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ABSTRACT Sign language recognition is a challenging problem where signs are identified by simultaneous
local and global articulations of multiple sources, i.e. hand shape and orientation, hand movements, body
posture, and facial expressions. Solving this problem computationally for a large vocabulary of signs in
real life settings is still a challenge, even with the state-of-the-art models. In this study, we present a new
large-scale multi-modal Turkish Sign Language dataset (AUTSL) with a benchmark and provide baseline
models for performance evaluations. Our dataset consists of 226 signs performed by 43 different signers and
38,336 isolated sign video samples in total. Samples contain awide variety of backgrounds recorded in indoor
and outdoor environments. Moreover, spatial positions and the postures of signers also vary in the recordings.
Each sample is recorded with Microsoft Kinect v2 and contains color image (RGB), depth, and skeleton
modalities. We prepared benchmark training and test sets for user independent assessments of the models.
We trained several deep learning based models and provide empirical evaluations using the benchmark;
we used Convolutional Neural Networks (CNNs) to extract features, unidirectional and bidirectional Long
Short-Term Memory (LSTM) models to characterize temporal information. We also incorporated feature
pooling modules and temporal attention to our models to improve the performances. We evaluated our
baseline models on AUTSL and Montalbano datasets. Our models achieved competitive results with the
state-of-the-art methods on Montalbano dataset, i.e. 96.11% accuracy. In AUTSL random train-test splits,
our models performed up to 95.95% accuracy. In the proposed user-independent benchmark dataset our
best baseline model achieved 62.02% accuracy. The gaps in the performances of the same baseline models
show the challenges inherent in our benchmark dataset. AUTSL benchmark dataset is publicly available at
https://cvml.ankara.edu.tr.

INDEX TERMS Turkish sign language recognition, deep learning, CNN, LSTM, BLSTM, feature pooling,
temporal attention.

I. INTRODUCTION
Sign language is a visual language that is performed with
hand gestures, facial expressions, and body posture. It is used
by deaf and speech-impaired people in communication. Since
most of hearing people do not know sign language, there is a
need to map signs to their associated meanings with computer
vision based methods to help communication of the deaf-
mute people with the rest of the community.

Recognition of signs using computational models is a chal-
lenging problem for a number of reasons. First, it requires
fine-grained analysis of the local and global motion of mul-
tiple body parts, i.e. hand, arms, and face. For some pairs of
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signs, hand gestures look very similar, yet the differences in
the facial expressions identify the meaning. In some cases,
a very similar hand gesture can impose a different meaning
depending on the number of repetitions. Another challenge is
the variations of how a sign is performed by different signers,
i.e. body and pose variations, duration variance of different
parts of the signs etc. Also, variation in the illumination and
background makes the problem harder, which is inherently
problematic in computer vision. These problems becomes
more challenging when the corpus of the signs increases.

In the literature, the Sign Language Recognition (SLR)
research is carried out in two different branches: The first
one is isolated SLR [1]–[5] where a given spatio-temporal
sequence is mapped to a sign; the second one is continuous
SLR [6]–[10] where it is mapped to a sequence of signs.
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Isolated SLR can be considered as a special kind of action
recognition problem. However, since the hands and face
usually cover a small region in video frames, the accurate
recognition of a sign imposes different challenges; rela-
tively smaller regions need to be attended accurately. In this
research we are focusing on isolated recognition of Turkish
Sign Language (TSL) with a large corpus of signs with vari-
ous challenges.

Although SLR is an active research area, there is a lack of
realistic large-scale sign language datasets. Therefore, most
studies are trained and evaluated on either private or pub-
lic small-scale datasets in the literature [11]–[20]. However,
in order to train a deep learning based sign language recog-
nition model, the amount of training data is crucial. In recent
years, larger datasets have been published [2], [3], [21], which
contain a large vocabulary size [21], large number of sam-
ples [3], with many signers [2]. These datasets help building
practical SLR models. Although each of them has several
challenges, video samples usually have a plain background.
This makes it difficult to develop models that can be used in
daily life. In the field of TSL, some early domain specific
research are conducted for special purposes, e.g., [22]–[24]
aims to assist TSL education, [25] implements human com-
puter interaction systems in health and finance domains.
Due to the absence of publicly available large-scale TSL
datasets, researchers have to create their own small scale
datasets for the development of special purpose SLR systems
[19], [20], [25]. There is a need for a new publicly accessible
large-scale TSL dataset to provide the ground for various
researches in this domain, especially using the recent deep
learning techniques.

In this study, we present a large-scale isolated Turkish Sign
Language dataset with Kinect version 2.0 that provides RGB,
depth, and skeleton data. It consists of 226 signs performed by
43 different signers and 38,336 isolated video samples. Our
dataset differentiates from other publicly available large-scale
datasets in that it has 20 different backgrounds with different
challenges.We have focused on user-independent recognition
of signs, which we believe is crucial for a model to be useful
in practice. Therefore, we provide a benchmark that provides
training and test video sets with separate signers in them;
the signers in the test set do not appear in the training set.
We think that our dataset will both contribute to the progress
of studies in the field of TSL and can be a benchmark in
general in the isolated SLR domain due to the challenges it
provides.

In this paper, we evaluate our dataset with several deep
learning based models that is configured to work with RGB
andRGB+Depth (RGB-D) data without any explicit segmen-
tation. The models are trained primarily in CNN + LSTM
structure, where features are extracted from each frame sep-
arately using a 2D-CNN model and temporal relations of
the frames are captured by an LSTM model. In addition
to the basic model, different sub-models are integrated in
between CNN and LSTM to encode the extracted features
in multiple scales and to identify spatio-temporal regions of

attention. For this purpose, we plugged in a feature pooling
model (FPM) after the CNN model to obtain multi-scale
representation of the features using single scale input; and
we integrated spatio-temporal attention to the LSTM features.
We then generated another model by replacing the LSTM
with a bidirectional LSTM (BLSTM) model in the best per-
forming model alternative. We provide empirical results of
each model alternative using provided test data, using RGB
and RGB-D modalities.

The rest of this paper is organized as follows. We examine
existing SLR datasets and relatedworks in Section II.We then
introduce our new AUTSL (Ankara University Turkish Sign
Language) dataset in Section III. We give the details of
our baseline models in Section IV. Then, we provide our
empirical evaluations in Section V and conclude the paper
in Section VI.

II. RELATED WORKS
Similar to many pattern recognition systems, sign recognition
systems are composed of two primary components: (1) fea-
ture extraction, (2) classification. Extracting the best feature
representation of the signs from video streams is a crucial step
to obtain higher classification accuracies. Therefore, some
previous works explicitly segment hands or/and face before
extracting the features; they use colored gloves [11], [16],
[17], [26]–[28] or data gloves [29] to track movements of
the hands and deal with segmentation and occlusion prob-
lems more accurately. However, the requirement of wearing
gloves at all times is not practical in daily life and data
gloves with probes often limit the natural movements of the
signers. Some other works propose segmenting hand regions
by the help of hand motion speed and trajectory information
[16], [28] or skin color detection [18], [30]. Skin color
detection is one of the most popular segmentation method.
However, it is sensitive to illumination changes. Also, face
and hands could be confused easily with skin-like objects
in the background. With the emergence of Microsoft Kinect
technology, new modalities such as depth and skeleton are
also provided with the RGB data. Some studies utilize depth
data for accurate segmentation of the hands [31], [32]. Depth
data is more robust to illumination changes and cluttered
background compared to RGB data. It works well to track
a large object, e.g., the human body. Skeleton data provides
some of the body key-points at the junctions, e.g., neck,
elbow, wrist etc. However, it does not cover the details in
the fingers of hands, which is crucial for discriminating local
hand gestures. Therefore, it is still difficult to segment the
human hand with complex articulations even with the differ-
ent modalities provided with Kinect [32].

Early studies utilized handcrafted features, such as scale
invariant feature transform (SIFT) [18], [30], histogram of
gradient (HOG) [16], [28], [33]. After feature extraction, fea-
tures are fed into a classifier such as support vector machine
(SVM) [18], [30], K-nearest neighbour (K-NN) [19],
or sequence models such as HiddenMarkovModels (HMMs)
[11], [16], [17], [26]. Also, some studies use dynamic
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TABLE 1. Overview of existing large-scale isolated sign language recognition datasets.

time warping (DTW), a time series matching algorithm, for
recognition [28], [33].

In parallel to the success of the deep learning based models
in other domains, many works in the SLR domain recently
conduct research using deep neural networks. In these
approaches, instead of hand-crafted feature extraction, Con-
volutional Neural Networks (CNNs) are utilized effectively
[1], [3], [4], [10], [15], [34]–[37].While some of these studies
do not require any segmentation methods [1], [3], [4], [35],
some studies prefer to use neural networks, such as Fast
R-CNN and Faster R-CNN, in order to locate the hand region
[15], [34], [36]. Recently, attention based models have been
successfully applied in other computer vision tasks, such as
image captioning [38] and action recognition [39]. These
models learn the relevant spatial or temporal parts of the
image or video automatically from data. These models have
also been used in the SLR domain [2], [8], [34], [36], [40].

The sign language recognition literature is vast and a
detailed review of all the literature is outside the scope of
our paper. A recent detailed review of SLR works is provided
in [41]. In this section, we first overview the existing publicly
available large-scale isolated sign language datasets. Then,
we review deep learning based sign recognition language
methods and attention based models.

A. SIGN LANGUAGE DATASETS
In the literature, most sign language datasets are small-
scale in terms of number of signs, number of signers and
total sample size, e.g., LSA64 [11], Purdue RVL-SLLL [12],
PSL [13], RWTH BOSTON50 [14]. LSA [11] is an Argen-
tinian Sign Language dataset that contains 64 signs that are
performed by 10 signers. There are 3,200 RGB samples in
total. The signers wore different colored gloves for each hand
during recording. Purdue RVL-SLLL [12] is an American
Sign Language dataset that consists of motions, handshapes,
signs and sentences performed by 14 signers. It contains
2,576 RGB videos in total. PSL Kinect 30 [13] and PSL
ToF 84 [13] are Polish Sign Language datasets that consist
of 30 and 84 signs, and in total 300 and 1680 samples,
respectively. Both datasets provide RGB and depth modal-
ities. RWTH BOSTON50 [14] is an American Sign Lan-
guage that contains 50 signs that are performed by 3 signers.
It provides only 483 RGB samples in total. An extended
list of sign language datasets can be found in [3], [42].
Montalbano Italian gesture dataset [43], which has recently
become one of the most widely used isolated SLR datasets,

contains 20 gestures and approximately 14,000 samples in
total. It contains 27 signers with variations in background,
clothing and lighting. It was recorded with Microsoft Kinect
v2 that provides RGB, depth, user segmentation, and skeleton
modalities.

In recent years, a number of large-scale datasets have
been published. Table 1 provides an overview of the large-
scale isolated sign language datasets. ASLLVD [44] has
2,742 signs in American Sign Language (ASL). Although
the dataset has large vocabulary size, it has only 9,794 sam-
ples in total (3.6 examples per sign on the average). This
dataset aims to serve as the basis for development of sign
lookup technology in ASL. The video sequences are col-
lected from four cameras simultaneously; two frontal views,
one side view, and one view zoomed in on the face of
the signer. DEVISIGN [21] is a Chinese Sign Language
dataset that consists of 2,000 signs and 24,000 samples that
are performed by 8 signers. The videos are recorded with
Microsoft Kinect v1, which provides RGB, depth, and skele-
ton data, in a lab environment in front of a white wall.
MS-ASL dataset [37] provides 1000 signs, 222 signers, and
25,513 samples. It is collected from a public video sharing
platform, i.e. YouTube. Many of videos are performed by
ASL students and teachers. In order to provide a basis for
signer independent recognition systems, the signers in train,
validation, and test set are distinct. It is worth to mention that
some of the video links have expired and inaccessible in this
dataset [45]. CSL [2] is a Chinese Sign Language dataset that
consists of 500 signs performed by 50 different signers and
125,000 samples. It is recorded with Microsoft Kinect v2 that
provides RGB, depth, and skeleton data. Besides being large-
scale, this dataset also focusses on user-independent recog-
nition of signs. They select different signers for the training
and test sets. The videos are recorded in front of a white
background. WLASL [3] is another ASL dataset that consists
of 2,000 signs performed by 119 signers and 21,083 samples.
Each sign is performed by at least 3 different signers. The
dataset consists of only RGB videos. It is collected from
20 different educational sign language websites that provide
lookup functions for ASL signs and from ASL tutorial videos
onYouTube. In the videos, signers are in a nearly-frontal view
with plain background, generally wearing a black colored
clothes. We noticed recently in [46] that the authors also aim
to provide a large-scale TSL dataset, with 744 signs, 6 sign-
ers, and 22,542 samples. Since the dataset is not released yet,
we preferred not to include it in Table 1.
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Our AUTSL dataset is a new large-scale Turkish Sign
Language dataset with 226 signs, 38,336 samples in total.
It is performed by 43 different signers. The average number of
samples per sign in our dataset is 169.6, which is the second
largest number of samples per sign after the CSL dataset [2].
Our dataset differentiates from all aforementioned large-scale
datasets in that it has 20 different backgrounds with many
challenges, i.e. variation in the lighting, different indoor and
outdoor background objects etc. Some of our videos have
dynamic backgrounds; some videos that are recorded in the
outdoor environments have background objects that move
with the wind, and in some recordings, people are pass-
ing by behind the signers in the background. In this sense,
the samples are collected to provide realistic scenarios for
daily use-cases. The details of our AUTSL dataset is given
in Section III.

B. DEEP LEARNING BASED SLR APPROACHES
In recent years, most studies have been proposed with deep
learning based methods. In ChaLearn 2014 Looking at Peo-
ple Challenge gesture recognition track [43], the winner of
the competition [47] proposed a deep neural network, which
outperforms other traditional methods.

In deep learning based methods, basic approach for feature
extraction is using CNNs. After feature extraction, while
some studies use fully connected layers [5], [20], most studies
use recurrent neural networks [1], [4], [35], [48] on top of
the CNN models. Reference [5] use combination of video in
multiple modalities (RGB, depth, intensity), articulated pose
and audio streams as inputs. After feature extraction with
CNNs, they fuse streams with a set of fully connected layers.
They observe that fusing multiple modalities at multiple-
scales leads to a significant increase in recognition rates.
In [4], researchers compare the models that contain CNN
architectures, temporal pooling, bidirectional LSTM, or tem-
poral convolutions. They observe that incorporating temporal
convolutions and bidirectional LSTM outperforms single-
frame and temporal pooling architectures. In [35], Siamese
CNN architecture is used to extract features from the RGB
and depth data in parallel. Then, two types of recurrent
neural network, LSTM and GRU, are experimented with.
In our preliminary work [1], we used a feature extraction
module (FPM), which is designed with parallel convolutions
with different dilation rates, with a pretrained CNN network.
Then LSTM is used to model the temporal characteristics of
the stream. In the recent years, some studies use 3D-CNNs
in order to capture spatial-temporal features together
[2], [3], [37]. In [3], pose based and visual appearance based
approaches are compared. They compare 2D-CNNs with
RNNs and 3D-CNNs for visual appearance based baselines.
In their work, 3D-CNNs have higher network capacity, hence
achieve better results. Moreover, their model is pretrained
both with ImageNet [49] and Kinetics action recognition
dataset [50].

Recent studies also incorporate attention mechanisms into
their deep networks in many tasks with promising results.

In [48], an attention model is integrated to a bidirectional
RNN for English-French machine translation. In [38], visual
attention model is proposed for image caption generation.
They incorporate attention mechanism to an LSTM that gen-
erates a weight for each spatial location. Attention weights
encodes the importance and relevance of a location for pro-
ducing the next word. In [39], researchers adapt the attention
model of [38] to action recognition problem. They incorpo-
rate spatial attention mechanisms into their deep networks
to focus on the regions of interest. Since attention mecha-
nisms achieve promising results in action recognition prob-
lem, it also attracts the researchers in the SLR domain.
In [3], an attention based 3D-CNN network is proposed for
CSL recognition. On the proposed method, they incorporate
spatial attention into 3D-CNN to select skeleton joints of hand
and the arm; spatial attentionmap peaks around these regions.
They then feed extracted features into a bidirectional LSTM.
They also incorporate temporal attention to LSTM in order to
highlight significant video clips.

In [40], ASL fingerspelling recognition model is proposed
with iterative visual attention mechanism for real-life data.
Fingerspelling is a part of sign language in which words
are signed letter by letter. It is usually used for spelling
proper nouns, e.g., names of people. They use 2D-CNNs
pretrained on ImageNet for feature extraction and they feed
extracted features to LSTM. ASL fingerspelling signs are
only one-handed and the attention mechanism enables the
model to focus on active hand region. However, high reso-
lution is needed to get sufficient information; therefore, they
aim to retain the highest resolution available while zooming
in with iterative attention. In [36], an attention-based recur-
rent encoder-decoders are proposed for ASL fingerspelling
problem. In the decoding, temporal attention weights are used
to focus on the important visual features when producing each
output letter.

TABLE 2. The statistics of AUTSL dataset.

III. AUTSL DATASET
In this section, we introduce our large-scale, multi-modal
Turkish Sign Language dataset, named shortly as AUTSL.1

Ourmotivation is to collect a large dataset with different chal-
lenging backgrounds that is suitable for modelling a realistic
SLR system with real life scenarios. Main characteristics of
our dataset are summarized in Table 2. We record our dataset

1https://cvml.ankara.edu.tr/
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FIGURE 1. Examples of different backgrounds from AUTSL.

using Microsoft Kinect v2, hence it contains RGB, depth,
and skeleton modalities.We apply some clipping and resizing
operations to RGB and depth data and provide them with the
resolution of 512 × 512. The skeleton data contains spatial
coordinates, i.e. (x, y), of the 25 junction points on the signer
body.

Our dataset consists of 226 signs. When choosing our
signs, we paid attention to selecting the signs that are used
frequently in daily spoken language. Moreover, we consid-
ered to keep a balance in the dataset content to increase the
variety of the signs with respect to the motion characteristics
of hands while keeping similarly performed different signs
at the same time. In this process, we worked with a group
of TSL instructors. The selected signs cover a wide variety
in terms of hand shape and hand movements. In some of
the signs, hands hide each other, e.g., ‘‘ayakkabi’’ (shoe),
‘‘bal’’ (honey), or face, e.g., ‘‘beklemek’’ (wait), ‘‘uzgun’’
(unhappy). In some signs, hands move in the direction of
depth, e.g., ‘‘itmek’’ (push), ‘‘terzi’’ (tailor). In some signs,
the right hand and left hand are in a cross position, e.g.,
‘‘yardim’’ (help), ‘‘tehlike’’ (danger). Some of our signs are
compound signs formed by making two consecutive signs.
Some of these consecutive signs are also included in our
dataset as single signs. For example, ‘‘hastane’’ (hospital)
sign is formed by making ‘‘doktor’’ (doctor) and ‘‘bina’’
(building) signs consecutively. The signs for hospital and
doctor are both included in our dataset. Similarly, ‘‘yemek’’
(eat) and ‘‘ocak’’ (cooker) signs and the compound versions
of two, ‘‘yemek pisirmek’’ (cooking) are also included.

We also paid a lot of attention to create AUTSL with
various and challenging backgrounds. It contains 20 different
backgrounds. For some backgrounds in this set, we also
recorded some videos by changing the camera field-of-
view, or by adding or removing some objects to/from the

background scene to increase the appearance variance more.
In Fig. 1, we depict examples of different backgrounds from
AUTSL dataset. As shown in the figure, backgrounds contain
several challenges; some outdoor recordings contain dynamic
backgrounds, i.e. moving trees, or people are passing by
behind the signer. Videos contain various lighting conditions,
from sunlight to artificial light. Therefore, video frames con-
tain illumination changes and some shadowed or bright-dark
areas.

In our dataset, signs are performed by 43 different signers;
6 of them are TSL instructors, 3 are TSL translators, 1 is
deaf, 1 is coda (Children of Deaf Adults), 25 are TSL course
students and 7 are trained signers who learned the signs in
our dataset. 10 of these signers are men and 33 are women;
and also, 2 of our signers are left-handed. Fig. 2 shows the
distribution of the samples over signs and signers. As shown
in the figure, we have a balanced dataset according to the sign
distribution. On the other hand, the total number of samples
for some signers is higher than that of others (Fig. 2b). This
is because they are recorded multiple times with different
clothes or in different background settings.

FIGURE 2. Distribution of (a) number of samples for each sign and
(b) number of samples performed by each signer.

One of the factors that make our dataset challenging is
that it contains very similar signs. For example, as shown
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FIGURE 3. Some of the similar example signs to each other in our
dataset. (a) ‘‘Doktor’’ (doctor) and ‘‘dakika’’ (minute) signs differ only in
repetition of the hand movement. (b) ‘‘Dolu’’ (full) and ‘‘dede’’
(grandfather) differ only in finger movements. (c) ‘‘Devlet’’ (government)
and ‘‘mudur’’ (manager) differ only in the position of the index finger.

in Fig. 3a, although ‘‘doktor’’ (doctor) and ‘‘dakika’’ (minute)
signs contain exactly the same hand gesture, they are differ-
entiated according to the repetition cycle of the same gesture.
The sign for ‘‘doktor’’ is made by touching the wrist once,
while in the sign for ‘‘dakika’’, twice or more. Also, some
signs are performed quite similarly in terms of hand shape,
hand orientation, hand position or hand movement; changing
only one of these factorsmaymean another sign. For instance,
‘‘dolu’’ (full) and ‘‘dede’’ (grandfather) signs are very similar
(Fig. 3b). Although hand shapes, hand rotations and hand
positions are very similar, there is only a subtle difference in
hand movement. Fingers do not move in the sign of ‘‘dolu’’,
while fingers swing slightly in ‘‘dede’’. In Fig. 3c, there is
only a subtle difference in the position of the hand between
‘‘devlet’’ (government) and ‘‘mudur’’ (manager) signs. In the
sign of ‘‘mudur’’, the index finger touches the nose, and in
the ‘‘devlet’’, it touches under the eye.

In this work, we created a benchmark for user-independent
recognition of the signs to observe the performances of
the models in a more realistic setting. Therefore, we select
36 signers for training and validation, and the remaining
7 signers for testing. In this setting, our test set contains
9 different backgrounds, 3 of which are not included in
the training and validation sets. Our training set contains
27,676 (72%), validation set contains 4,884 (13%), and test
set contains 5,776 (15%) samples. In the test set, some signers

has relatively more samples than others. Therefore, we will
refer to this test set as the imbalanced test set. We also created
a balanced test set by making the number of samples of each
signer close to each-other by reducing the samples from the
signers with excessive samples using random selection. As a
result, balanced test set is a subset of the imbalanced test set,
which consists of 3,742 samples.

IV. THE METHODS
In order to set a baseline for the evaluation of our AUTSL
dataset, we experimented with several deep learning based
models. In this section, we first provide the details of the indi-
vidual components of our models. Following that, we explain
our proposed models.

A. COMPONENTS OF THE MODELS
CNN Model: Recently, CNNs became the most preferred
feature extraction methods in the SLR domain. As we used
in our preliminary work [1], [35], we also selected to use
VGG16 model [51] in this work. VGG16 is one of the most
used CNNmodels that is pretrained on ImageNet [49] dataset
to extract features. We use all the convolutional layers of
VGG16 model until the last max pooling layer. Since the
low-level and mid-level convolutional layers extract generic
features, such as edges, corners, common object parts etc.,
we used the low and mid-level layers as they are without
changing the learned parameters. Since high-level layers are
more specialized to the objects that are included in the trained
dataset, we decided to fine-tune the last two convolutional
layers (conv5_2, conv5_3) using our dataset. Before train-
ing, we resize the pixel resolutions of the video frames to
256 × 256. When the input images are 256 × 256 × 3,
the size of the extracted feature maps at the end of the last
convolutional layer become 16 × 16 × 512.
Feature Pooling Module: In [52], it is shown that using

FPM is effective to extract features at multiple scales when
single scale input is provided. The idea behind FPM layers is
to increase the field-of-views to different sizes in the network
using dilated convolutions. We want to assess the perfor-
mance of FPM in this dataset, considering that multi-scale
interpretation of the spatial features may help the network
be more aware of the context, i.e. hand, face, body, etc.
We showed in our preliminary work [1] that the FPMmodule
is also effective in isolated sign recognition, using Montal-
bano dataset. Similar to our preliminary work, we placed the
FPM model in this work on top of the last CNN layer.

FPM module is composed of parallel convolutions with
different dilation rates. As seen in Figure 4, our FPM module
consists of 2 × 2 max pooling with dilation rate 2 followed
by a 1 × 1 convolution, a normal 3 × 3 convolution, and
two 3 × 3 dilated convolutions with dilation rates 2 and 4.
All the convolutions are implemented with padding, hence
the spatial dimensions of the inputs are preserved at the
end. The resultant features from the parallel CNN layers are
concatenated at the end of FPM. All 4 convolutional layers
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FIGURE 4. Feature Pooling Module (FPM) [1].

have 128 output feature planes. Therefore, the resultant shape
of the features is 16 × 16 × 512 in our experiments.
LSTM: In the literature, recurrent neural networks

are commonly used to capture temporal relationship in
sequences. In this paper, we use LSTMs [53] for sequence
modelling. After empirically evaluating 1024, 512 and
256 hidden units for LSTMs, we set the number of hidden
units to 512 in our architecture, which performed the best
with the validation data. We use random initialization for the
hidden and cell states of the first LSTMCell.
Bidirectional LSTM: BLSTMs [54] can be considered as

extensions to the conventional unidirectional LSTMs, where
context of a sequence for each state is coded using the past
and the future frames simultaneously. This is achieved using
two LSTM models, one for the forward pass, i.e. from the
beginning to the end frames; and the other for the backward
pass, i.e. from the end to the beginning frames. Hence, each
hidden state can aggregate information from the past and
the future frames. In our experiments, the ith hidden state is
calculated as a concatenation of the corresponding forward
and backward hidden states as in (1):

hi = [
−→
hi +
←−
hi ] (1)

We set the number of hidden units to 512 for both forward
and backward LSTMs. Therefore, the hidden state sizes of
BLSTM become 1024 in our experiments.
AttentionModel: We integrate a temporal attention mech-

anism to LSTM and BLSTM models in order to select the
most effective video frames in classification. We adapt the
temporal attention model proposed by [48], [55] to the iso-
lated SLR problem.

In our simple LSTMmodel, we use the last hidden state, ht ,
for prediction of a sign. However, in attention-based LSTM,
we produce a context vector, c, using a weighted sum of all
hidden states that are generated for each frame in a video
by the LSTM model. This context vector is sent to the fully
connected layer for the prediction of the sign. Each hidden
state contributes the context vector according to its attention

weight. Context vector is calculated as follows:

c =
T∑
i=1

αihi (2)

αi =
exp(ei)∑T
k=1 exp(ek )

(3)

ei = vT tan(Whi + b) (4)

where αi is the attention weight for the hidden state corre-
sponding to the input frame features, xi. It is calculated by
normalizing the attention scores, i.e. ei, with the softmax
function as in (3). Thus, the sum of the weights of all frames
is normalized to 1. The higher the score for an input frame,
the higher its contribution to the context vector. ei is produced
by a neural network which generates a score for the input
features, xi, depending on its hidden state, hi. This neural
network is our attention network and it is parametrized by
v,W , b, where v∈Rd ,W∈Rdxd , b∈Rd . These parameters are
learned during training the models. In this setting, d is the
dimension of hidden unit in the LSTM, which is 512 in our
experiments.

B. BASELINE MODELS
We construct five deep neural networks for the empirical eval-
uations. In all the models, we use CNNs to extract spatial fea-
tures from each frame. In our experiments, we investigate the
contributions of using a feature pooling module and temporal
attention model as we described in Section IV-A. We also
compare the performances using simple unidirectional LSTM
and bidirectional LSTMs. All our networks, as illustrated
in Fig. 5, are separately trained end-to-end.
CNN + LSTM Model: In our models, we conduct our

experiments using only RGB and RGB-D modalities, with
minor modifications. In order to use the depth data, which
is represented as a single channel gray-scale image for each
frame, with the pretrained VGG model, we repeat the same
depth data into three color channels as in [56]. Then, RGB and
depth modalities are given as inputs to the two parallel VGG
models with exact same architectures and applying similar
training regime as we described in the previous section. CNN
networks extract features and generate two feature matrices,
i.e. one for the RGB data and one for the depth data. Then,
we apply global average pooling and reduce the feature map
dimensions to a vector of size 512 for each modality, sep-
arately. In the RGB only model, we feed 512-dimensional
feature vectors into the LSTM model. On the other hand,
in the RGB-D network, we concatenate two feature vectors
with late fusion and obtain a 1024-dimensional feature vector.
LSTM model generates scores using the the last hidden state
vector, i.e. ht , after passing it to the Fully Connected (FC)
layer. Since we have 226 signs, FC layer is set to have
226 neural units. The scores of the FC layers are fed to a
softmax classifier. We refer to this model as CNN + LSTM
from now on.

181346 VOLUME 8, 2020



O. M. Sincan, H. Y. Keles: AUTSL: Large Scale Multi-Modal TSL Dataset and Baseline Methods

FIGURE 5. Architectures of our baseline models.

CNN + FPM + LSTM Model: In the second model, our
motivation is to represent the generated features in multiple-
scales, so that we can get more contextual clues for classifi-
cation of individual signs. We add an FPM module after the

last CNN layer for that purpose. After that, we apply global
average pooling to the extracted features. In the RGB-D
model, we again concatenate the two feature vectors with
a late fusion. Then, we send extracted features to LSTM.
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TABLE 3. Recognition rates (%) of our models using RGB-D data.

All the architectures, i.e. CNN and LSTM, are the same
with the previous model, except for the addition of the FPM
module in between these models. As we stated before, all
the parameters of this network is trained end-to-end from
scratch. We refer to this model as CNN + FPM + LSTM.
CNN+LSTM+AttentionModel: Attentionmechanisms

have recently shown considerable improvements to many
computer vision tasks. Therefore, we also want to investigate
the contribution of attention to the classification performance
with our dataset. The architecture is designed as follows:
First, we extract the features with CNN and then apply global
average pooling as in CNN + LSTM model. The only dif-
ference of this method from CNN + LSTM model is that we
incorporate a temporal attention mechanism to the features
that are passed to the LSTM model. We produce a context
vector, c, using all the hidden states as we explained in detail
in Section IV-A. We then send this context vector, instead
of the last hidden state, to the FC layer. Finally, we use a
softmax classifier. This model is referred to as CNN+ LSTM
+ Attention.
CNN + FPM + LSTM + Attention Model: In this

model, we observe the contribution of using both FPM and
a temporal attention mechanism. At first, we extract features
with CNN and pass the resultant feature maps to FPM. Then,
we use the attention-based LSTM. Here again, we send the
context vector to the FC layer and use softmax classifier. This
model is referred to as CNN + FPM + LSTM+ Attention.
CNN + FPM + BLSTM + Attention Model: Finally,

we want to investigate the classification performance using
bidirectional LSTMswith AUTSL dataset.We configured the
components of the model as in the CNN + FPM + LSTM +
Attention model, but we use attention based BLSTM instead
of LSTM this time.

V. RESULTS AND DISCUSSION
We evaluate our baseline models on our new large-scale
AUTSL dataset and Montalbano Italian gesture dataset. For
AUTSL dataset, our main experiments are configured in a
user-independent setting; we use 36 signers for training and
validation, and the remaining 7 signers for testing. We also
conducted experiments by randomly selecting the training,
validation and test set to evaluate our model performances
in user-dependent test setting. In addition to the AUTSL
experiments, we also trained our best performingmodel using
the Montalbano dataset. In this section, we first give the
evaluation metric. Then, we provide our experimental results.

A. EVALUATION METRIC
In order to evaluate the performances of the models, we use
the recognition rate, r , as defined in [57]:

r =
1
n

n∑
i=1

f (p(i), y(i)) (5)

where n is the total number of samples; p is the predicted
label; y is the true label; if p(i) = y(i), f (p(i), y(i)) = 1,
otherwise f (p(i), y(i)) = 0.
We will refer to this metric as top-1 recognition rate, since

we are only evaluating a model’s best guess. In AUTSL
dataset, some of the signs are quite similar to each other;
they can be confused by the models. Therefore, in addition
to top-1 recognition rate, we also considered top-3 and top-5
recognition performances of the models. Top-N recognition
rate refers to the rate by which the true class label exists in a
model’s top-N predictions.

B. EXPERIMENT RESULTS ON AUTSL
1) TRAINING DETAILS
We configured all our model experiments using the same
hyperparameters. Since the videos in AUTSL dataset contain
variable frame lengths, during training each sample is sent
to the network separately; hence we set the batch size to 1.
We implemented all the models using PyTorch library [58].
In LSTM and BLSTM implementations with variable frame
lengths, we use LSTMCells units of PyTorch. In order to
avoid overfitting, we include dropout layers before sending
the features to LSTM/BLSTM models and before the FC
layer with dropout rate 0.25. We optimized the multi-class
cross-entropy loss using Adam optimizer [59]. We set the
learning rate to 1e− 5 and reduce the learning rate to 2e− 6,
if no improvement is observed in validation accuracies for ten
epochs. If there is no improvement for ten of epochs again,
we terminate the training process.

2) RESULTS
We conducted a number of experiments to measure the
contribution of the use of FPM and the attention model.
We also measure the contribution of using multiple modali-
ties, i.e., RGB-D, versus using only RGB. Table 3 and Table 4
shows the recognition rates of our baseline models using
RGB-D and RGB data, respectively.

The challenges inherent in the AUTSL samples are visible
in the recognition rates for user independent evaluations. The
performance of the vanilla CNN + LSTM model using only
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TABLE 4. Recognition rates (%) of our models using only RGB data.

RGB data is only 23% with the test data. When we fuse
RGB and depth features, the recognition performance signif-
icantly increases up to 39.31%, around 16% higher than the
RGBmodality. This is something we expected, since AUTSL
contains samples where hands move forward and backward
with respect to the camera’s optical axis. We think that RGB
data alone is not sufficient to accurately discriminate such
signs. In this respect, multiple data modalities that we provide
with AUTSL is necessary for better identifying some signs.
Moreover, as the top-3 and top-5 performances are consid-
ered, the recognition rates increase around 20% and 27% in
RGB-D data with respect to its top-1 accuracy, respectively.
These results clearly reveal that the vanilla model confuses
some signs; although the true sign is identified 66.64% of
the time in its top-5 predictions, (and 59.13% of the time in
its top-3), the model picks another similar sign in its top-1
order. For imbalanced test, the performance is quite similar;
yet slightly worse than the balanced test. Remember that,
in imbalanced test set, all the video samples that we have with
the selected 7 signers are included. Apparently, the additional
samples include more samples of the confused signs; also
additional videos containing different backgrounds from the
outdoor environment reduce the classification accuracies. For
RGB data, top-3 and top-5 predictions are 14% and 20%
higher than its top-1 predictions, respectively. Although this
is a good sign, since it identifies comparatively a good deal
of correct signs in its top-3 and top-5 predictions, it is less
than RGB-D data with a high margin; in the balanced test,
RDB+Depth top-5 predictions are around 23% higher than
RGB top-5 predictions.

After observing the performance of RGB-D data (Table 3),
we first completed the experiments by including FPM and
attention modalities incrementally using these modalities
together. Then after evaluating the performances, we repeated
similar experiments using only RGB data. We aim to identify
the setting with RGB only data that performs the best.

We will go over each case separately below:
Results of RGB-D Data: We first plug our FPM model

to the vanilla CNN + LSTM model. FPM improved the
recognition rates only slightly, i.e. 1.95% in the balanced test,
1.61% in the imbalanced test. The improvement with only
FPM model is limited. We then integrated attention to the
vanilla model, without FPM first, to see its effect alone to the
classification performance. The temporal attentionmodel that
we integrated into LSTM model improved the results signif-
icantly, i.e. 18.49% top-1. This improvement reflects to top-
3 and top-5 performances as well; top-3 recognition rate of

the model becomes 76.24% and top-5 becomes 82.57% in the
balanced test. The imbalanced test results are also improved
in a parallel manner, i.e. 16.71% in top-1 accuracy. We then
plugged in FPM model to the CNN + LSTM + Attention
model to see its contribution again. It improves the top-1
performances slightly by 2.22%. After these observations,
we set our baseline model for future researches with AUTSL
dataset as CNN + FPM + LSTM + Attention model.
Results of RGB Data: We conducted similar experiments

with RGB only data. Similar to RGB-D models, RGB model
top-1 performances increased incrementally in the order we
plugged temporal attention model and FPM model, from
23.00% to 42.14% and 44.89%, respectively. Attentionmodel
increased the performance significantly here as well, by more
than 19% and FPM improved that performance 2.75% more.
The addition of attention, however, increases the robustness
of the predictions with RGB data more than we expected,
as far as its top-3 and top-5 predictions are considered. The
top-3 prediction of the RGB only model improves 24.80%
more than the vanilla CNN + LSTM model. Similarly, top-5
predictions improves 27.55% more than the vanilla model’s
top-5 prediction. Still yet, there is quite a margin, i.e. 15.13%,
between the top-1 predictions of RGB+Depth data and RGB
only data with the balanced tests using CNN + FPM +
LSTM + Attention models. The results with the imbalanced
tests are also similar. Therefore, depth data provides a sig-
nificant contribution to the recognition performance with
AUTSL dataset.

In addition to using unidirectional LSTM model, we also
tested the best model replacing it with a bidirectional LSTM
model. The performances are similar, only slightly better in
both RGB only and RGB-D modalities. Although the perfor-
mance of BLSTMmodel is slightly higher than unidirectional
LSTM, we want to underline an issue with BLSTMs that
in a real-time application environment, where frames are
evaluated online, backward evaluation requires buffering the
incoming frames and evaluations can start only after all the
frames of an isolated sign is completed. This complicates
the process. Additional design issues would emerge while
working in continuous sign recognition setting.

As mentioned earlier in Section III, different signs have
very similar gestures in our dataset. In continuous sign recog-
nition, similar signs can be correctly discriminated from the
context, the lack of context in isolated recognition makes
correct classification harder. Therefore, considering top-1,
top-3 and top-5 recognition rates are useful to interpret the
performances of the models. As seen in the tables, when
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FIGURE 6. Sample RGB video sequences and GradCAM [60] visualizations of the attended regions for two signs: (a) ‘‘oda’’ (room), (c) ‘‘fotograf’’
(photograph). Note that red regions in a frame show highly attended parts, blue regions are attended less. (b, d) Temporal attention weights of the
videos. The attended frames are enclosed within a red frame.

comparing the top-1 and the top-3 scores, there is a signif-
icant increase in the results. That is, even if a sign cannot
be correctly classified in the first order, it can be classified
correctly in the first 3 predictions.
About Confused Signs: We examine the confusion matrix

of our best model, CNN+ FPM+ BLSTM+ Attention in the
case of fusing RGB and depth data. On the balanced test set,
there are around 17 samples for each sign. We observe that
some of the signs are confused more with particular signs.
One of the confused sign pairs, the sign ‘‘dede’’ (grandfather)
and ‘‘dolu’’(full), are shown in Fig. 3b. Although there are
17 samples from the sign ‘‘dede’’ in the test set, it is confused
10 times with the sign ‘‘dolu’’, because these two signs are
performed very similarly in hand shape, hand rotation and
hand position. We observe that the number of the correct
predictions is quite low for some signs. These signs are
generally confused with similar sign pairs in the dataset.

The increase in the top-3 and top-5 evaluations also reveals
this issue.
Visualization Results: After the quantitative analysis of

the proposed models, we also observed the attended spatial
regions of the test samples using Grad-CAM [60] visualiza-
tion technique. In addition, we analyzed the distribution of the
temporal attention weights over the video frames to interpret
the frames that contribute more to the classification (Fig. 6).
In the visualizations, we used our CNN + FPM + BLSTM +
Attention model that is trained using RGB data only. In gen-
eral, the model learns to focus on the hands, arms, and faces
of the signers in the spatial RGB domain. We generated visu-
alizations considering the CNN output layer, before the FPM
model. Since FPM model provides multi-scale interpretation
of the CNN output features, visualizations generated by CNN
outputs lookmore condensed and sharp on the image domain.
Still, when we visualize the spatially attended regions, CNN
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FIGURE 7. Sample misclassifications due to dynamic backgrounds: (a) ‘‘oda’’ (room), which is the same sign with Fig. 6a. This time, it is misclassified
because of the moving person in the background (b) ‘‘oda’’ (room) sign in indoor (c) ‘‘gecmis_olsun’’ (get_well).

models that are followed with an FPM model can focus the
relevant regions more successfully.

In the time domain, we enclosed the attended frames,
which have relatively high attention weight values through-
out the whole video, within red a bounding box (Fig. 6).
The distributions of the attention weights are visible
in Fig. 6b and 6d. As can be seen from the enclosed frames,
the attention model highlights the motion sequence that are
particularly important for that sign. In other words, it learns
to discard the initial and end parts of the video frames.
We observed this pattern in almost all the signs. Depending
on the particular sign, the weight distribution of the frames
are also adapted successfully. This helps the discrimination
of signs a lot, since in our dataset signers start performing
the sign from a neutral position, i.e. hands are stationary
down below, and end similarly, i.e. the hands return back to
neutral position. These analysis support the obtained quanti-
tative increase in the classification accuracies when temporal
attention is integrated to the models.

Visualizations of the attended regions are also useful to
interpret the reason behind our model’s poor performance
for some signs. We show some samples that are all mis-
classified due to dynamic background in Fig. 7. In all these
three samples, some people are passing by behind the signer,
both in indoor and outdoor settings; both spatial attention
and temporal attention is badly influenced by the appear-
ance and motion of another person on the scene. Although
they appear small in the background, far behind the signer,
the spatial attention shifts to those people. The sample sign
shown in Fig. 7-middle part is the same sign with Fig. 6a. It is
misclassified by our model this time. In addition to the atten-
tion shift in the spatial domain, the attention in the temporal
domain is also affected by the motion in the background;
our model attends to the last two frames this time, where
the signer has already settled in neutral position of ending
the sign. In that case, there is no spatially interesting motion

FIGURE 8. Sample misclassification due to sign similarity. (a) ‘‘yavas’’
(slow) sign, (b) GradCAM visualization of (a), (c) ‘‘arkadas’’ (friend) sign.

of our signer to attend; so it focuses on the person in the
background and misclassifies the sign that it was classifying
correctly in the absence of disruption.

We also provide a sample visualization of the attended
regions and frames for a confused sign pair (Fig. 8). The signs
corresponding to ‘‘yavas’’ (slow) and ‘‘arkadas’’ (friend) are
performed similarly in hand positions and shapes. Although
themodel pay attention to the hands and semantically relevant
frames in time, the sign, which is depicted in the last row of
Fig. 8, is misclassified as ‘‘arkadas’’ sign since they look quite
similar. In such cases, the correct sign is usually included in
the model’s top-3 or top-5 predictions.
Model Training Times: We trained our models on

NVIDIA Tesla V100. Table 5 shows the average training time
of an epoch in our models. Training with RGB-D data takes
almost two times more than training with RGB data only.
While adding FPM to the network cause an increase in time,
adding an attention mechanism do not increase the time as
much. Moreover, adding an attention model enables the mod-
els to converge faster, as seen in Fig. 9. For example, in the
case of using only RGB modality, training and validation
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FIGURE 9. Training and validation loss curves, (a, b, c) using only RGB data, (d, e, f) using RGB-D data on AUTSL dataset.

TABLE 5. Comparison of training time per epoch in hour on AUTSL.

losses get close to zero at around 40th epoch with our vanilla
model, i.e. CNN+ LSTM. On the other hand, attention-based
models reach the same loss value at around 20th epoch. There-
fore, attention-based models converge faster than the other
models in time. When we compare using single and multiple
modalities, we observe that fusing RGB and depth data also
reduces the total number of epochs during training.Moreover,
validation losses are more stable in the case of using RGB-D
data.
Results on Signer Dependent Testing: We also conducted

some experiments by randomly selecting training, validation,
and test sets to show the model performances by training
the models using all the signers, i.e. signer dependent model
training. In this setting, all the signers in the test set are
also included in the training and validation set; we randomly
selected 72% of all the videos for training, 13% for validation
and 15% for testing.

Since the model training takes too much time, we trained
only two of our deep models; i.e. CNN + FPM + LSTM
and CNN + FPM + LSTM + Attention models, end-to-
end by using only RGB data, to obtain sample results to
compare with corresponding user-independent models. The
architectures and the model parameters are kept exacly the
same with our previous experiments; only the traning and test
data selections are different. The results are shown in Table 6.

TABLE 6. Recognition rates (%) of our models on AUTSL random test set.

These models work significantly better than their corre-
sponding user-independent counterparts (Table 4). We get
94.07% with CNN + FPM + LSTM model and 95.95%
accuracy with CNN + FPM + LSTM + Attention in their
top-1 accuracy. In this experiment, CNN + FPM + LSTM
performs already very high, hence the amount of performance
increase with added attention model is small. Also, both
models reached more than 99% in their top-5 accuracies.
These results show that our models work robustly when
samples belonging to signers in the test set is viewed in
the training set. When using the benchmark test data, which
reflects the actual performances of the models in a realistic
setting, the performances drop heavily in the models’ top-1
accuracies.

C. EXPERIMENT RESULTS ON MONTALBANO
Montalbano is a gesture dataset released by ChaLearn
2014 Looking at People Challenge which consists of 20 Ital-
ian gestures performed by 27 users. It contains 940 video
sequences, each containing 10 to 20 gesture samples and
around 14,000 samples in total (6,850 train, 3,454 valida-
tion, and 3,579 test samples). The videos are recorded with
Microsoft Kinect in 640 × 480 pixel resolutions and four
types of data are provided; RGB, depth, user segmentation,
and skeleton.
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1) PREPROCESSING
We preprocess the videos in theMontalbano dataset similar to
our preliminary work [1]. Since the problemwe are dealing in
this research is isolated sign language recognition, we created
isolated sign samples from the Montalbano video sequences.
We then cropped each frame from the upper body of the
signers using the signer’s shoulder center joint coordinates,
using the skeleton data. After this operation, each frame size
is fixed to 400×400 pixels. We kept the shoulder center point
on the horizontal center line of the cropping square. In the
vertical axis, the images are cropped by aligning the window
to the upper part of the image. Furthermore, we also fixed the
number of frames in all the videos to 40 frames as in [1].

2) TRAINING DETAILS
We configured all our model experiments using the same
hyperparameters as in the AUTSL experiments. However,
in our experiments on the Montalbano dataset, we use the
batch size as 16, since the videos have fixed number of
frames. We set the initial learning rate as 1e-4 instead of 1e-5.

TABLE 7. Comparison of the method performances on Montalbano
dataset in isolated setting using RGB or RGB-D data.

3) RESULTS
We evaluate our best model, CNN + FPM + BLSTM +
Attention, on Montalbano dataset and we compare our results
with the sate-of-art models that also work with Montalbano
dataset in isolated recognition setting. Table 7 contains state-
of-the-art model performances that use only RGB or RGB-D
data. We achieved competitive results with the state-of-the-
art models on this dataset without eager hyperparameter
parameter tuning for this dataset; our model got 95.46%
accuracy using only RGB data and 96.11% accuracy using
RGB-D data.

VI. CONCLUSION
In this paper, we present a new large-scale isolated Turkish
Sign Language dataset that we named shortly as AUTSL.
Our dataset provides various challenges compared to many
other large-scale sign language datasets; to the best of our
knowledge, it is the first large-scale public TSL dataset con-
taining a variety of different backgrounds from indoor and
outdoor settings that are performed with several different
signers. In addition to the challenges provided with AUTSL,
we aimed to perform user-independent classification of the
signs in this research. We provide a benchmark training and
test sets that we used in this research publicly available for
the researchers. We also provide several deep learning-based

models aiming to serve as baselines for future researches with
this benchmark.

We trained a series of models based on a vanilla
CNN+ LSTM architecture.We incrementally integrated FPM
and temporal attention to the vanilla model to improve the
classification performances. All the models are trained with
RGB-D data and RGB only data. Finally, we trained the best
models of both modalities using BLSTM models replacing
the LSTMs. The best results are obtained using RGB-D data
using the CNN + FPM + BLSTM + Attention architecture.
In order to validate our baseline models, we also evalu-
ated our best model architecture on Montalbano dataset and
compared the performances with state-of-the-art approaches.
Our models achieved competitive results with the state-of-
the-art models using RGB and RGB-D data. We provided
quantitative results using top-1, top-3 and top-5 classification
accuracies of all the models on AUTSL dataset. The results
reveal that some signs in our dataset are performed visually
similarly and are misclassified by our models. Moreover,
the challenges provided with variety of backgrounds that are
gathered in unconstrained settings degrade the performance
a lot. We provided sample visualizations of the spatially and
temporally attended regions for some samples that support
these claims.

Providing these baseline models to the community, we also
plan to work with AUTSL benchmark more to increase the
classification performance in the future. We are planning
to make more research to improve the spatial and tempo-
ral attention of our models to make them more robust to
dynamic backgrounds. Moreover, we will focus more on
better discriminative training of our models to increase the
classification accuracy of similar signs in the future.
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