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ABSTRACT In this paper, the diffusion effect, distributed delays and stochastic disturbance are involved
in constructing the model of neural networks. Then, the global exponential synchronization problem is
investigated for a class of reaction diffusion neural networks (RDNNs) with infinite distributed delays
and stochastic disturbance. By employing the stochastic analysis method and Lyapunov functional theory,
an adaptive controller is designed to guarantee the exponential synchronization of the drive and response
RDNNs. The derived synchronization conditions are simple and the theoretical results can be directly
extended to other RDNNswith or without distributed delays and stochastic disturbance. Finally, one example
is provided to verify the effectiveness of the theoretical results and adaptive control approach.

INDEX TERMS Adaptive synchronization, neural networks, reaction diffusion, infinite distributed delays,
stochastic disturbance.

I. INTRODUCTION
During the past several decades, various models of neural net-
works (NNs) have been put forward and applied in different
fields, such as the optimized calculation, associative memory
and image processing [1]–[4]. These successful applications
are heavily dependent on the dynamical behaviors of NNs,
which the main cases are the stability and synchronization.
In addition, as a typical cluster discharge activity of neurons,
the synchronous behavior is closely related to the neural
information processing function [5]–[8]. Thus, it is critical
and necessary to study the dynamics, especially the synchro-
nization of NNs.

The diffusion effects with spatial dynamic characteris-
tics should be considered in circuit design of NNs [9].
The main reason is that the magnetic field environment
of the electronic circuit simulating the NNs is often non-
uniform, which leads to the phenomenon of spatial diffu-
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sion of its electrons [10]–[12]. Then, a new kind of reac-
tion diffusion NNs (RDNNs) whose neuron states vary with
time and space simultaneously, is proposed [13], [14]. Cor-
respondingly, to sufficiently reflect this time-space feature,
the mathematical model of RDNNs can be described by
a partial differential equation. Therefore, dynamical anal-
ysis of RDNNs is necessary and difficult, deserving to
be further investigated. Recently, great efforts have been
devoted to analyze dynamical behaviors of various RDNNs,
especially the synchronization problem via different control
approaches [15]–[19].

Time delays are inevitable in light of the finite switch-
ing limits of neuron amplifiers and the signal transmis-
sion [20], [21]. Generally, they are unavoidably existed in
circuits of NNs and may result in undesirable dynamics, such
as instability and chaotic behavior [22]–[24]. Furthermore,
owing to the existence of massive parallel pathways with
extensive axon sizes and lengths, the delays are not suffi-
ciently described in the discrete form but in the distributed
form [25]. In other words, the distributed delays are more
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general and should be considered in models of RDNNs.
In [26], [27], the periodic solution and its stability were
discussed for RDNNs with continuous distributed delays.
In [28], [29], the stability was analyzed for RDNNs with
S-type distributed delays. In [30], [31], the stabilization prob-
lem was addressed for memristor-based RDNNs with finite
distributed delays via state feedback and intermittent control
methods. As is well known, the current behaviors of a neuron
relate to its entire past states, which gives rise to the exis-
tence of the infinite distributed delays [32]. Thus, it is more
reasonable to consider the infinite distributed delays in model
of RDNNs.

On the other hand, in practical applications, the stochastic
disturbance is always encountered because of the complicated
environmental noise and interference [33]–[36]. Regarding
the RDNNs with stochastic disturbance, lots of research
works have been reported [37]–[41]. Moreover, by tak-
ing both the distributed delays and stochastic disturbance
into consideration, authors in [42]–[44] studied the stability
and synchronization of RDNNs via the stochastic analysis
method. It is noted that the distributed delays in above papers
[42]–[44] are restricted to be finite and bounded. Up to now,
there is little work on the dynamics of RDNNs with infinite
distributed delays and stochastic disturbance, which deserves
further investigation and motivates the synchronization study
of this paper.

Considering the RDNNs with infinite distributed delays
and stochastic disturbance, the model is represented as
a class of partial differential stochastic systems with
mixed delays. Thus, it brings great difficulties to real-
ize the synchronization of this kind of systems. In this
paper, we aim to investigate the drive-response synchro-
nization for RDNNs with infinite distributed delays and
stochastic disturbance. The contributions are listed as
follows.

1) This paper addresses the synchronization problem for
a class of stochastic RDNNs with infinite distributed delays.
Since the model studied involves the diffusion effect, stochas-
tic disturbance and infinite distributed delays, it is generalized
compared to the stochastic RDNNs with finite distributed
delays in [42]–[44].

2) By employing the theory of partial differential sys-
tem and stochastic analysis method, the simple and easily
verified synchronization criteria are derived via a designed
adaptive controller. The comparisons over existing work
are provided in Remarks 4-6, which shows that the syn-
chronization results effectually complement or improve the
existing results of RDNNs with or without stochastic dis-
turbance. Moreover, the superiority of the adaptive control
approach compared with the linear one is also presented in
Corollary 1.

The rest of this paper is organized as follows. The model
and problem descriptions are given in Section II. The main
synchronization results of RDNNs via the adaptive controller
are given in Section III. Sections IV and V show the numeri-
cal simulations and conclusions, respectively.

II. PRELIMINARIES
In this paper,Rn,R andR+ denote the set of n-dimensional
Euclidean space, real numbers and nonnegative numbers,
respectively. For a constant n, let n] = {1, 2, . . . , n}.
(3,z,P) is a completed probability space with a natural
filtration {zt }t≥0 satisfying the usual condition. E is the
mathematical expectation operator concerning the probabil-
ity P . 5 = {(u1, u2, . . . , uI )T ||ui| < ri, i ∈ I ]} is
bounded compact set with smooth boundary ∂5 and measure
mes5 > 0.

Consider the following RDNNs model with infinite dis-
tributed delays

dxs(u, t) =
[ I∑
i=1

∂

∂ui

(
αsi
∂xs(u, t)
∂ui

)
− dsxs(u, t)

+

n∑
k=1

ask f1k (xk (u, t))

+

n∑
k=1

bsk f2k (xk (u, t − λk (t)))

+

n∑
k=1

csk

∫ t

−∞

Ksk (t − ω)f3k (xk (u, ω))dω
]
dt

(1)

where s, k ∈ n], i ∈ I ] = {1, 2, . . . , I }. xs(u, t) is the state
at space u and time t , and u = (u1, u2, . . . , uI )T ∈ 5 ⊂ RI .
αsi ≥ 0 is the transmission diffusion parameter. ds > 0 is
the self feedback connection weight, the parameters ask , bsk
and csk are the connection weight coefficients, where bsk and
csk correspond to the delayed and distributed delayed ones.
Discrete delay λk (t) is bounded and the delay kernel Ksk ∈
R+ is a continuous function. The activations fjk ∈ R(j =
1, 2, 3) are continuous functions.
Remark 1: Compared with the stochastic RDNNs model

with finite distributed delays in [42]–[44], the distributed
delays in our model are infinite, which implies wider range
of applications in practice.

The following assumptions are given for the activation
functions and delays in system (1).

H1: For each k ∈ n], there exist positive constants
F1k ,F2k ,F3k such that

|f1k (y)− f1k (x)| ≤ F1k |y− x|,

|f2k (y)− f2k (x)| ≤ F2k |y− x|,

|f3k (y)− f3k (x)| ≤ F3k |y− x|, (2)

for all x, y ∈ R.
H2: For each k ∈ n], there exist positive constants λ1 and

λ2 such that

0 ≤ λk (t) ≤ λ1, λ̇k (t) ≤ λ2 < 1. (3)

H3: For each s, k ∈ n], there exists positive constant ϑsk
such that∫

+∞

0
Ksk (ω)dω = 1,

∫
+∞

0
eϑskωKsk (ω)dω <∞. (4)
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Consider system (1) as the drive system, and involve
the stochastic disturbance, then the corresponding response
system is

dys(u, t) =
[ I∑
i=1

∂

∂ui

(
αsi
∂ys(u, t)
∂ui

)
− dsys(u, t)

+

n∑
k=1

ask f1k (yk (u, t))+1s(u, t)

+

n∑
k=1

bsk f2k (yk (u, t − λk (t)))

+

n∑
k=1

csk

∫ t

−∞

Ksk (t − ω)f3k (yk (u, ω))dω
]
dt

+

n∑
k=1

%sk (vk (u, t), vk (u, t − λk (t)))dBk (t) (5)

where ys(u, t) is the state variable, %sk is the noise intensity
function, vk (u, ·) = yk (u, ·) − xk (u, ·), and the stochastic
disturbance B(t) = (B1(t),B2(t), . . . ,Bn(t))T ∈ Rn is a
Brownian motion defined on the complete probability space
(3,z,P), with E{dB(t)} = 0 and E{dB2(t)} = dt . 1s(u, t)
is the external control input designed as

1s(u, t) = βs(u, t)vs(u, t) (6)

with

∂βs(u, t)
∂t

= −γseπ t |vs(u, t)|p (7)

where e is the base of the natural logarithm, π, γs,p ≥ 2 are
positive constants for s ∈ n].
Then the following assumption is presented for the noise

intensity functions.
H4: For each s, k ∈ n], there exist τsk > 0, ηsk > 0 such

that

|%sk (ê1, ě1)− %sk (ê2, ě2)|2 ≤ τsk |ê1 − ê2|2 + ηsk |ě1 − ě2|2

(8)

for all ê1, ě1, ê2, ě2 ∈ R.
Remark 2: The noise intensity functions %sk (s, k ∈

n]) are of multiplicative case. The stochastic Brownian
noise with these functions can be regarded as a result
from the occurrence of the internal error of NNs circuits
and random fluctuation. Therefore, the noise intensity
functions %sk (s, k ∈ n]) also rely on the state vari-
ables xk (u, t), yk (u, t), xk (u, t − λk (t)), yk (u, t − λk (t)) of
systems (1) and (5).
Remark 3: The control gains of the adaptive controller

can be adjusted to be optimized, which shows the superiority
compared with the linear state feedback control whose feed-
back control strength is fixed.

Then the following error system is derived from systems
(1) and (5).

dvs(u, t) =
[ I∑
i=1

∂

∂ui

(
αsi
∂vs(u, t)
∂ui

)
− dsvs(u, t)

+

n∑
k=1

askh1k (vk (u, t))+1s(u, t)

+

n∑
k=1

bskh2k (vk (u, t − λk (t)))

+

n∑
k=1

csk

∫ t

−∞

Ksk (t − ω)h3k (vk (u, ω))dω
]
dt

+

n∑
k=1

%sk (vk (u, t), vk (u, t − λk (t)))dBk (t) (9)

where hjk (vk (u, ·)) = fjk (yk (u, ·))− fjk (xk (u, ·)), j = 1, 2, 3.
The boundary conditions of systems (1) and (5) are

xs(u, t) = 0 and ys(u, t) = 0 for (u, t) ∈ ∂5 ×

(−∞,+∞). The initial conditions of systems (1) and (5) are
xs(u, t) = ϕs(u, ω) and ys(u, t) = ψs(u, ω) for (u, ω) ∈
5× (−∞, 0]. For v(u, t) = (v1(u, t), v2(u, t), . . . , vn(u, t))T ,
define

‖v(u, t)‖ = (
∫
5

n∑
s=1

|vs(u, t)|pdu)1/p. (10)

C(5×(−∞, 0],Rn) denotes the Banach space of continuous
functions, and for any φ(u, ω) ∈ C, define the norm

‖φ(u, ω)‖ = (
∫
5

sup
−∞<ω≤0

n∑
s=1

|φs(u, ω)|pdu)1/p (11)

with p ≥ 2, φ(u, ω) = (φ1(u, ω), φ2(u, ω), . . . , φn(u, ω))T

and for s ∈ n], φs(u, ω) = ψs(u, ω)− ϕs(u, ω).
Based on (10) and (11), the following basic definition and

useful lemma are given.
Definition 1: The drive and response systems (1) and (5)

are said to be pth moment globally exponentially synchro-
nized, if there exist positive constants µ > 0 and δ ≥ 1 such
that for any ψ, ϕ ∈ C, t ∈ R+

E‖y(u, t)− x(u, t)‖p ≤ δ(E‖ψ − ϕ‖p)e−µt . (12)

Lemma 1 [10]: Give 5 = {u = (u1, u2, . . . , uI )T ||ui| <
ri, i ∈ I ]} with smooth boundary ∂5, constant p ≥ 2
and function h(u) ∈ C1(5) with h(u)|∂5 = 0, then for
i ∈ I ] ∫

5

|h(u)|pdu ≤
p
2 r2i
4

∫
5

|h(u)|p−2|
∂h
∂ui
|
2du. (13)

III. MAIN RESULTS
Theorem 1: Suppose that assumptions H1-H4 hold, then sys-
tems (1) and (5) are globally exponentially synchronized via
the adaptive controller (6).
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Proof: Construct the Lyapunov-Krasovskii functional

V (v(u, t), t)

=

∫
5

n∑
s=1

εs

[
gs(t)+

p

2γs
(βs(u, t)+ β̃s)2

+

n∑
k=1

(
|bsk |F2k + (p− 1)ηsk

1− λ2

∫ t

t−λk (t)
eπλ1gk (ω)dω

+|csk |F3k

∫ 0

−∞

∫ t

t+θ
e−πθKsk (−θ )gk (ω)dωdθ

)]
du

(14)

where εs > 0 is a constant, gs(t) = eπ t |vs(u, t)|p, and β̃s is a
positive constant determined later.

By employing the Itô formula [35], the derivation of V (t)
is

dV (v(u, t), t)

= £V (v(u, t), t)dt

+Vv(v(u, t), t)%(v(u, t), v(u, t − λ(t)))dB(t) (15)

where

£V (v(u, t), t) = Vt (v(u, t), t)+ Vv(v(u, t), t)�

+
1
2
trace[%TVvv(v(u, t), t)%],

Vt (v(u, t), t) =
∂V (v(u, t), t)

∂t
,

Vv(v(u, t), t) =
(
∂V (v(u, t), t)

∂v1
,
∂V (v(u, t), t)

∂v2
,

. . . ,
∂V (v(u, t), t)

∂vn

)
,

Vvv(v(u, t), t) =
(
∂2 V (v(u, t), t)

∂vs∂vk

)
n×n
,

� = (�1, �2, . . . , �n)T ,

�s =

I∑
i=1

∂

∂ui

(
αsi
∂vs(u, t)
∂ui

)
− dsvs(u, t)

+

n∑
k=1

askh1k (vk (u, t))+1s(u, t)

+

n∑
k=1

bskh2k (vk (u, t − λk (t)))

+

n∑
k=1

csk

∫ t

−∞

Ksk (t − ω)h3k (vk (u, ω))dω.

It follows

£V (v(u, t), t)

≤

∫
5

n∑
s=1

εs

{
eπ t
[
p

2
|vs(u, t)|p−2

(
∂v2s (u, t)
∂t

+ (p− 1)

×

n∑
k=1

%2sk (vk (u, t), vk (u, t − λk (t)))
)
+ π |vs(u, t)|p

]
−p(βs(u, t)+ β̃s)gs(t)

+

n∑
k=1

[
eπλ1 (|bsk |F2k + (p− 1)ηsk )

×

(
gk (t)
1− λ2

− gk (t − λk (t))
)

+|csk |F3k

(∫ 0

−∞

e−πθKsk (−θ )gk (t)dθ

−

∫ 0

−∞

e−πθKsk (−θ )gk (t + θ )dθ
)]}

du

≤

∫
5

n∑
s=1

εseπ t
{
p|vs(u, t)|p−2vs(u, t)

×

I∑
i=1

∂

∂ui

(
αsi
∂vs(u, t)
∂ui

)
− pds|vs(u, t)|p

+

n∑
k=1

p|ask ||vs(u, t)|p−1|h1k (vk (u, t))|

+

n∑
k=1

p|bsk ||vs(u, t)|p−1|h2k (vk (u, t − λk (t)))|

+

n∑
k=1

p|csk ||vs(u, t)|p−1

×

∫ t

−∞

Ksk (t − ω)|h3k (vk (u, ω))|dω

+pβs(u, t)|vs(u, t)|p +
p(p− 1)

2
|vs(u, t)|p−2

×

n∑
k=1

%2sk (vk (u, t), vk (u, t − λk (t)))

+π |vs(u, t)|p − p(βs(u, t)+ β̃s)|vs(u, t)|p

+

n∑
k=1

[
(|bsk |F2k + (p− 1)ηsk )

×

(
eπλ1 |vk (u, t)|p

1− λ2
− |vk (u, t − λk (t))|p

)
+|csk |F3k

(∫
+∞

0
eπωKsk (ω)|vk (u, t)|pdω

−

∫ t

−∞

Ksk (t − ω)|vk (u, ω)|pdω
)]}

du. (16)

Based on H1 and H3, and the Young’s inequality yx ≤
1/σ1 yσ1 + 1/σ2 xσ2 for y > 0, x > 0 with constants
σ1 > 0, σ2 > 0 satisfying 1/σ1 + 1/σ2 = 1, one can obtain

n∑
k=1

p|ask ||vs(u, t)|p−1|f1k (vk (u, t))|

≤

n∑
k=1

|ask |F1k ((p− 1)|vs(u, t)|p + |vk (u, t)|p), (17)

n∑
k=1

p|bsk ||vs(u, t)|p−1|f2k (vk (u, t − λk (t)))|

≤

n∑
k=1

|bsk |F2k ((p− 1)|vs(u, t)|p + |vk (u, t − λk (t))|p),

(18)
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n∑
k=1

p|csk ||vs(u, t)|p−1

×

∫ t

−∞

Ksk (t − ω)|f3k (vk (u, ω))|dω

≤

n∑
k=1

|csk |F3k ((p− 1)|vs(u, t)|p

+

∫ t

−∞

Ksk (t − ω)|vk (u, ω)|pdω), (19)

p(p− 1)
2

|vs(u, t)|p−2
n∑

k=1

%2sk (vk (u, t), vk (u, t − λk (t)))

≤
p− 1
2

n∑
k=1

[τsk ((p− 2)|vs(u, t)|p + 2|vk (u, t)|p)

+ηsk ((p− 2)|vs(u, t)|p + 2|vk (u, t − λk (t))|p)]. (20)

By using the Green formula [45] and Lemma 1 in [10],
it follows that∫
5

p|vs(u, t)|p−2vs(u, t)
I∑
i=1

∂

∂ui

(
αsi
∂vs(u, t)
∂ui

)
du

≤ −

I∑
i=1

4(p− 1)αsi
pr2i

∫
5

|vs(u, t)|pdu. (21)

Thus, it follows from (16)-(21) that

£V (v(u, t), t)

≤

∫
5

n∑
s=1

εseπ t
[(
−

I∑
i=1

4(p− 1)αsi
pr2i

+ π − pds − pβ̃s

+

n∑
k=1

(p− 1)(|ask |F1k + |bsk |F2k + |csk |F3k )

+

n∑
k=1

(p− 1)(p− 2)
2

(τsk + ηsk )
)
|vs(u, t)|p

+

n∑
k=1

(p− 1)τsk |vk (u, t)|p +
n∑

k=1

|ask |F1k |vk (u, t)|p

+

n∑
k=1

(p− 1)ηsk |vk (u, t − λk (t))|p

+

n∑
k=1

|bsk |F2k |vk (u, t − λk (t))|p

+

n∑
k=1

|csk |F3k

∫ t

−∞

Ksk (t − ω)|vk (u, ω)|pdω

+

n∑
k=1

(|bsk |F2k + (p− 1)ηsk )

×

(
eπλ1 |vk (u, t)|p

1− λ2
− |vk (u, t − λk (t))|p

)
+

n∑
k=1

|csk |F3k

(∫
+∞

0
eπωKsk (ω)|vk (u, t)|pdω

−

∫ t

−∞

Ksk (t − ω)|vk (u, ω)|pdω
)]

du

≤

∫
5

n∑
s=1

eπ t
[
εs

(
−

I∑
i=1

4(p− 1)αsi
pr2i

+ π − pds − pβ̃s

+

n∑
k=1

(p− 1)(|ask |F1k + |bsk |F2k + |csk |F3k )

+

n∑
k=1

(p− 1)(p− 2)
2

(τsk + ηsk )
)

+

n∑
k=1

εk

(
(p− 1)τks + |aks|F1s

+
(|bks|F2s + (p− 1)ηks)eπλ1

1− λ2

+|cks|F3s

∫
+∞

0
eπωKks(ω)dω

)]
|vs(u, t)|pdu. (22)

Then, choose β̃s = (ςs −
∑I

i=1 4(p − 1)αsi/(pr2i ) +
π − pds +

∑n
k=1(p − 1)(|ask |F1k + |bsk |F2k + |csk |F3k +

(p − 2)(τsk + ηsk )/2) +
∑n

k=1 εk/εs((p − 1)τks + |aks|
F1s + (|bks|F2s + (p − 1)ηks)eπλ1/(1 − λ2) + |cks|
F3s

∫
+∞

0 eπωKks(ω)dω))/p with constant ςs > 0, it follows

£V (v(u, t), t) ≤ −
∫
5

n∑
s=1

εseπ tςs|vs(u, t)|pdu

≤ 0. (23)

By taking the mathematical expectation of both sides

of (15), we can get
dEV (v(u, t), t)

dt
≤ 0. Thus, for any

t ∈ R+,

EV (v(u, t), t) ≤ EV (v(u, 0), 0), (24)

i.e.,

E
[ ∫

5

n∑
s=1

|vs(u, t)|pdu
]

≤ E
[
ε̄

ε
e−π t

∫
5

n∑
s=1

(
|vs(u, 0)|p +

p

2γs
(βs(u, 0)+ β̃s)2

+

n∑
k=1

(|bks|F2s + (p− 1)ηks)
1− λ2

×

∫ 0

−λ1

eπ (λ1+ω)|vs(u, ω)|pdω +
n∑

k=1

|cks|F3s

×

∫ 0

−∞

∫ 0

θ

eπ (ω−θ )Kks(−θ )|vs(u, ω)|pdωdθ
)
du
]

≤ π̃E
[ ∫

5

sup
−∞<ω≤0

n∑
s=1

|φs(u, ω)|pdu
]
e−π t (25)

where ε = mins{εs}, ε̄ = maxs{εs}, and π̃ = ε̄/εmaxs
{1 + ν +

∑n
k=1((|bks|F2s + (p − 1)ηks)eπλ1λ1)/(1 −

λ2) +
∑n

k=1(|cks|F3s
∫
+∞

0 eπωKks(ω)dω)}. ν is a constant
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such that
∑n

s=1 p(βs(u, 0) + β̃s)2/(2γs) ≤ ν sup−∞<ω≤0∑n
s=1 |φs(u, ω)|

p
)
.

Thus,

E‖v(u, t)‖p ≤ π̃E‖φ(u, ω)‖pe−π t . (26)

In light of Definition 1, systems (1) and (5) are globally
exponentially synchronized under the adaptive controller (6).
The proof is completed. �
Remark 4: In [15]–[19], [32], [37]–[44], authors discussed

the dynamics for a class of RDNNs. Since the infinite dis-
tributed delays and stochastic disturbance are all taken into
consideration in the RDNNs model of this paper, the model
is generalized compared to the RDNNs without distributed
delays and stochastic disturbance. Moreover, our results are
also generalized and can be extend to other RDNNs with or
without distributed delays and stochastic disturbance.
Remark 5: Our results show the superiority of the ones in

[32], [41]–[44]. On the one hand, the synchronization criteria
in this paper are more simpler compared to the ones in [32],
[41], [43], [44] on account of the complicated calculation for
the criteria in [32], [43], [44]. On the other hand, simple syn-
chronization conditions are obtained for stochastic RDNNs
via adaptive control approach in [42]. It is worth noting that
our criteria are derived with infinite distributed delays while
the ones in [42] are with the finite distributed delays.

If the control gain βs(u, t) = βs, then the adaptive control
turns out to be the linear one. Then we can get the following
Corollary 1 from Theorem 1.
Corollary 1: Suppose that assumptions H1-H4 hold,

if there exists constant βs < 0 such that

pβs −

I∑
i=1

4(p− 1)αsi/(pr2i )+ π − pds

+

n∑
k=1

(p− 1)
(
|ask |F1k + |bsk |F2k + |csk |F3k

+
p− 2
2

(τsk + ηsk )
)
+

n∑
k=1

εk

εs

(
(p− 1)τks

+|aks|F1s +
(|bks|F2s + (p− 1)ηks)eπλ1

1− λ2

+|cks|F3s

∫
+∞

0
eπωKks(ω)dω)

)
< 0, (27)

then systems (1) and (5) are globally exponentially synchro-
nized via the controller 1s(u, t) = βsvs(u, t).
Remark 6: It is obvious from Corollary 1 that the cri-

teria via the adaptive control approach is simpler and less
conservative compared to the criteria via the linear control
approach. In the following part, we will show that our results
still hold for stochastic RDNNs with finite distributed delays.

If the delay kernel function satisfies

Ksk (t) =

{
1, 0 ≤ t ≤ ρ,
0, t > ρ,

where ρ is a positive constant. Then the drive and response
RDNNs turn out to be the following two systems.

dxs(u, t) =
[ I∑
i=1

∂

∂ui

(
αsi
∂xs(u, t)
∂ui

)
− dsxs(u, t)

+

n∑
k=1

ask f1k (xk (u, t))

+

n∑
k=1

bsk f2k (xk (u, t − λk (t)))

+

n∑
k=1

csk

∫ t

t−ρ
f3k (xk (u, ω))dω

]
dt (28)

and

dys(u, t) =
[ I∑
i=1

∂

∂ui

(
αsi
∂ys(u, t)
∂ui

)
− dsys(u, t)

+

n∑
k=1

ask f1k (yk (u, t))+1s(u, t)

+

n∑
k=1

bsk f2k (yk (u, t − λk (t)))

+

n∑
k=1

csk

∫ t

t−ρ
f3k (yk (u, ω))dω

]
dt

+

n∑
k=1

%sk (vk (u, t), vk (u, t − λk (t)))dBk (t)

(29)

with the control input

1s(u, t) = β̄s(u, t)vs(u, t),
∂β̄s(u, t)
∂t

= −γ̄seπ̄ tv2s (u, t) (30)

where the parameters are similar defined as in (5)-(7).
Corollary 2: Suppose that assumptions H1, H2 and

H4 hold, then systems (28) and (29) are globally exponen-
tially synchronized via the adaptive controller (30).
Corollary 3: Suppose that assumptions H1-H3 hold and

%sk (·, ·) = 0(s, k ∈ n]), then systems (1) and (5)
are globally exponentially synchronized via the adaptive
controller (6).
Remark 7: Authors in [42] investigated the synchroniza-

tion problem for RDNNs with finite distributed delays and
stochastic disturbance via adaptive control approach. The
results in [42] can be obtained directly from Corollary 2.

IV. NUMERICAL SIMULATIONS
One example is provided to show the effectiveness of results
and the control approach.
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Example 1: Consider the RDNNs with infinite distributed
delays.

dxs(u, t) =
[
αs
∂2 xs(u, t)
∂u2

− dsxs(u, t)

+

2∑
k=1

ask f1k (xk (u, t))

+

2∑
k=1

bsk f2k (xk (u, t − λk (t)))

+

2∑
k=1

csk

∫ t

−∞

Ksk (t − ω)f3k (xk (u, ω))dω
]
dt

(31)

where u ∈ 5 = [−4, 4], α1 = α2 = 0.1, d1 = d2 =
1, a11 = 2, a12 = −0.1, a21 = −5, a22 = 2.5, b11 =
−1.3, b12 = −0.1, b21 = 1, b22 = −0.5, c11 = −0.03, c =
0.15, c21 = −0.2, c22 = −0.1, the delays λk (t) = et/(1 +
et ),Ksk (ω) = e−ω, and activation functions fjk (·) = tanh(·)
for j = 1, 2, 3, s, k = 1, 2.

Then under the stochastic disturbance and external control
input, the response system is

dys(u, t) =
[
αs
∂2 ys(u, t)
∂u2

− dsys(u, t)

+

2∑
k=1

ask f1k (yk (u, t))+1s(u, t)

+

2∑
k=1

bsk f2k (yk (u, t − λk (t)))

+

2∑
k=1

csk

∫ t

−∞

Ksk (t − ω)f3k (yk (u, ω))dω
]
dt

+

n∑
k=1

%sk (vk (u, t), vk (u, t − λk (t)))dBk (t) (32)

in which %11(v1(u, t), v1(u, t − λ1(t))) = 0.2 v1(u, t) +
0.3 v1(u, t − λ1(t)), %12(v2(u, t), v2(u, t − λ2(t))) =

%21(v1(u, t), v1(u, t − λ1(t))) = 0, %22(v2(u, t), v2(u, t −
λ2(t))) = 0.3 v2(u, t) + 0.2 v2(u, t − λ2(t)). The other
parameters are the same as in the drive system (31).

Fig. 1 show the phase plot of drive system (31). It is
noted that the chaotic attractors are reflected in this figure.
Fig. 2 depicts the phase plot of system (32) with u = −2 and
1s(u, t) = 0. The trajectories of the state variables y1(u, t)
and y2(u, t) of system (31) without any controller are shown
in Figs. 3 and 4. It is obviously that the response system is also
a chaotic system, and it is not stable without any controller.

Then to ensure the synchronization of drive and response
systems (31) and (32), the following controller is given as

1s(u, t) = βs(u, t)vs(u, t),
∂βs(u, t)
∂t

= −5e0.005t |vs(u, t)|2, (33)

FIGURE 1. Phase plot of system (31) with u = −2.

FIGURE 2. Phase plot of system (32) with u = −2 and 1s(u, t) = 0.

FIGURE 3. The trajectories of y1(u, t) of system (32) without any
controller.

for s = 1, 2. Then the globally exponentially synchroniza-
tion of systems (31) and (32) via the controller (33) are
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FIGURE 4. The trajectories of y2(u, t) of system (32) without any
controller.

FIGURE 5. The trajectories of error state v1(u, t) between systems (31)
and (32) via the controller (33).

FIGURE 6. The trajectories of error state v2(u, t) between systems (31)
and (32) via the controller (33).

guaranteed based on the results of Theorem 1. The trajectories
of synchronization errors v1(u, t) and v2(u, t) via the adaptive

FIGURE 7. The control gain β1(u, t) of the adaptive controller (33).

FIGURE 8. The control gain β2(u, t) of the adaptive controller (33).

FIGURE 9. Under %sk (·, ·) = 0(s,k = 1,2), the trajectories of error state
v1(u, t) between systems (31) and (32) via the controller (33).

controller (33) are shown in Figs. 5 and 6. From Figs. 5 and 6,
it is easy to see that the error states tend to zero exponentially
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FIGURE 10. Under %sk (·, ·) = 0(s,k = 1,2), the trajectories of error state
v2(u, t) between systems (31) and (32) via the controller (33).

FIGURE 11. Under %sk (·, ·) = 0(s,k = 1,2), the control gain β1(u, t) of
the adaptive controller (33).

FIGURE 12. Under %sk (·, ·) = 0(s,k = 1,2), the control gain β2(u, t) of
the adaptive controller (33).

as time goes to infinite, which also shows the synchronization
performance of the drive and response systems. The control

gains β1(u, t) and β2(u, t) of the adaptive controller (33) are
given in Figs. 7 and 8.

Moreover, if %sk (·, ·) = 0(s, k = 1, 2), then the synchro-
nization of systems (31) and (32) can also be ensured on the
strength of Corollary 3. The trajectories of synchronization
errors are shown in Figs. 9 and 10. The control gains of the
controller are shown in Figs. 11 and 12 on account of the
condition %sk (·, ·) = 0(s, k = 1, 2).

V. CONCLUSION
This paper has discussed the global exponential synchro-
nization problem for a class of RDNNs with distributed
delays. Compared with some existing determined models,
the stochastic disturbance has been taken into consideration
and the distributed delays are infinite. By employing an adap-
tive controller, sufficient simple and easily checked criteria
have been concluded for the addressed drive and response
networks under stochastic disturbance. Finally, one RDNNs
model with chaotic attractors has been presented to show
the feasibility and validity of the proposed adaptive control
approach. Since the parameters of the drive and response
systems can not be identical in light of the complicated
environment of practical application, future work may study
the synchronization problem of RDNNs with mismatched
parameters.
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