formulation seems to be intractable because it
contains the term pg(z), but there is a simple analytical for-
mulation of the Kullback-Leibler divergence in the Gaussian
case (see Appendix B in [31]):

z

Akt (gaollp) = —3 3 (1108 (07) 17 — 7).
i=1
(16)
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where u; and o; are the i-th components of the mean and
variance of z given by g4 (Z|X).

TABLES OF NETWORK PARAMETERS
See Table 6-10.
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