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ABSTRACT Mobile Edge Computing (MEC) has emerged as an alternative to cloud computing to meet
the latency and Quality-of-Service (QoS) requirements of mobile devices. In this paper, we address the
problem of server resource allocation in MEC. Due to the dynamic load conditions on MEC servers, their
resources need to be used intelligently to meet the QoS requirements of the users and to minimize server
energy consumption. We present a novel resource allocation algorithm, called Power Migration Expand
(PowMigExpand). Our algorithm assigns user requests to the optimal server and allocates optimal amount
of resources to User Equipment (UE) based on our comprehensive utility function. PowMigExpand also
migrates UE requests to new servers, when needed due to the mobility of users. We also present a low cost
Energy Efficient Smart Allocator (EESA) algorithm that uses deep learning for energy efficient allocation
of requests to optimal servers. The proposed algorithms consider varying load of incoming requests and
their heterogeneous nature, energy efficient activation of servers, and Virtual Machine (VM) migration
for smart resource allocation and, thus, is the first comprehensive approach to address the complex and
multidimensional resource allocation problem using deep learning. We compare our proposed algorithms
with other resource allocation approaches and show that our approach can handle the dynamic load conditions
better. The proposed algorithms improve the service rate and the overall utility with minimum energy
consumption. On average, it reduces 26% energy consumption of MESs and improves the service rate by
23%, compared with other algorithms. We also get more than 70% accuracy for EESA in allocating the
resources of multiple servers to multiple users.

INDEX TERMS Mobile edge computing, resource allocation, computational offloading, deep learning,
energy efficient.

I. INTRODUCTION
As opposed to traditional computers, mobile devices process
only a handful of tasks, and have certain inherent limita-
tions, such as low processing power, memory and battery
life. On the other hand, mobile applications are becoming
more complex every day, especially when it comes to video
games and graphics processing [1]–[3]. Similarly, there are
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applications involving speech processing and recognition,
biomedical image data processing, video games, etc. that
require the kind of processing capabilities that even the mod-
ern day mobile phones cannot provide [4]–[6]. An obvious
solution is to offload the processing of compute-intensive
applications to powerful remote servers. This idea, called
cloud computing [7], gained popularity in the past few
years as a viable solution to execute complex applications
on mobile devices without using much resources of mobile
devices. However, the distance between mobile devices and
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cloud servers is the source of enormous latencies. The trans-
mission, execution, and reception times become too large
for acceptable user experience on a mobile device [8], e.g.,
in Google Assistant, Siri, and Alexa [9].

A more realistic approach is to bring the network of cloud
servers closer to the mobile device, to minimize the overall
application execution delays [10]. This approach of bring-
ing a distributed network of powerful servers closer to end
users is known as Mobile Edge Computing (MEC) that has
attracted much attention recently [11]. Once an application is
offloaded to the central control unit of MEC, the next task is
to select the best possible server to entertain this request, and
to intelligently allocate server’s resources to this request so
as to guarantee acceptable performance for the mobile user
as well as maximize the rewards for the Mobile Edge Server
(MES), under the constraints of its energy consumption. The
resources here refer to the CPU, RAM, disk space, and time
that anMES allocates to a mobile user/User Equipment (UE).

A suite of algorithms for resource allocation in cloud
computing and mobile edge computing are presented in [12],
in which the authors consider only the CPU as user request.
However, some of the important and realistic resources of
MES (i.e., RAM, hard disk space and the time for which
these resources are requested) and the mobility of UEs are
not considered in their work. In this paper, we present an
energy efficient resource allocation algorithm, called Power
Migration Expand (PowMigExpand), which considers the
mobility of UEs and migrates the Virtual Machine (VM) of
UEs from one server to another, when required, with high util-
ity for MESs. We consider a realistic multi-user multi-server
scenario and try to answer the following two questions:Which
MES will be the optimal server for an incoming request by a
UE? andHowmuch resources of theMES should be allocated
to that particular UE? The answers to these questions depend
on several factors, such as the amount of resources requested
by the UE, the reward for the MES, available resources of the
MES, the distance between the UE and the MES, and MES
energy consumption. Energy consumption is an important
parameter since cloud computing data centers and distributed
edge computing servers are leaving a large carbon footprint
on the planet [13] because of unconstrained resource allo-
cation methodologies. A responsible approach would be to
optimize the resource allocation on MEC servers such that
maximum possible requests are served using the minimum
required servers, and the remaining servers can be kept idle
to save their energy.

A. NOVELTY AND CONTRIBUTION
The novelty of this paper can be highlighted as follows:

• Formulation of a comprehensive distance-aware utility
function which considers the mobility of users.

• Energy-aware VM migration based on mobility-aware
utility function.

• Adeep learning based smart allocator, which reduces the
computational complexity.

TABLE 1. Possible allocation options when MESs=2 and UEs=3.

To the best of our knowledge, in utility based approaches,
no such comprehensive mathematical model has been pro-
posed previously for UE request and utility function in
MEC resource allocation with UEs mobility considerations.
We solve the resource allocation problem under the con-
straints of limited range and energy consumption of MESs.
We present an algorithm that considers user mobility and
migrates VMs to other MESs when needed. The comprehen-
sive utility function considers all the realistic resources for
utility calculations. Therefore, the frequent VM migrations
and comprehensive utility calculations pose an additional
overhead for the said resource allocation. The overhead grows
with number of MESs (n) and number of UEs (m) because
there are nm possible options for an allocation scheme to
select from. For example, for 2 MESs and 3 UEs, the total
possible options that a scheme will have to check are 23 = 8,
as given in Table 2.

An allocation scheme selects the best option in terms of
low energy consumption and high utility and service rate
with different approaches. In our proposed work, we consider
all nm possible options and then select the option with high
utility and low energy consumption. However, as the number
of MESs or UEs increases, the overhead increases exponen-
tially. To reduce the computational overhead and make the
decision faster, we also provide a deep learning approach that
reduces this overhead by making it a simple multiplication
problem O(mn) using a pre-trained Deep Neural Network
(DNN). We generate an exhaustive dataset by using the com-
prehensive mathematical formulation and then use the dataset
to train a two-layered DNN, which then acts as the smart
allocator. The proposed algorithm maximizes the service rate
for UEs and utility for MESs. The optimal selection of MES
and energy-aware server activation also minimize the energy
consumption.

The remainder of this paper is organized as follows.
Section II presents a review of the related work. Section III
describes the system model and the mathematical formu-
lation of PowMigExpand. Section IV explains the resource
allocation schemes and the proposed algorithms. Sections V
presents simulation results and discussion, and Section VI
concludes the paper.

II. RELATED WORK
A detailed survey on the limitations and challenges in
resource allocation problem has been presented in [14].
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TABLE 2. Comparison of various algorithms for resource allocation in MEC.

Most of the existing literature focuses on the resource opti-
mization in the tasks, i.e., the offloading process [15], mini-
mization of overall energy consumption of UEs [16], and the
optimization of MEC resource allocation [17]. The resource
allocation problem in this paper refers to the resources of the
MES, and not the network conditions, since the varying net-
work conditions scenario has already been addressed in [15].

A mobility-aware dynamic resource allocation approach is
presented in [18]. The authors discuss the resource allocation
strategies and the migration strategies adopted specifically to
MEC. Their aim is to implement the follow-me behavior of
mobile edge resources, which depends upon the location of
the mobile users. They map physical areas to logical resource
communities, and the movement of a UE triggers the call for
migration. The approach, however, does not take the hetero-
geneous nature of applications into account. The requested
resource is assumed to be CPU only and the approach does
not describe any clear formulation of the utility for servers.

Deep learning approaches are used in [19] and [20] to min-
imize the service time in MEC resource allocation. However,
the energy consumption and the utility function for MESs
and the mobility of UEs are not considered in the mathe-
matical models. The authors in [21] propose a computing-
plus-communication energy model to minimize the energy
consumption of MESs. They use a hybrid-powered MES
and switching techniques of transmission drivers, however,
the VM migration and utility for MES is not considered.

The authors in [22] and [23] propose a resource allocation
algorithm for OFDMA networks with large numbers of BS
antennas as a non-convex optimization problem. An efficient

iterative algorithm with optimized power allocation, subcar-
rier allocation, and antenna allocation policies are proposed
by using fractional programming. However, the VM migra-
tion and consideration of CPU, RAM, and hard disk space
are not considered in the mathematical model. For MEC
networks, we need to consider the CPU, RAM, hard disk
space, and time of an MES in the utility function for a more
realistic scenario.

The authors in [24] use Lyapunov optimization technique
with a stochastic approach for wireless-poweredMEC tomin-
imize the energy consumption ofUEs by optimizing the trans-
mission power of MESs. A dynamic game-based approach is
presented in [25] for resource allocation in wireless powered
MEC. In this approach, the resources are optimally allocated
by computing optimal transmission power and optimal task
offloading. However, the VM migration and utility function
for the MESs are not considered in [24] and [25].

The authors in [26] present an energy efficient resource
allocation for MEC considering one MES and multiple UEs.
However, the focus of the paper is on the energy consumption
of UEs. In this paper, we present an energy efficient resource
allocation at MESs side for multiple MESs and UEs. Simi-
larly, the authors in [27] propose the dynamic task offload-
ing and resource allocation for edge computing. However,
the energy consumption of MESs is not considered. The main
focus of their work is on the offloading problem and the
energy consumption of UEs are considered.

In [28], the authors show the placement of VMs using
migrations to optimize the load, however, the migration
depends on the usage of the CPU and Service Level
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FIGURE 1. State of the system in time slots 1, 2, and 3. UE-2 and UE-8 move to another MES in time slots 2 and 3. Requests for UE-1 and UE-2 have been
completely serviced in time slot 3.

Agreement (SLA) violations. Our proposed work places the
VMs according to the user request and the available resources
in the feasible MESs. The migration of the VMs depends on
the mobility of the users, the availability of resources on the
MESs, migration utility, and the time left to complete the user
request.

The authors in [29] consider the resource allocation prob-
lem for the streamline security of VMs by the Dolphin Partner
Optimization (DPO) method. The main concern of the paper
is security. The paper also minimizes the energy consump-
tion due to VM migration. However, the approach is not
a utility-based approach. Moreover, VM migrations are not
based on the mobility of users.

The authors in [30] consider a multi-user multi-server
scenario to minimize the overall delay in the application exe-
cution. They consider UE mobility and VM migration. The
focus of their work is on computational offloading and service
delay minimization. In this paper, we propose a resource
allocation algorithm on the MES side. Our work focuses on
considering UE mobility as well as minimizing the overall
energy consumption of the MES.

A game-based approach is presented in [31]–[33] for com-
putational offloading and resource allocation in MEC. How-
ever, the main focus of [31] is on computational offloading
and the energy consumption for MESs is not considered.
Similarly, the authors in [32] solve the resource allocation
problem using cooperative game theory. However, they do
not consider the mobility of UEs and energy consumption for
MESs. The authors in [31]–[33] only consider the CPU and
time as resources requested by UEs and the utility functions
do not depend upon the realistic resources such as CPU,
RAM, and disk space.

A suite of techniques are presented in [12] for the resource
allocation problem on the MES side. The authors consider
only CPU as user request and take utilities according to
requested CPU only. They present multiple energy-aware
allocation schemes to allocate server resources to UEs. How-
ever, all the schemes in [12] consider only CPU as user
request and take utilities for MES according to the requested
CPU only. UEs are also considered to be stationary in [12].
The objective of this paper is to maximize the server util-
ity and the UE service rate, while minimizing the MES

energy consumption, in a realistic multi-user multi-server
scenario considering UE mobility.

III. SYSTEM MODEL
We consider a multi-user multi-server scenario. The number
of incoming requests is modeled according to the Poisson
distribution. The system consists of a central control unit
that detects the incoming UE requests, selects the optimal
MES for each request, and allocates MES resources to these
requests. We assume that the task of UE is successfully
received as a UE request to the central control unit of MEC.
The task offloading and the impact of physical communica-
tion channel are studied in [34] and [15].

Figure 1 shows the systemmodel used in this paper. All the
servers are idle initially and there are three incoming UE
requests in time slot 1 that are served atMES-1. In time slot 2,
UE-2 moves from its initial location and becomes closer to
MES-4 so its request is moved to MES-4. The resource usage
ofMES-1 decreases and that ofMES-4 increases accordingly.
A similar trend can be seen in time slot 3 where UE-8 moves,
and requests of UE-1 and UE-2 have been fulfilled. The
resource allocation depends upon various factors, such as the
amount of resources requested by the user, the amount of
resources available at the particular MES, distance between
the MES and the UE, and the allocation scheme. The request
vector that the UE sends to the central control unit contains
the information of the requested resources (CPU, RAM,
disk space), the time for which the user is requesting these
resources, and the location of the UE. The central control unit
can use the location of the UE by converting it into a distance
vector, containing the distance of the UE from each MES.

We propose a more realistic UE request model in which the
UE transmits requested resources, time, and its own location.
We assume that the UE continuously transmits its location
so that if it goes far away from one MES and closer to
another MES, the central control unit can issue a command
to migrate its VM to the other MES. The incorporation of the
UEmobilitymakes themodel more realistic. In time slot i, if a
user j has distance djk fromMES k , due to its mobility, it may
change in the next time slot and our proposed algorithm,
PowMigExpand, takes that mobility into account.
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TABLE 3. Notations.

We consider n number of servers and m number of UE
requests. The MESs are first sorted into the increasing order
of their energy consumption per unit capacity and labeled
accordingly so as to use the most profitable (least expensive)
servers first, and the more expensive ones only in times of
high demand. The central control unit finds the optimal server
for each incoming UE request and then allots MES resources
to it. For this purpose, we propose a mobility-aware utility
function that considers the amount of resources requested,
time, and distance between the UE and MES. Table 3 gives a
summary of the notations used in this paper.

A. USER REQUESTS
The user request matrix contains the information about the
resources requested by the UE, the time for which these
resources are requested, and the distance of the UE from each
MES (calculated by the central control unit from the location
of the UE). Since a UE should specify the minimum and the
maximum requested resources [12], we model the request
matrix into two parts to incorporate the mobility of UEs:
(i) the requested resources matrix Q, and (ii) the distance
matrix D. The resource matrix Q is given by

Q = [cTmin, c
T
max , r

T
min, r

T
max ,h

T , tT ], (1)

where cTmin and cTmax represent the vectors1 of the minimum
and maximum amount of CPU in m UE requests, rTmin and
rTmax represent the vectors of the minimum and maximum
amount of RAM in UE requests, hT is the vector of the
amount of disk space in UE requests, and tT is the vector
of the number of time slots specified in the UE requests for
which these resources are needed. The disk space is not mod-
eled as a variable resource since, in most real word scenarios,
an application needs a fixed amount of disk space to store
the data. The central control unit must know about these six
parameters of m UE requests. Therefore, the order of matrix
Q is m× 6. These vectors can be written as

cmin = [c1min , c2min , · · · , cmmin ], (2)

cmax = [c1max , c2max , · · · , cmmax ], (3)

rmin = [r1min , r2min , · · · , rmmin ], (4)

rmax = [r1max , r2max , · · · , rmmax ], (5)

h = [h1, h2, · · · , hm], (6)

t = [t1, t2, · · · , tm], (7)

where c1min , c1max , r1min , r1max , h1, and t1 represent the min-
imum CPU, maximum CPU, minimum RAM, maximum
RAM, disk space, and time requested by UE-1, respectively.
Similarly, cmmin , cmmax , rmmin , rmmax , hm, and tm represent the
requested data of UEm. In general, we can say that cjmin , cjmax ,
rjmin , rjmax , hj, and tj represent the minimum CPU, maximum
CPU, minimum RAM, maximum RAM, disk space, and time
requested by UE j, where j = 1, 2, . . . ,m. The dimension of
vectors cmin, cmax , rmin, rmax , h, and t is 1× m.
We assume that a required task of a UE can be executed

by minimum as well as maximum resources with different
utility and QoS. Here, minimum and maximum resources
refers to the minimum and maximum size of the VM which
is assigned to a UE in an MES. If the central control unit
allocates minimum requested resources to the UE, the UE can
execute a smaller number of tasks and pay a lower premium
to theMES. Otherwise, if the central control unit allocates the
maximum requested resources to the UE, the UE can perform
more tasks and pay a higher premium.
Definition 1: Premium: In this paper, a premium paid by

a UE is a reward for the MES and is referred to as a unit-less
quantity, called utility.

1As a convention, all the vectors and matrices are represented in boldface.
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The location of the UE is translated into a distance vector
by the central control unit in terms of its distance from each
MES. The distance matrix D containing the distances of m
UEs from nMESs is given by

D =


d11 d12 · · · d1n
d21 d22 · · · d2n
...

...
. . .

...

dm1 dm2 · · · dmn

 , (8)

where d11 is the distance of UE-1 from MES-1. Similarly,
dmn is the distance between UE m and MES n. In general, djk
represents the distance of UE j from MES k . We consider
the mobility of users in multi-user multi-server scenario,
therefore, this distance matrix may change in the next time
slot, depending upon the mobility of users. The proposed
work updates the mobility-aware distance matrix D in each
time slot as shown in Figure 2. The dimension of D is m× n
and for a time slot i it is represented as

Di
=


d i11 d i12 · · · d

i
1n

d i21 d i22 · · · d
i
2n

...
...

. . .
...

d im1 d im2 · · · d
i
mn

 . (9)

FIGURE 2. Distance matrix containing distances of m UEs from n MESs in
t time slots.

B. THE UTILITY FUNCTION
The UEs request MES resources to execute their applications
remotely and this gives them a chance to execute their appli-
cations in amore efficient way by using powerful servers. The
servers, in return for allowing their resources to be used, get a
utility. This utility depends upon the amount of CPU, RAM,
and disk space requested by theUE, the time for which theUE
has requested these resources, and upon the distance between
the UE and MES. Therefore, the utility function is directly
proportional to the requested resources and time. The QoS
that the UE receives is inversely proportional to the distance
between the UE and the MES due to network conditions,

transmission range of the UE and MES, frequent disconnec-
tions, and the latency in communication. The utility is directly
related to the QoS and, hence, is inversely proportional to the
distance between the UE and the MES, and is given as

ujk =
(γ1cj + γ2rj + γ3hj)γ4tj

djk
. (10)

Here, ujk is the utility for MES k for serving UE j. Moreover,
cj, rj, and hj, respectively, denote the amount of CPU, RAM
and hard disk space allocated to UE j by MES k , tj is the time
for which these resources are allocated to UE j, and djk is the
distance of UE j from MES k . The requested resources are
weighted and normalized by γ1, γ2, and γ3 as follows

γ1 =
w1

ctotal
, (11)

γ2 =
w2

rtotal
, (12)

γ3 =
w3

htotal
. (13)

Here, ctotal , rtotal , and htotal are the combined total CPU,
RAM, and disk space of all the servers, respectively, whereas,
w1,w2, and w3 are the weighting coefficients. For example,
the value of w1 shows the relative contribution of CPU to
the utility function. These coefficients can be adjusted to
represent the expensiveness of different resources. Similarly,
to keep the utility function unit-less, tj and djk are normalized
with γ4, i.e.,

γ4 =
dmax
tmax

. (14)

Here, dmax is the maximum distance within which all the
MESs and UEs are operating, and tmax is the maximum time
that a UE is allowed to request. The upper threshold on time
is set such that a UE cannot hog all the resources and prevent
other users from getting the service.

The utility for each MES is different from other MESs for
serving the UE request because of the UE’s location. A server
receives higher utility by serving the nearby UEs than by
serving the ones that are far away from it because the UEs
closer to the server get better QoS and pay a higher premium
for it. The utility of n servers for entertaining the same UE j
can, thus, be represented by a vector u as follows

u = [uj1, uj2, . . . , ujn]. (15)

Similarly, the matrix of utilities for m UEs and n severs is
defined as

U =


u11 u12 · · · u1n
u21 u22 · · · u2n
...

...
. . .

...

um1 um2 · · · umn

 , (16)

where U is an m×nmatrix of utilities. Here, u11 is the utility
of UE 1 at MES 1, and umn is the utility of UE m at MES n.
Since the distance djk for several UEs may be updated in the
next time slots because of their mobility, their utilities will
also be updated accordingly. In general, the distance of UE j
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from MES k in time slot i can be represented by d ijk and their
utility can be represented by uijk . The mobility-aware utility
matrix can, therefore, be given as

Ui
=


ui11 ui12 · · · u

i
1n

ui21 ui22 · · · u
i
2n

...
...

. . .
...

uim1 uim2 · · · u
i
mn

 . (17)

According to a UE request, the minimum and maximum
utility that an MES can get by serving the request can be
represented by

ujkmin =
(γ1cjmin + γ2rjmin + γ3hj)γ4tj

djk
, (18)

ujkmax =
(γ1cjmax + γ2rjmax + γ3hj)γ4tj

djk
, (19)

where ujkmin and ujkmax represent the minimum and maximum
utilities for MES k from UE j.
Our proposed algorithm finds the MES with the maximum

utility for each UE since that will provide the best QoS to
the UE. From a set of n available servers, we find a server k ,
such that k ∈ {1, 2, 3, . . . , n}, for which the utility of a UE
j is maximum. This MES k is the optimal MES s∗j for UE j,
and is represented as

s∗j = arg max
k∈{1,2,...,n}

ujk , j = 1, 2, . . . ,m. (20)

C. FEASIBILITY OF SERVERS
A feasible MES k for UE j has enough available resources to
serve UE j. If the current available resources of MES k are
less than the requested resources of UE j, then this MES k
will not be feasible for UE j. The feasibility status of MES k
for UE j, fjk , can be written as

fjk =


1 cjmin ≤ ckavand rjmin ≤ rkav

and hj ≤ hkav
0 oherwise

, (21)

where ckav , rkav , and hkav are the available resources at MES
k . fjk = 1 means that MES k is feasible for UE j and
fjk = 0 means that MES k is not feasible for UE j. For UE j,
the feasibility vector of n available MESs, fj, can be written
as

fj = [fj1, fj2, · · · , fjn], (22)

where the order of fj is 1 × n, and fj represents the
feasibility status of all MESs for UE j. For example,
fj = [0, 0, 0, 0, 1, 0, 0, 0, 0, 1] means that only MES-5 and
MES-10 are feasible for UE j. Therefore, we can serve UE j
only at MES-5 and MES-10.

D. ENERGY AWARE MES PRIORITY
The total number of resources of MES k is defined as the
capacity, C_Pk , and can be calculated as

C_Pk = γ1cktotal + γ2rktotal + γ3hktotal , (23)

where cktotal , rktotal and hktotal are the total CPU, RAM, and
disk space, respectively, ofMES k . Since differentMESsmay
have different capacities and types of hardware, therefore,
the energy consumption per unit time of an MES for keeping
itself ON (activated) is different from other MESs. If Ek is
the energy consumption per unit time in keeping MES k ON,
then pk , the energy consumption per unit capacity of MES k ,
can be written as

pk =
Ek

C_Pk
. (24)

An MES with lower value of pk means higher capacity and
lower energy consumption for keeping it ON. Thus, it should
be employedmore often as compared toMESswith higher pk .

To conserve energy, we need to avoid the activation of
idle MESs as long as possible. We also need to prioritize
the already ON MESs for entertaining new UE requests.
If the currently active servers are not enough to serve the new
incoming traffic, then the next more profitable idle MES is
activated with some decrease in the utility as

u′jk =

{
ujk − γ5pk sk = 0
ujk sk = 1

, (25)

where sk = 0 means that the MES k is idle and sk = 1 means
that the MES k is already in activated state. γ5 is the unit
balancing coefficient, given as

γ5 =
w5

emax
, (26)

where w5 is the weighting coefficient and its value can be
adjusted to make the threshold for activating an idle server
higher or lower. emax is the sum of theEk for all servers, which
can be written as

emax =
n∑

k=1

Ek . (27)

The performance metrics considered in this paper are ser-
vice rate (SR), utility (utotal), energy consumption per unit
utility (epuu), and utility per unit active time (uput ) of theMES.
The service rate (SR) is defined as follows

SR =
NRS
NRT
× 100, (28)

where NRT represents the total number of UE requests, and
NRS represents the number of requests served.

Similarly, the total utility of all the servers is calculated as

utotal =
n∑

k=1

uktotal , (29)

where uktotal is the utility of server k for entertaining UE
requests that are assigned to it.

Considering only CPU as requested resource is not a practi-
cal approach because the nature of application can have a sig-
nificant effect on the amount and type of resources it needs.
Most of the web applications and file hosting applications
do not require much of the CPU but need a relatively larger
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disk space, whereas most of the speech processing applica-
tions require a larger amount of CPU than other resources.
A video processing application may require another combi-
nation of resources. Therefore, CPU, RAM, and disk space
should also be considered as requested resources, because
their utilization consume different amount of energy of an
MES. The energy consumption due to the usage of CPU,
RAM, and disk space depends on the instruction type and
architecture of the system used in an MES. We assume linear
relation between the energy consumption and usage of CPU,
RAM, and disk space [35].

The energy consumption due to CPU usage, RAM usage,
and disk space usage of MES k , i.e., Eck , Erk , and Ehk ,
respectively, can be given as

Eck = Eckmin + (Eckmax − Eckmin)Gc, (30)

Erk = Erkmin + (Erkmax − Erkmin)Gr , (31)

Ehk = Ehkmin + (Ehkmax − Ehkmin)Gh, (32)

where Eckmin, Erkmin, and Ehkmin, respectively, represent the
energy consumption when the CPU, RAM, and disk space are
not in use. Similarly, Eckmax , Erkmax , and Ehkmax represent the
energy consumption when the CPU, RAM, and disk space,
respectively, are fully used. Gc, Gr , and Gh are the utilization
of CPU, RAM, and disk space, respectively. The total energy
consumption, Ektotal , of MES k , is calculated as

Ektotal = Ek .tkactive + Eck + Erk + Ehk , (33)

where tkactive is the total time for which the MES k was active.
The total energy consumption of all the MESs, Etotal , can

be written as

Etotal =
n∑

k=1

Ektotal . (34)

The total energy consumption alone cannot give a realistic
measure of performance of an algorithm since the utility of an
algorithm may also increase, and the increase in utility might
be sufficient to justify the energy consumed in entertaining
UE requests. Hence, epuu is used as a performance metric
instead of energy consumption alone, and is defined as the
ratio of the total energy and total utility. It can be calculated
as

epuu =
Etotal
utotal

. (35)

The last performance metric, uput , shows the type of UE
requests that an algorithm prioritizes over the others. This is
because, for the same amount of server active time, different
algorithms can have different utilities depending upon the
amount of resources requested and the distance between the
UE and MES. Thus, uput can be defined as

uput =
utotal
tactive

, (36)

where tactive is the sum of server active time, tkactive , for all the
servers, and is defined as

tactive =
n∑

k=1

tkactive . (37)

IV. ALLOCATION SCHEMES
An allocation scheme refers to the algorithm that a cen-
tral unit employs to assign UEs to MESs and to allo-
cate specific amount of MES resources to UE requests.
We improve upon the work of [12] by considering more
realistic resources of MESs and the mobility of users in a
multi-user multi-server scenario. We propose two new algo-
rithms, namely, PowMigExpand and Energy Efficient Smart
Allocator (EESA) in this section.

A. BASIC OVER-PROVISIONING
The idea of first-come first-served is used in Basic
Over-provisioning (BO) [12]. BO allocates the maximum
requested resources to all UEs until MES runs out of
resources. It activates the MESs in the increasing order of
their pk and creates the VM of the incoming UE request at
the first available MES.

B. GREEDY MAX
The Greedy Max (GM) [12] first sorts the incoming UE
requests in the decreasing order of their utility. For exam-
ple, if there are 5 UE requests, BO allocates the maximum
requested resources to all of them regardless of any priority,
whereasGM first allocates the maximum requested resources
to those UEs having higher utility. The difference between
the performance of BO and GM is clear in times of high
traffic when the MESs start filling up and some of the UEs
are denied service. The UEs that are denied service in case of
GM will always be the ones that offered the lowest utility.

C. MINIMUM EXPAND
The problem with BO and GM is that even in times of high
traffic they keep allocating the maximum requested resources
to some UEs and keep denying service to all the others. Min-
imum Expand (MinExpand) [12] tries to solve this problem
by allocating the minimum requested resources to UEs for the
full time that they requested resources for, and later allocating
themmore only if there is still room available at theMES after
giving the minimum resources to all incoming UE requests.
In this way, MinExpand gives service to a lot more UEs in
times of high traffic than BO and GM. MinExpand is also
greedy in nature since it follows the same principal asGM for
sorting when it is expanding the existing VMs. It allocates the
minimum resources to all, but then expands them in the order
of their decreasing utility. In this manner, the more profitable
VMs get expanded first, and the least profitable later. The
expansion takes place until there is room on the MES so if
some of the VMs do not get expanded because of the server
running out of resources to allocate, they will always be the
least profitable VMs. The expansion takes place until the UEs
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requested maximum has reached or the server runs out of
resources, whichever happens first.

D. POWER MINIMUM EXPAND
All the previous algorithms ignore the energy consumption of
MES in activating them for any UE request regardless of its
utility. For example, when the most profitable server runs out
of resources, they turn the next server ON without checking
if the utility from new request is beneficial or not. Power
Minimum Expand (PowExpand) sets a certain threshold of
utility to activate an idle server [12]. Hence, PowExpand
employs the penalized utility function given by (25). If an
MES is in idle state, it subtracts a penalty term from the utility
function, so that servers that are already in the ON state are
prioritized over the idle server.

If the utility from new incoming UE is smaller than the
threshold of activating an MES, it will be denied for service.
However, the parameter γ5 can be adjusted to put a stricter or
lighter emphasis on threshold.

E. POWER MIGRATION EXPAND
All the previous algorithms ignore the VM migration on the
basis of mobility of UEs and utility for MESs. We propose
Power Migration Expand (PowMigExpand) that considers
UE’s mobility by taking their location into account in every
time slot. Our utility funciton depends upon the distance
between UE and MES, therefore, our VM migration is more
beneficial in terms of utility. PowMigExpand sorts MESs in
the increasing order of pk and calculates the utility from
each UE to each MES (hence, the matrix U given in (16)).
Then sorts UEs in the decreasing order of utility and assigns
them on the server for which the corresponding utility is the
highest. This allocation uses the penalized utility function
so that the servers that are already ON are prioritized. The
distance matrix of the UEs is updated in every time slot and,
hence, their utility for each server is also calculated again
in every time slot. When a UE moves away from one MES
and becomes closer to another, its utility for the nearest MES
becomes the highest and the central control unit migrates
its VM to that MES. Such frequent migrations cause an
additional overhead on the system, so we need to keep these
migrations to a minimum. Hence, our algorithm also sets a
threshold on the utility and the remaining time for a request
to be completed for VM migration. If the remaining time for
the request to be completed is less than 2 time slots then the
VM is not migrated.

Algorithm 1 explainsPowMigExpand. The first part selects
the optimal server for each incoming UE request and allo-
cates the minimum requested resources to them. The second
part checks for mobility of users and moves them to the
new optimal server if needed. The third part expands the
VMs, prioritizing the more profitable VMs to their maximum
requested resources if there is room available on the server.

The algorithms that do not offer VM migration suffer
from a certain disadvantage, i.e., if a UE is too far away
from an MES and the allocation scheme does not incorporate

Algorithm 1 PowMigExpand
1: Sort all MES into increasing order of pk
2: for time i = 1, 2, . . . , t do
3: Sort all incoming UEs into decreasing order of

requested resources.
4: for UE j = 1, 2, . . . ,m do
5: Compute feasibility of MES from (21)
6: Compute penalized utility for UE j at feasible

MESs from (25).
7: Find the optimal MES for UE j from (20).
8: Create VM for UE j at MES k for time tj.
9: Allocate minimum requested resources.
10: Update overall utility, service rate, and resource

usage.
11: break;
12: end for
13: forMES k = 1, 2, . . . , n do
14: Check distance of all existing UEs from MES k .
15: if the UE is moving then
16: Compute feasibility of MES again from (21)
17: Compute penalized utility again at feasible

MESs from (25).
18: Find the new optimal MES.
19: if s∗jnew 6= s∗j AND remaining time> 2 then
20: Migrate VM to s∗jnew for remaining time.
21: Update overall utility, and resource usage

of both MESs.
22: end if
23: end if
24: Sort all VMs at MES k into decreasing order of

their ujmax .
25: while ckav > 0.1cj do
26: for sorted VMs j = 1, 2, . . . at MES k do
27: Expand VM j to its maximum.
28: Update overall utility and resource usage.
29: end for
30: end while
31: end for
32: Bring the MESs with zero usage to power save mode.
33: end for

VM migration, the UE is simply disconnected from the
MES instead of being moved to the other MES. As a result,
the service rate of all the algorithms that do not consider
VM migration is expected to be lower than PowMigExpand.
The implementation complexity of the proposed algorithm is
the same as the existing algorithms because every algorithm
has to find the best allocation option for m UEs with n
available MESs. There are nm total possible options from
which an allocation scheme selects the best option in terms of
energy consumption, service rate, and utility for MES. Since
our algorithms considers more realistic resources of an MES
(CPU, RAM, disk space), the feasibility of an MES, and the
threshold utility to take decision of activating an idle MES,
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therefore, the proposed algorithm has high computational
overhead as compared to the existing algorithms. To avoid
such computational overhead, we propose a deep learning
approach in which we train a DNN to reduce the complex-
ity as a multiplication problem O(mn). The computational
complexity is high only in training phase of the network.
Once the DNN is trained, the complexity becomes a simple
multiplication problem [36].

F. ENERGY EFFICIENT SMART ALLOCATOR
The complexity of choosing the optimum MES k for UE j
for m number of UEs and n number of servers is O(nm) and
that will put an additional overhead on the system. In most
practical scenarios where the numbers of UEs and MESs
are large, the overhead increases exponentially and creates
significant delays in choosing the optimalMES. These delays
can be avoided by utilizing the potential of machine learning
and neural networks that have the ability to learn the behav-
ior of a decision maker and can act in its place for future
unseen data [36]–[38]. Deep learning algorithms can learn
complex decision boundaries [39] and complicated patterns
in the data and that motivates us to design a deep learn-
ing algorithm for efficient resource allocation. Such type of
learning is called supervised deep learning. In supervised
deep learning, we need a correct dataset for training of the
neural network. We use our comprehensive mathematical
model of UE request and utility function to generate the
training dataset for neural network. Since our mathematical
model considers the mobility of UEs and takes into account
the energy consumption of MESs, we named this scheme as
Energy Efficient Smart Allocator (EESA).We train the EESA
over training dataset and after training it is able to predict the
labels for unseen test data with a degree of certainty. In doing
so, a pre-trained network only has the complexity of O(mn)
for deciding which MES is optimal for the UE request.

The dataset is created by running the simulations over
PowMigExpand and storing the UE requests and the MES
resource usage state as the training data. The labels for this
training data are the optimal MESs selected by PowMigEx-
pand. We divide the total available data into training, vali-
dation, and test data parts according to 70%, 15%, and 15%
ratios; and train three different networks over this dataset.

There are three type of layers in a neural network;
input layer, hidden layer, and output layer, as shown
in Figure 3 [39]. Input layer takes the input data for which
the decision is required. In our case, this data is the num-
ber of MESs, number of UEs, requested resources by UEs,
available resources of MESs, distance matrix, and infor-
mation about the corresponding utilities. The requested
resources and its corresponding utility value need 7 neu-
rons (cmin, cmax , rmin, rmax , h, t, umax) in the input layer. Sim-
ilarly, we consider 10 MESs, therefore, distance matrix for
a single UE, CPU utilization of 10 MESs, RAM utilization
of 10 MESs, and disk space utilization of 10 MESs each need
10 neurons in the input layer. Therefore, we need 47 neurons
in the input layers for training, as depicted in Figure 4.

FIGURE 3. A single layer, two layer, and three layer neural network [39].

FIGURE 4. (a) The DNN with two hidden layers, (b) The DNN with three
hidden layers.

We take 100 neuron per each hidden layer. The output layer
takes the desired correct decision as labels during training.
In our case, these labels are the optimal MESs for UEs. As we
consider 10 MESs, therefore, we choose 11 neurons in the
output layer; one for eachMES and last one for busy situation.
The situation will be busy if all the MESs are fully loaded.
After training, the trained network calculates the desired label
for unseen input data. The hidden layers are used to find the
relation and links between output data and input data.

We use Softmax activation function [36] for the training
of our networks. The first network is the simplest artifi-
cial neural network with a single hidden layer. Most of the
time, such network is not able to model complex decision
boundaries and fails to learn the complicated patterns in the
data. One way to improve the performance is to increase the

VOLUME 8, 2020 179539



Z. Ali et al.: Deep Learning Approach for Mobility-Aware and Energy-Efficient Resource Allocation in MEC

TABLE 4. Simulation Parameters.

number of hidden layers (deep learning). Thus, the second
and third network that we use have two and three hidden
layers respectively, as shown in Figure 4.

V. PERFORMANCE EVALUATION
A. SIMULATION SETUP
We use MATLAB (R2019a) on Intel Core i7 CPU @3.4GHz
for simulations. User request arrivals are modeled as a Pois-
son process with mean 5 for all simulations except for varying
incoming traffic conditions. Similarly, the number of MESs
is kept 10 except for simulations where we try to see the
effect of varying the total number of MESs. The results of the
resource allocation schemes are recorded for 1000 time slots.
The amount of CPU, RAM, and disk space at MESs follow
a Normal distribution with mean and variance 15 and 5;
10 and 2; and 25 and 5, respectively. The energy consumption
per unit time, Ek , to keep an MES ON is proportional to
the amount of resources of an MES. The coverage range
of an MES is assumed to be up to 800 m. Since the users
are mobile and the distance between users and MESs may
change in every time slot, therefore, the distance between
users and MESs is taken as a uniform random variable with
d ∈ [1, 1000].
The effect of mobility is incorporated into PowMigExpand,

i.e., the locations of UEs do not remain constant through-
out the application execution. Instead, some of the UEs are
assumed to be stationary and some are assumed to be mobile
and their distances from each MES are updated in every time
slot when their requests are being served at the MES. As a
result, some of the UEs move too far away from the MES.
Consequently, the algorithms that do not migrate their VMs
to the new optimal server cannot complete their requests.
We simulate this scenario by disconnecting UEs from MES
once they cross a certain distance threshold for the algorithms
that do not incorporate VM migration. We consider utility,
service rate, and energy consumption of MESs as the perfor-
mance metrics, which have been derived in Section III. The
effects of varying traffic and varying total number of MESs
on the performance metrics are presented next.

B. UTILITY OF MESs
Figure 5 shows the utility of different algorithms against
different levels of traffic. As the number of incoming requests
increases, the utility for all the algorithms increases because

FIGURE 5. Utility of the considered algorithms for varying levels of
incoming UE requests.

the server provides services to more number of users. How-
ever, the performance of PowMigExpand is better than the
other algorithms because of its mobility-awareness and a
higher service rate. As the number of request arrivals is a
random process and also the amount of requested resources is
random, therefore, in Figure 5, at mean equal to 4 the utility
of proposed algorithm decreases because the VM migration
and the activating of idle MESs decrease the utility of the
proposed algorithm. Due to these reasons, the proposed algo-
rithm assigns minimum resources to the UEs for entertain-
ing maximum UEs. Therefore, with minimum resources the
utility may decrease. Other algorithms do not consider the
VMmigration so, their utility does not decrease at mean equal
to 4.

FIGURE 6. Utility per unit server active time of the considered algorithms
for varying levels of incoming UE requests.

Figure 6 shows utility per unit active time against differ-
ent levels of incoming traffic. All the algorithms perform
well under low traffic conditions, whereas under high traffic
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conditions the performance of the algorithms that do not
take mobility into account degrades. For the same amount
of server active time, PowMigExpand provides service to the
users with the higher utility, and hence, results in a higher
utility per unit server active time. The sudden increase in
utility at mean equal to 3 implies the shorter active time of
the servers because the proposed algorithm also checks for
the feasibility of servers and tries to avoid the idle servers.

FIGURE 7. Utility of the considered algorithms for different number of
MESs.

In Figure 7, we present the utility of all the algorithms
against different number of servers. It can be observed from
the figure that as the number of servers increases, the utility
also increases because more number of requests can be enter-
tained on a higher number of servers. However, PowMigEx-
pand outperforms all the other algorithms because of its
higher service rate.

FIGURE 8. Utility per unit server active time of the considered algorithms
for different number of MESs.

Figure 8 depicts the variation of utility per unit active time
against the number of servers for all the algorithms. As the

number of servers increases, the utility as well as the server
active time increases for all the algorithms. For the same
amount of server active time, however, PowMigExpand has
a higher utility as compared to the other algorithms. This
is because PowMigExpand is mobility-aware, and provides
service to the UE requests that are closest to the server,
resulting in a higher utility for the same amount of server
active time. The utility per unit server active time is low for
the other algorithms because the server remains active even
when the user has been disconnected from it. The sudden
increase at total number of servers equal to 11, in Figure 8,
is due to the random high traffic for short active time. It means
that when we have 11 MESs, it may be possible to get traffic
for a short time, therefore, the utility per unit active time
increases suddenly.

FIGURE 9. Utility of the considered algorithms for total time for which UE
requests were taken.

Figure 9 presents the plot of utility against the total time.
As depicted int the figure, when the total time increases,
the number of UEs and their requested resources also
increase. As a result, the utility of all the algorithms increases.
The utility of our proposed algorithm is higher than others
for all time slots, showing that PowMigExpand selects the
optimal combination of UE requests to serve.

Figure 10 shows the utility per unit active time against
the total time for which the algorithms run. As the time
duration of the algorithms increases, the server active time
also increases because of providing service to more users.
Therefore, the utility per unit active time may increase or
decrease depending upon the number of users entertained.
The utility rate of our PowMigExpand is higher as compared
to the other algorithms, because our algorithm considers
VM migration during mobility of users and gets a higher ser-
vice rate. Higher service rate indicates that PowMigExpand
provides service to a higher number of users as compared to
the other algorithms. Therefore, the utility per unit active time
is high for PowMigExpand. The sudden changes in the trends
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FIGURE 10. Utility per unit server active time of the considered
algorithms for total time for which UE requests were taken.

in Figure 10 show the stochastic nature of the incoming traffic
and requested resources.

FIGURE 11. Service rate of the considered algorithms for varying levels of
incoming UE requests.

C. SERVICE RATE
Figure 11 shows the service rate for different algorithms
against varying levels of incoming traffic. It can be observed
from the figure that all the algorithms perform well under
low traffic conditions. However, under high traffic conditions
there are frequent disconnections in case of the algorithms
that do not take mobility into account. The x-axis represents
the mean of the Poisson process according to which the
user arrivals are modeled. A higher mean represents high
traffic, whereas a lowmean represents low traffic. The service
rate of PowMigExpand decreases slightly under high traffic
conditions because it does not activate idle servers for users

with low utility. However, the service rate of PowMigExpand
is higher than other algorithms for all levels of traffics. The
quick decrease in service rate at mean equal to 3 for the
algorithms other thanPowMigExpand is due to the disconnec-
tivity of UEs because they do not consider the VMmigration.

FIGURE 12. Service rate of the considered algorithms for different
number of MESs.

FIGURE 13. Service rate of the considered algorithms for total time for
which UE requests were taken.

Figure 12 presents service rate of all the algorithms against
varying number of total servers. As depicted in the figure,
the service rate is low for small number of servers for all
the algorithms because the resources of the servers are not
enough to provide service to all the incoming UE requests.
As the number of servers increases, the service rate of all the
algorithms starts improving. When the number of servers is
sufficient to provide service to all the UE requests, the service
rate of PowMigExpand is higher than the other algorithms
because it considers the mobility of users and migrates their
requests to other servers instead of disconnecting them when
they move. Figure 13 shows the service rate of all the algo-
rithms against the total time for which the algorithms run.
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The service rate ofPowMigExpand is much higher than all the
other algorithms for all time slots. This is becausePowMigEx-
pand takes the mobility of the UEs into account, while the
other algorithms assume all the UEs to be stationary. As a
result, the UEs that are moving get disconnected in case of all
the other algorithms. The significant difference in the service
rate of PowMigExpand and the other algorithms indicates the
importance of taking into account the mobility of users and
VM migration. PowMigExpand provides service to all UEs
regardless of them being stationary or moving, whereas the
other algorithms only provide services to stationary UEs. The
sudden decreasing trend at different points in Figure 12 and
Figure 13 shows the ignorance of the VMmigrations in these
algorithms.

FIGURE 14. Energy consumption per unit utility of the considered
algorithms for varying levels of incoming UE requests.

D. ENERGY CONSUMPTION OF MESs
Energy consumption per unit utility provides a meaningful
measure of performance to compare different algorithms.
Figure 14 presents the energy consumption per unit utility for
all the algorithms against different levels of incoming traffic.
All the algorithms perform well under low traffic conditions
and their energy consumption per unit utility is quite low.
However, under high traffic conditions, the algorithms that
allocate the maximum requested resources to users have high
energy consumption per unit utility ratio. This means that
their energy consumption is high for a relatively low level of
utility, which can be observed in the utility graph of Figure 5.

Figure 15 shows the energy consumption per unit utility
against varying number of servers. As the number of servers
increases, the utility as well as the energy consumption of all
the algorithms increases. It can be observed that PowMigEx-
pand outperforms all the other algorithms because of its
higher utility for the same amount of energy consumption.
The overall energy consumption of PowMigExpand is lowest
because of its energy-aware server priority. A quick increase

FIGURE 15. Energy consumption per unit utility of the considered
algorithms for different number of MESs.

in the plots at MESs equal to 14 shows their decreasing utility
at that point.

FIGURE 16. Energy consumption per unit utility of the considered
algorithms for total time for which UE requests were taken.

Figure 16 shows the variation of energy consumption per
unit utility for varying total time for which theUE requests are
entertained. When an algorithm runs for a long time, it pro-
vides service to more number of UEs and the total energy
consumption also increases. The increase in utility is achieved
at the cost of the increase in total energy consumption.We can
observe from the figure that the ratio of energy consumption
per unit utility is low for PowMigExpand as compared to the
other algorithms. This is because PowMigExpand considers
the energy per unit capacity for activating an idle server. Our
proposed algorithm activates a server only if the reward for
activating the server exceeds the cost for turning it ON by
setting a utility threshold. Our approach also considers the
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mobility of UEs, and hence, it provides a better utility for
the same amount of energy consumed. Since the number of
UEs and their requested resources are random, the algorithms
perform the worst when the total time is 250 time slots. This is
because of a large number of users requesting a small amount
of resources and being located far away from the servers,
generating comparatively small utility for a higher energy
consumption. The random trends in plots of Figure 16 show
the random nature of incoming UE requests and their utility.

FIGURE 17. Accuracy of neural networks for different sizes of training
dataset used in PowMigExpand.

E. ACCURACY OF EESA
We get more than 70% accuracy of EESA in deciding the
assignment of UEs to the optimal MESs. EESA is able to
handle the decision making process of selecting the opti-
mal server for each incoming UE request. MATLAB Deep
Learning Toolbox has been used for the results presented in
this subsection. Figure 17 shows the performance of three
different neural networks for different data sizes (total num-
ber of UE requests). Since the results of PowMigExpand are
better than the other algorithms, in terms of utility, energy
consumption, and service rate, we usePowMigExpand to gen-
erate the training dataset for EESA. These different sizes of
datasets are obtained by running PowMigExpand for different
amounts of time. The figure shows that a two layered network
is the optimal choice for this type of data. The input to the
network is the state vector containing the incoming request
data and the MES usage data, and the output is the optimal
MES that selected by PowMigExpand for the UE request. The
poor performance of a single layer and a three layer network
is due to under fitting and over fitting problems. Once trained
over a sufficiently large dataset, the network can be used for
all future decisions.

F. CRITICAL DISCUSSION
The problem of MEC server resource allocation is a complex
multidimensional one and most of the traditional approaches

focus only on meeting the user requirements regardless of the
energy consumption on the MES side, leading to a significant
waste of resources and a large carbon footprint. Most of
the literature considers CPU only as UE request and take
utilities only dependent on CPU. Similarly static allocation of
resources is not an optimal solution due to the mobile nature
of UEs and thus, VMmigration is necessary but excessive use
of it puts an additional load on the server.

The simulation results show better performance of the
proposed PowMigExpand resource allocation algorithm in
terms of service rate, utility, and overall energy consumption.
The simulation results show the effect of varying traffic and
varying total number of MESs on these performance met-
rics. Therefore, the better performance of our algorithm for
different number of total MESs and varying traffic shows
the scalability of our proposed algorithm. This algorithm
provides service to the maximum number of users, keeping
the MES utility high, and the overall energy consumption to
the lowest possible. The better service rate of PowMigEx-
pand, as compared to the other algorithms, is because it
takes UE mobility into account. In this way, PowMigEx-
pand maximizes the server utility, minimizes the energy
consumption and provides the highest service rate to the
users. The mobility-awareness and energy awareness of the
PowMigExpand algorithm make it the most feasible algo-
rithm for implementation in real-world scenarios. Since the
calculations involved in selecting the optimal server and
allocating the optimal amount of resources put additional
overhead on the allocation schemes, we have also presented
smart allocator (EESA) that uses machine learning for the
resource allocation problem and reduces the number of com-
putations. A two-layer neural network has been found to be
the appropriate choice for this type of resource allocation.

The simulation results indicate that the performance of
all benchmark algorithms is comparable under low traffic
conditions but in case of high traffic conditions and high
UE mobility, the allocation schemes that are not energy and
mobility-aware do a poor job of allocating resources to the
incoming requests. Our algorithm performs consistently bet-
ter than all the other algorithms under all traffic conditions as
well as under the varying number of servers. However, EESA
is unable to handle the task of deciding where and when to
migrate a VM. Our future work will seek to address this issue.

VI. CONCLUSION
The resource allocation problem in MEC is of great impor-
tance. Most of the related work considers only CPU resources
in calculating the utilities while ignoring the UE mobility.
Thus, an excessive use of VM migration may increase the
load on MES. We have proposed a balance approach that
allows VM migration only when the rewards justify the cost.
Our proposed algorithm, PowMigExpand, uses conservative
activation of MESs that minimizes the energy consumption.
Moreover, PowMigExpand maximizes the utility for MESs
and service rate for UEs. Our algorithm handles a large
number of UEs by reallocating MES resources according
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to the changes in the incoming requests and outperforms
eminent approaches under high load conditions. We also
propose a deep learning based energy efficient smart allocator
algorithm, EESA, to solve the multidimensional optimization
problem numerically and reduce the computational overhead
by using a pre-trained network for decision making. We get
more than 70% accuracy for EESA even in high traffic con-
ditions. As a future work, the joint task of computational
offloading and resource allocation can be handed over to the
smart allocator.
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