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ABSTRACT Regarding the problems of image distortion, edge blurring, Gibbs phenomena in the tra-
ditional wavelet transform algorithm and the loss of subtle features in the Non-Subsampled Shearlet
Transform (NSST), and considering the physical characteristics of infrared and visible images, an infrared
and visible image fusion algorithm based on the Lifting Stationary Wavelet Transform (LSWT) and
Non-Subsampled Shearlet Transform is proposed in this paper. First, since LSWT can quickly calculate
and has all advantages of traditional WT, it is utilized to decompose infrared and visible images to obtain
low-frequency coefficients and multi-scale and multi-directional high-frequency coefficients, respectively.
Second, NSST multi-scale decomposition is used to extract the target features and detailed features of the
image from the high and low-frequency sub-bands to obtain new high and low-frequency sub-bands. Third,
according to the physical characteristics that low and high-frequency coefficients represent, different fusion
rules are designed. Discrete Cosine Transform (DCT) and Local Spatial Frequency (LSF) are introduced in
the low-frequency sub-band, and LSF adaptive weighted fusion rules are used in the DCT domain. The fusion
strategy improves the regional contrast in the high-frequency sub-band with the spectral characteristics of
human vision. Finally, the Inverse Lifting Stationary Wavelet Transform (ILSWT) is used to reconstruct the
fusion coefficients to obtain the final fused images. To verify the advantages of the proposed algorithm in
this paper, the classic and advanced 9 IR and VI fusion algorithms are selected for subjective and objective
comparison. In the objective evaluation, a comprehensive ranking index is designed based on 9 classical
indicators. Simulation experiments with 10 IR and VI fusion algorithms prove that the proposed algorithm
has better performance and flexibility. The results show that the proposed algorithm in this paper fuses the
images with clear edges, prominent targets, and good visual perception, and it outperforms state-of-the-art
image fusion algorithms.

INDEX TERMS Lifting Stationary Wavelet Transform (LSWT), Non-Subsampled Shearlet Transform
(NSST), Discrete Cosine Transform (DCT), Local Spatial Frequency (LSF), regional contrast, infrared and
visible image fusion.

I. INTRODUCTION
Image fusion is a technology that performs registration
on images obtained by different sensors on the same tar-
get; then, it utilizes certain algorithms to remove redun-
dant information and integrate complementary information
to generate more suitable fusion images for human visual
perception [1]. Recently, image fusion technology obtains a
boost and plays a key role in image segmentation and com-
puter vision [2]–[4]. With the development of image fusion
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technology and reduction of hardware costs, higher reliabil-
ity and comprehensiveness are expected for image fusion.
Therefore, infrared and visible image fusion technology has
received extensive research by scholars [5].

The infrared sensor and visible sensor can collect comple-
mentary information of the same scene. Infrared sensors catch
rich thermal radiation information, which can clearly unveil
hidden target outlines but cannot catch detailed informa-
tion. The visible sensor characterizes the object through the
spectral reflection, which yields fusion results that are more
closely consistent with the human visual system. However,
the image quality is limited by the environment and depth
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of field conditions, especially at night and in low-visibility
conditions. The fusion of infrared and visible images pro-
vides more comprehensive information with high resolution
of the visible-light target and clear hidden infrared light
target. The technology overcomes the limitation of single
sensor-information acquisition and improves the visual effect
of the image. Thus, image fusion technology has always
been a research hot-spot and plays a key role in the fields
of target tracking and detection, medical imaging, military
reconnaissance, remote sensing, face recognition, and space
exploration [6]–[12].

Currently image fusion algorithms are mainly divided into
pixel-based and region-based methods. According to the
transformation range, image fusion algorithms are divided
into transformation-based and spatial-domain-based meth-
ods. Multi-scale fusion based on the transform domain is
the mainstream framework, whose core idea is to map
the source image to multiple transform domains. Classical
multi-scale transform algorithms are: Wavelet Transform
(WT) [13], Curvelet Transform (CT) [14], Non-Sampled
Shearlet Transform (NSST) [15], Sparse Representa-
tion (SR) [16], Non-Subsampled Contourlet Transform
(NSCT) [17], multi-resolution singular-value decomposi-
tion [18], etc. Image filtering technology based on the spatial
domain is an important theory, which processes a single
pixel or area pixel of the source image. Typical methods
are: non-local mean filtering [19], guided filtering [20],
global filtering [21], and bilateral filtering. The key of
region-based infrared and visible image fusion technology
is to extract distinctive features in the infrared light area,
which can be achieved by image segmentation or saliency
detection, and regions with strong infrared rays are effectively
obtained [22], [23].

In recent years, deep learning has rapidly developed in
various fields and been widely studied and applied in image
fusion [24], [25]. By learning the weight parameters and
loss function in the training layer and verification layer, this
method can obtain rich image information with good results.
Literature [26] uses a convolutional sparse representation
method to extract the features of the detailed layer and use
it for image fusion of infrared and visible-light; it has better
and more malleable fusion effect than the traditional sparse
method. Literature [27] applied CNN to image fusion for the
first time, and proposed a multi-focus image fusion algorithm
with a deep learning framework. The deep convolutional neu-
ral network is trained to extract the focused or de-focused area
of the source image, and the fused image is generated through
fusion decision post-processing, which is more robust. Litera-
ture [28] uses CNN to address two key issues of image fusion:
activity level measurement and weight distribution. Then,
it fully consider infrared and visible-light imaging methods
and local similarity post-processing strategies to adjust the
fusion decision map and obtains a good fusion effect. The
deep learning method requires high hardware resources and
time-consuming calculations. However, with the rapid devel-
opment of GPU hardware technology, parallel computing

and accelerated computing capabilities have been greatly
improved, and hardware costs have been greatly reduced.
Traditional image fusion technology has certain advantages
in handling certain types of problems. Therefore, how to
effectively integrate deep learning with traditional algorithms
is also a research hotspot.

Recently, deep learning has rapidly developed in various
fields and been widely applied in image fusion [24], [25].
Rich image information with good effect is obtained by
learning weight parameters and loss functions from the
training and verification layers. However, the structures of
deep learning networks are usually complicated. When there
are many training layers, a lot of training and learning is
very time-consuming and introduces serious phenomenon
of over-fitting. Moreover, it has high requirements on hard-
ware resources, which are not suitable for the populariza-
tion of minicomputers, poor applicability and poor real-time
performance.

Fusion methods based on transform domain usually have
better fusion performance, but their basic functions and
decomposition scales are relatively fixed. Based on this
fusion framework, selecting the optimal basis function to
better express the source image and design effective fusion
rules for the decomposed sub-bands to improve the fusion
quality of the image is a challenging research point, and
its complexity is also high. The fusion method based on
the spatial domain can avoid the transformation and inverse
transformation process of the transform domain method. The
initial fusion decision map is usually obtained by solving the
image’s activity degree, but the final fusion decision map
requires subsequent optimization processing. This algorithm
has a small amount of calculation and is simple and easy to
implement, but its fusion performance is poor. The limitation
of the image fusion method based on deep learning is that
a large number of images need to be trained, and it is dif-
ficult to obtain real data of these. If simulating data is used
to classify pixels to obtain a fusion decision map, noise is
often introduced. Therefore, it is necessary to use an end-
to-end unsupervised deep network to complete image fusion
and obtain high-quality fused images. However, the existing
training data does not have a standard reference image, which
also brings specific difficulties in end-to-end image fusion.
The classification of image fusion methods is not absolute.
With the continuous development of related technologies,
a variety of technical methods have shown a noticeable trend
of cross-fusion.

Stationary Wavelet Transform (SWT) as an improved
wavelet can effectively preserve the image texture and edge
information. However, this algorithm can only represent the
details of the image in three directions (horizontal, vertical,
and diagonal), and it is weak for continuous regions. The
algorithm performance is poor especially when the source
image has complex details and continuous curves. NSCT has
multi-scale direction anisotropy and shift invariance, which
can effectively remove Gibbs effects [29]. However, NSCT
has a complicated structure and a high computation cost.
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NSST has strong flexibility and multi-directionality and is
more efficient than NSCT. It can also well preserve the edges
and curves of the image, but it is weak for subtle features of
the image.

These multi-scale fusion methods for image reconstruction
have the disadvantages of large computation burden, high
complexity, poor real-time performance and high require-
ments on memory space. Lifting Stationary Wavelet Trans-
form (LSWT) [30] has all advantages of the traditional
wavelet and better performance than SWT. It also has fast
computation speed, low memory requirements, and signifi-
cant local characteristics in frequency and spatial domains.
The shift invariance can effectively reduce the distortion of
the image, but LSWT has poor performance for continuous
curves.

Image fusion strategies greatly affect the quality of the
fusion image. Multi-scale transform is used to decompose
the source image into low and high-frequency coefficients.
The low-frequency part gathers the main energy and rep-
resents approximate information of the source image. The
high-frequency part is the representation of the edge and
contour details of the source image. Traditional image fusion
strategies mostly obtain high and low-frequency fusion deci-
sion maps by filtering the source image or performing cal-
culations on the decomposition coefficients, and they have
achieved good fusion results. However, this method ignores
the physical characteristics of the high and low-frequency
sub-bands, which causes the loss of details and reduces the
effect of the fused image.

Discrete Cosine Transform (DCT) can focus on the key
features of the source image on a small part of the DCT
coefficients, which can concentrate information and compact
energy during image processing [31], [32]. Local Spatial
Frequency (LSF) can effectively reflect the regional charac-
teristics of the source image, and is often used as the key
parameter and key index of the image fusion algorithm [33].

Inspired by the above discussion, and by integrating the
advantages of the image multi-scale frequency domain trans-
form and the characteristics of LSWT and NSST, this paper
proposes an infrared and visible image fusion algorithm
based on LSWT-NSST. The NSST algorithm is used to
obtain the continuous curve and edge to compensate for the
deficiency of LSWT; LSWT algorithm is used to get sub-
tle image features to make up for the deficiency of NSST.
Different image fusion rules are designed according to the
physical characteristics of infrared and visible-light, and the
representation of high and low-frequency sub-bands. In low-
frequency sub-bands, LSF adaptive weighted fusion rules
are used in the DCT domain. In high-frequency sub-bands,
a fusion strategy of improving regional contrast is adopted
according to the spectral characteristics of human vision.
A comprehensive ranking algorithm is designed based on
9 classic indicators for objective evaluation, which greatly
enhances the performance of the overall evaluation of the
fusion image and decreases subjective recognition.

Compared with the 9 advanced fusion algorithms,
the main contributions of the proposed algorithm based on
LSWT-NSST are as follows:
(1) LSWT and NSST are classical algorithms and have

optimal fusion quality. By combining the advantages
of two algorithms, the effect of image fusion is greatly
improved, and the efficiency based on LSWT improves
the running efficiency while ensuring image quality.

(2) By combining the physical characteristics of infrared
and visible-light and the representation characteris-
tics of high and low-frequency sub-bands, we design
different image fusion rules in this paper. In the
low-frequency part, the LSF adaptive weighted fusion
rule is employed in the DCT domain, which greatly
improves the target and detail characteristics of the
fused image. In the high-frequency part, combin-
ing with the visual characteristics of the human eye,
an improved regional contrast fusion strategy is pro-
posed, which is more suitable for human vision, espe-
cially in image regions with high saliency such as edge
contours.

(3) In this paper, seven classic indicators are selected, and a
comprehensive ranking index is designed, which com-
prehensively considers the ranking indices of different
algorithms in terms of image gray-scale, frequency, etc.
Therefore, it greatly enhances the comprehensiveness
of the distribution of image indicators. In addition,
more consideration is given to the macro visual effect,
which decreases the artificial subjective consciousness.

(4) The algorithm of this paper has improved the indica-
tors of image decomposition, fusion rules and index
evaluation. The improvements of the three aspects are
combined to increase the performance of the proposed
algorithm. The performance is superior, and the image
fusion effect is perfect.

The remainder of this paper is organized as follows:
The second part introduces the related knowledge back-
ground and theoretical algorithm of LSWT-NSST. The third
part introduces the infrared and visible image fusion algo-
rithm based on LSWT-NSST in detail. The fourth part shows
the experimental configuration and simulation and subjec-
tively and objectively analyzes the IR and VR image fusion
effects. The final part is the conclusion of this work.

II. RELATED THEORIES
A. LSWT ALGORITHM
In image processing, the multi-scale decomposition based on
the transform domain is more widely used and has stronger
universality and stability than the model based on the spa-
tial domain. The traditional wavelet as a classic algorithm
of multi-scale transform in the field of image processing
is a non-redundant decomposition algorithm and does not
have shift invariance [34]. Lifting wavelet transform (LWT)
overcomes the shortcomings of traditional wavelet, no longer
relies on the traditional wavelet convolution operation,
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and can the construct Compactly Supported Biorthogonal
Multi-wavelets in the spatial domain. For image decompo-
sition, the high-frequency component of LWT uses a sim-
ple polynomial interpolation method, and the low-frequency
component uses a scale function construction method to
maintain some overall characteristics of the image. Therefore,
the LWT algorithm is easy to implement and has a fast calcu-
lation speed. However, LWT does not have shift invariance,
and the image fusion has Gibbs effect and serious distortion.

FIGURE 1. Decomposition and reconstruction flow diagram of LSWT.

To overcome the shortcomings of WT and second-
generation LWT, this paper adopts LSWT as the multi-scale
transformation algorithm. The filter extension is completed
by canceling the parity-splitting steps, and the zero-filling
operation of the corresponding filter coefficients of the LWT
is canceled to achieve shift invariance of the LSWT. LSWT
has the advantages of LWT, outstanding local characteris-
tics in the spatial and frequency domains, and shift invari-
ance, which can effectively avoid image distortion problems.
The decomposition and reconstruction process is shown in
Figure 1. where P and U represent the prediction operator and
update operator, respectively. d l+1 and al+1are the low and
high-frequency coefficients of input signal al at the (l+1)(th)
layer after decomposition by the LSWT algorithm. Pl+1 and
U l+1 are the prediction coefficients and update filter coeffi-
cients of LSWT, as defined in equations (1)-(2).

pl+1 = p0, 0, · · · , 0︸ ︷︷ ︸
2l+1−1

, p1, 0, · · · , 0︸ ︷︷ ︸
2l+1−1

, p2, · · · , pm−2,

× 0, · · · , 0,︸ ︷︷ ︸
2l+1−1

pm−1 (1)

ul+1 = u0, 0, · · · , 0︸ ︷︷ ︸
2l+1−1

, u1, 0, · · · , 0︸ ︷︷ ︸
2l+1−1

, u2, · · · , un−2,

× 0, · · · , 0,︸ ︷︷ ︸
2l+1−1

un−1 (2)

where pi(i = 0, 1, · · · ,m − 1) and uj(j = 0, 1, · · · , n − 1)
are the prediction coefficients and update filter coefficients of
LWT, respectively;m and n are the numbers of coefficients of
prediction operator P and update operator U , respectively.

B. NSST ALGORITHM
The Shearlet Transform inherits the advantages of WT and
can realize the optimal sparse representation of the image,

where multi-scale decomposition uses down-sampling pyra-
mid filtering, and direction decomposition uses shear wave
filtering by a shift window in the pseudo polar grid. The
sub-sampling operation in the Multi-directional shear filter
makes Shearlet Transform not have shift invariance and cause
spectral aliasing.

To avoid this defect and retain the advantages of multiscale
decomposition, Easley proposed the NSST algorithm [35].
NSST transform uses a non-subsampled Laplacian Pyra-
mid (NLSP) for multiscale division. Using a two-dimensional
convolution, NSST transforms the shear wave filter from
a pseudo polar grid to a Cartesian system, which avoids
sub-sampling and makes the NSST shift invariant. The
decomposition process of NSST is shown in Figure 2.

The NSST image decomposition includes two main steps:
(1) Non-subsampled multiscale subdivision.
The source image is decomposed by the first layer of NLSP

to obtain low-frequency coefficientsf 1a and high-frequency
coefficientsf 1d . The (k + 1)(th) layer NSLP decomposition
is based on the low-frequency components of the k(th)layer.
Therefore, after image f is decomposed by k layers of
NLSP, one low-pass sub-band and k high-pass sub-bands are
obtained.

(2) Localization of direction.
Shearlet filter is utilized to realize the direction localization

of high-frequency coefficients. NLSP and Shearlet filters are
used to make NSST algorithm multi-scale, multi-directional
and shift invariant, which can effectively characterize the
details of the source image and avoid Gibbs and eclipse
phenomena.

C. DISCRETE COSINE TRANSFORM
DCT is a commonly used linear orthogonal transform in the
field of image processing, whose outstanding advantage is
the independent correlation of data, and it can concentrate
the energy of the image in a few low-frequency compo-
nents in the DCT domain. The DCT transform coefficients
correspond to the low, mid, and high-frequency compo-
nents of the image from the upper-left to the lower-right.
The high-frequency coefficient is usually smaller than the
low-frequency coefficient, so the energy is mainly concen-
trated in the low-frequency components.
f (x, y) is a two-dimensionalM ×N image, and the defini-

tion of DCT is shown in equation (3).

F(u, v) =
2

√
M × N

M−1∑
x=0

N−1∑
y=0

[f (x, y)C(u)C(v)

× cos
(2x + 1)uπ

2M
cos

(2y+ 1)vπ
2N

] (3)

The definition of the two-dimensional M × N IDCT is
shown in equations (4)-(6).

C(u) =


√

1
M
, u = 0√

2
M
, u 6= 0

(4)
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FIGURE 2. Decomposition block diagram of NSST.

C(v) =


√

1
N
, v = 0√

2
N
, v 6= 0

(5)

f (x, y) =
2

√
M × N

M−1∑
u=0

N−1∑
v=0

[F(u, v)C(u)C(v)

× cos
(2x + 1)uπ

2M
cos

(2y+ 1)vπ
2N

] (6)

where F(u, v) is the two-dimensional DCT transformation of
the image. M and N are the width and height of the image,
and C(u) and C(v) are the compensation coefficients. The
low-frequency coefficient of DCT reflects the slow change of
pixels, i.e., the image frame. The high-frequency coefficient
reflects the rapid change of pixels, i.e., the image details.

III. INFRARED AND VISIBLE IMAGE FUSION ALGORITHM
BASED ON LSWT-NSST
A. BASED ON THE COMBINED TRANSFORMATION
THEORY OF LSWT and NSST
The key of infrared and visible image fusion is to effec-
tively extract and fuse the complementary information
of multi-source images. By integrating the advantages of
LSWT and NSST algorithms, an infrared and visible image
fusion algorithm based on LSWT-NSST is proposed. The
multi-scale and multi-directional characteristics of the NSST
algorithm cover the deficits of LSWT three-dimensional
decomposition to retain more source image information
through the redundancy of multi-scale decomposition. The
high-frequency coefficients of LSWT decomposition are
sparse, and its wavelet basis can fully reflect the texture
characteristics of the source image in multiple directions
and angles. The LSWT-NSST image fusion algorithm can
compensate for the lack of subtle image features in NSST
and greatly improve the efficiency. Its block diagram is shown
in Figure 3.

The flowchart of the LSWT-NSST image fusion algorithm
is as follows.

Step 1: Select two infrared light images (IR) and
visible-light images (VR) with identical resolution.
Step 2: Perform the LSWT multi-scale decomposition of

the infrared image and visible-light image to be fused to
obtain a corresponding low-frequency sub-band (LL-Sub-IR
and LL-Sub-VR) and multiple high-frequency sub-bands
(LH-Sub-IR and LH-Sub-VR). The number of LSWTdecom-
position layers is set to 3.
Step 3: Perform theNSSTmulti-scale decomposition again

on LL-Sub-IR, LL-Sub-VR, LH-Sub-IR and LH-Sub-VR,
and obtain the new low-frequency sub-band images (LNLL-
Sub-IR, LNLL-Sub-VR, LNHL-Sub-IR and LNHL-Sub-
VR) and new multi-scale, multi-directional high-frequency
sub-band images (LNLH-Sub-IR, LNLH-Sub-VR, LNHH-
Sub-IR and LNHH-Sub-VR). The number of NSST decom-
position levels is set to 3.
Step 4: Perform the DCT conversion on the newly

obtained LNLL-Sub-IR, LNLL-Sub-VR, LNHL-Sub-IR and
LNHL-Sub-VR. The key features of low-frequency sub-band
images are concentrated on a small part of the coefficients in
the DCT domain. The window scale of the DCT domain is
set to ω = 4.
Step 5:Calculate the LSF value of each low-frequency sub-

band coefficient in the DCT domain. The calculation results
are: LNLL-Sub-IR-DLV, LNLL-Sub-VR-DLV, LNHL-Sub-
IR-DLV and LNHL-Sub-VR-DLV. Through the calculation,
the regional characteristics of the low-frequency sub-band in
the DCT domain can be further enhanced. The window scale
of the LSF domain is set to ω = 3.
Step 6: According to the characteristics of infrared and

visible-light images, design the fusion rules of high and low-
frequency coefficients. The low-frequency sub-band image
adopts the LSF value adaptive weighted fusion rule in the
DCT domain; the high-frequency sub-band image adopts
a fusion strategy based on improving the regional con-
trast. Details are showns in section III-B (INFRARED AND
VISIBLE IMAGE FUSION RULES).
Step 7: The LNLL-Sub-IR-DLV, LNLL-Sub-VR-DLV,

LNHL-Sub-IR-DLV andLNHL-Sub-VR-DLV low-frequency
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FIGURE 3. Block diagram of the LSWT-NSST image fusion algorithm.

sub-bands and LNLH-Sub-IR, LNLH-Sub-VR, LNHH-
Sub-IR and LNHH-Sub-VR high-frequency sub-bands fol-
low the high and low-frequency coefficient fusion rules
designed in Step 6. Perform separate fusion operations to
obtain the corresponding high and low-frequency fusion
sub-images.
Step 8: Perform the IDCT inverse transformation on the

low-frequency coefficients after the fusion of LNLL-Sub-IR-
DLV, LNLL-Sub-VR-DLV, LNHL-Sub-IR-DLV and LNHL-
Sub-VR-DLV to transform the energy to the NSST domain
and obtain the low-frequency sub-band of the NSST domain.
Step 9: Perform the inverse NSST transform on the low-

frequency sub-band obtained in the NSST domain to convert
the fusion coefficient to the LSWT domain, and obtain the
low-frequency coefficient of the LSWT domain.
Step 10: Perform the inverse NSST transform on the high-

frequency coefficients after the fusion of LNLH-Sub-IR,
LNLH-Sub-VR, LNHH-Sub-IR and LNHH-Sub-VR to con-
vert the fusion coefficients to the LSWT domain and obtain
the high-frequency coefficients of the LSWT domain.
Step 11: Perform ILSWT on the new high and low-

frequency sub-bands to obtain the final fused image F.

B. INFRARED AND VISIBLE IMAGE FUSION RULES
Designing reasonable fusion rules as the key technology of
the image fusion algorithm is very important for the fusion
effect, since it determines the pixels or coefficients to select
andmerge into the final image. The image fusion rules require
accurate and comprehensive important details and salient
features of the source image, and the fusion of images to
maximize adaptability to the human visual perception.

The physical properties of infrared and visible images are
quite different. Infrared light imaging uses the infrared rays
reflected by the target or the thermal radiation generated by
the target to detect the target, and the infrared image sensor
senses the temperature information of the measured object.
The higher the object’s temperature, the stronger the infrared
spectrum signal, the brighter the infrared image, and the
clearer the target. The infrared light image reflects the tem-
perature characteristics of the target, its anti-environmental
interference ability is strong, and it has good target detection
ability. However, its target resolution is low, the background
is fuzzy, and the ability to express details is relatively low.
The visible light image sensor mainly uses the visible light
information reflected by the object to image the object and
can receive the visible spectrum information around the target
scene. The visible light image reflects the background and
contour information of the image. It has a high spatial resolu-
tion, obvious contrast, rich edge and structure texture infor-
mation, and can better describe scene information. However,
the image quality is poor in low visibility and poor lighting
conditions.

The image’s low-frequency coefficient is also called the
approximate sub-band, which contains the main information
of the infrared and visible-light images, represents the
approximate components and average characteristics of
the source image, and concentrates most of the energy
of the infrared and visible-light images. The image’s
high-frequency coefficient is also called the detail sub-band,
which describes the detailed information of the infrared and
visible-light image, which directly affects the resolution and
clarity of the fused image.
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Traditional image fusion rules usually adopt the largest
absolute value coefficient or weighted average. The former
has high fusion efficiency but ignores the average character-
istics of the image, which causes image distortion. The latter
can reduce the information loss, but lacks the sharpness of the
image.

Therefore, combining the characteristics of infrared and
visible-light images and the characteristics of their high and
low-frequency coefficients to design reasonable fusion rules
can fully extract the spectral information of the visible light
image and the thermal target information of the infrared
image to improve the quality of image fusion effectively.

1) LOW-FREQUENCY COEFFICIENT FUSION RULES
After the source image has been orthogonally decom-
posed by LSWT and NSST algorithms, the corresponding
low-frequency sub-bands and a series of high-frequency
sub-bands of various scales and directions are obtained. For
non-linear characteristics of the human visual system, a single
pixel is closely related to its neighbor pixels. A single-point
pixel cannot represent any information and only makes sense
to associate with its neighbor set of pixels and be perceived
by human vision. Since the low-frequency sub-band concen-
trates most of the energy of infrared and visible- light images,
the key to low-frequency coefficient fusion is to maximize the
preservation of important information of the source image,
that is, the extraction and preservation of the features of
essential regions of the image.

DCT can concentrate information into key features accord-
ing to the frequency energy. LSF is a commonly used image
region representation method, which can effectively select
and extract the optimal image features. It has a strong abil-
ity to represent regional details and consists of the Local
Row Frequency (LRF) and Local Column Frequency (LCF).
Inspired by the literature [41], this paper performs the
DCT conversion on low-frequency coefficients to obtain
the regional characteristics of the DCT domain. Calculating
the LSF feature matrix of DCT coefficients can further iden-
tify the low-frequency DCT coefficients and key features of
the enhanced DCT domain. The formula to calculate the LSF
value of the DCT coefficient is shown in equations (7)-(9).

LRF =

√√√√ 1
ω2

ω∑
i=1

ω∑
j=2

[DCT (i, j)− DCT (i, j− 1)]2 (7)

LCF =

√√√√ 1
ω2

ω∑
i=2

ω∑
j=1

[DCT (i, j)− DCT (i− 1, j)]2 (8)

LSF =
√
LRF2 + LCF2 (9)

where ω is the window size of LSF, and DCT (i, j) is the
DCT coefficient at position(i, j). LRF and LCF are local row
frequency and local column frequency, respectively.

According to the difference between infrared and
visible-light imaging systems and their sensitivity to local
intensity and details, a quantitatively similar matching degree

of the image region was designed. The similarity of the LSF
feature region is defined in equation (10).

SA,B(i, j) =
2 ∗ LSFA−ij(i, j) ∗ LSFB−ij(i, j)
LSFA−ij(i, j)2 + LSFB−ij(i, j)2

(10)

Based on the above discussion, the low-frequency coeffi-
cient fusion rule is designed as follows.

If SA,B(i, j) < T , then

FCij =

{
CA−ij, LSFA−ij > LSFB−ij
CB−ij, LSFA−ij <= LSFB−ij

(11)

If SA,B(i, j) >= T , then

FCij = ω(i, j) ∗ CA−ij(i, j)+ (1− ω(i, j)) ∗ CB−ij(i, j)

(12)

ω(i, j) =



1
2
+

1
2
∗ [

1− SA,B(i, j)
1− T

],

LSFA(i, j) > LSFB(i, j)
1
2
−

1
2
∗ [

1− SA,B(i, j)
1− T

],

LSFA(i, j) <= LSFB(i, j)

(13)

where (i, j) is the position of the DCT coefficients; FCij is
the fused DCT coefficients; CA−ij(i, j) and CB−ij(i, j) are the
DCT coefficients of A and B, respectively;ω(i, j) is the fusion
weight; SA,B(i, j) is the similarity of the regional pixels of
A and B. A larger SA,B(i, j) indicates that A and B are more
similar to each other. Matching threshold T is set to 0.85 in
this paper.

2) HIGH-FREQUENCY COEFFICIENT FUSION RULES
The multi-scale and multi-directional high-frequency coeffi-
cients obtained by the orthogonal decomposition by LSWT
and NSST represent the characteristics of the source image,
such as the edge and contour. The high-frequency sub-images
decomposed by LSWT only contain three directions: hor-
izontal, vertical and diagonal. The multi-directional NSST
decomposition can overcome the problem of insufficient
direction of LSWT and further extract the multi-scale
and multi-directional details of high-frequency sub-bands.
A large absolute coefficient value of the high-frequency rep-
resents a sudden change of pixels, and a region with a large
sudden change contains rich details. If there is noise in the
source image, this method will introduce artificial noise and
reduce the quality of the fusion image.

According to the multi-resolution selection mechanism of
human eye imaging, human vision is highly sensitive to the
local contrast of the image. The contrast of the local direction
is used to design the high-frequency coefficient fusion rule,
which can fully consider the characteristics of infrared and
visible-light. The definition is shown in equation (14).

CRk,m(i, j) =
|Ck,m(i, j)|
C0(i, j)

(14)

where C0(i, j) is the low-frequency coefficient; Ck,m(i, j) is
the high-frequency coefficient of the scale k(th) and direction
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m(th) after the NSST decomposition. Since the contrast of
a single pixel has no meaning to the image, if the contrast
of a single pixel is directly used in the fusion rule, the sim-
ilarity between pixels will be dissevered, and noise will be
introduced. Therefore, the concept of local region contrast is
introduced, which is defined in equations (15)-(16).

C0(i, j) =
1

M × N

(M/2)−1∑
l=−(M/2−1)

(N/2)−1∑
r=−(N/2−1)

×C0(i+ l, j+ r) (15)

CRk,m(i, j) =
|Ck,m(i, j)|

C0(i, j)
(16)

where C0(i, j) is the low-frequency region mean coefficient;
M and N are the width and height of the image area block.
The significance of the coefficients varies in the high-

frequency region. Ck,m(i, j) is calculated by the region aver-
age method, which repels the fact that the human eye
has a higher degree of attention to the significant regions.
An improved local area contrast is designed as defined by
equations (17)-(19).

Dk,m(i, j) =

√
[I k,m(i, j)− I k,m(i+ 1, j)]2

+[I k,m(i, j)− I k,m(i, j+ 1)]2
(17)

Ek,m =
(M−1)/2∑

l=−(M−1)/2

(N−1)/2∑
r=−(N−1)/2

|Dk,m(i+ l, j+ r)|2

(18)

CR
k,m

(i, j) = E(Ck,m(i, j))CRk,m(i, j) (19)

where Ii,j is the high-frequency coefficient at location (i, j).
Dk,m(i, j) is the gradient at (i, j) pixel, whose scale and direc-
tion are k and m respectively. E is the regional gradient
energy, which reflects both change degree and edge sharp-
ness of the image. By combining with the area contrast,
the high-frequency area with high saliency is given greater
weight, and the visual result is more suitable for human
vision.

Based on the above analysis, the high-frequency fusion rule
is shown in equation (20).

Fk,m(i, j)=

{
Ak,m(i, j), CR

k,m
A (i, j) > CR

k,m
B (i, j)

Bk,m(i, j), CR
k,m
A (i, j) <= CR

k,m
B (i, j)

(20)

where Fk,m(i, j) is the high-frequency coefficient of fused
image F in the k(th) scale and m(th) direction.

To verify the effectiveness of the improved regional
contrast fusion strategy for high-frequency coefficients,
the "Lake" image pair in the fourth part is selected as the
verification data set (Due to the need to control the length
of the text, only the "Lake" image team is compared and
analyzed, and the algorithm comparison results of other data
sets are similar). The high-frequency coefficients of LSWT
multi-scale decomposition are subjectively analyzed by three
fusion strategies of directional contrast, regional contrast and

improved regional contrast from the horizontal, vertical and
diagonal directions. Then, we use these three fusion strategies
to reconstruct the final fusion image. These three types of
reconstructed images are compared and analyzed to calculate
the objective evaluation index values of image fusion in the
fourth part of the article. For the simplicity of the analysis,
the fusion strategies of directional contrast, regional contrast
and improved regional contrast are abbreviated as DCS, ACS
and IACS algorithms, respectively. The experimental results
are shown in Figure 4 and Table 1.

The first, second, and third rows of Figure 4 indicate
that the high-frequency sub-bands of the LSWT decomposi-
tion of the "Lake" infrared and visible-light high-frequency
fusion image are reconstructed in the diagonal, horizontal
and vertical directions using the DCS, ACS, and IACS fusion
strategies. The fourth row represents the final fusion image
using the DCS, ACS and IACS fusion strategies. In the hori-
zontal direction, the red box marks in Figures (a), (d), and (g)
show that the targets at the positions of water plants and
‘‘auto’’ in Figure (g) are more prominent than those in
Figures (a) and (d). In the vertical direction, the red box
marks in Figures (b), (e) and (h) show that the contour of the
woods in the upper left corner of Figure (h) is clearer than that
in Figures (b) and (e). In the diagonal direction, the red box
marks in Figures (c), (f), (i) show that the contrast between
water plants and auto text in Figure (i) is higher than that
in Figures (f) and (i). For the final fusion image, the red box
marks in Figures (j), (k), (l) show that the sky reflection of
Figure (l) has a clearer target contour than Figures (j) and (k).
The effect is also more natural. After careful observation,
there are block artifacts in Figures (j) and (k). At the edge
of the river bank, the fusion effect of Figures (j) and (k) is
not very good, and there is a small black block in the fusion
images. From a subjective viewpoint, all three integration
strategies of DCS, ACS and IACS have achieved good results.
After improving the regional contrast, the IACS fusion strat-
egy is better than the DCS and ACS fusion quality.

The bold items in Table 1 represent the maximum of these
three algorithms for ten evaluation indicators. A larger value
indicates a better fusion effect. Table 1 shows that the IACS
algorithm ranks first in AV, MI, SD, EN, AG and QCB,
and SF ranks second. The difference between its SF index
and ACS algorithm is 0.531, which is not large. The rea-
son is that the single-pixel contrast of DCS splits the local
correlation of the image, and the regional mean of ACS
smooths the local features, which will introduce noise.
SF reflects the spatial activity of the image, and noise
will increase SF. For example, the SF values of the DCS
and ACS algorithms are 12.6594 and 12.6812, respectively.
QCB and MS-SSIM are visual evaluation indicators, which
lead the ACS algorithm and DCS algorithm by 5.57, 6.05 and
6.29, 8.14 percentage points respectively. It can also be
verified from Figures (j), (k) and (l). A comprehensive anal-
ysis of objective evaluation indicators shows that IACS
has the better overall evaluation index and the best fusion
effect.
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FIGURE 4. Fused high-frequency sub-bands and fused images using different fusion strategies in the fourth pair of IR and VI.
(a) - (c) High-frequency fusion images in horizontal, vertical, and diagonal directions adopt DCS. (d) - (f) High-frequency fusion images
in horizontal, vertical, and diagonal directions adopt ACS. (g) - (i) High-frequency fusion images in horizontal, vertical, and diagonal
directions adopt IACS. (j) - (l) Fused images using three fusion strategy.
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TABLE 1. Fusion quality indices with different fusion strategies for the fourth pair of IR and VI.

FIGURE 5. Four sets of source infrared and visible images (a) (e) Kayak’s IR and VI. (b) (f) UNCamp ’s IR and VI. (c) (g) Road ’s IR and VI. (d) (h) Lake ’s
IR and VI.

The multi-scale decomposition method conforms to the
multi-resolution physiological mechanism of human vision.
In the high-frequency coefficients, the human eye has a high
degree of recognition of the high salient area or high mutation
area of the image. Thus, combining the characteristics of
infrared and visible-light, this paper proposes an improved
regional contrast fusion strategy for high-frequency images.
Through the aforementioned subjective vision and objective
evaluation analysis, the algorithm fusion quality ranking is
obtained: IACS> ACS> DCS. In general, the images fused
by the IACS algorithm have the best fusion effect of promi-
nent infrared targets, clear contours and rich visible-light
scene details.

IV. EXPERIMENTAL SIMULATION AND RESULT ANALYSIS
A. EXPERIMENTAL CONDITIONS AND SETTINGS
The algorithm experimental environment is as follows: The
host is configured with Intel(R) Core(TM) i7. The main

frequency is 1.99 GHz and the memory is 8 GB. The experi-
mental simulation platform is MATLAB R2019b.

To objectively evaluate the performance of the fusion algo-
rithm, this paper selects experimental materials from the
infrared and visible image libraries. Four classic infrared
and visible images were selected for fusion experiments.
‘‘Kayak,’’ ‘‘UNCamp,’’ ‘‘Bristol Queen’s Road’’ and ‘‘Lake’’
are shown in Figure 5. To verify the effectiveness of the
proposed algorithm, the selected four groups of images have
different sizes from small to large: 256 × 256, 280 × 360,
496×632 and 576×768; the clear regions of the selected four
groups of images must have different positions. In order to
more comprehensively verify the advantages of the algorithm
proposed in this paper, 21 pairs images in the literature [47]
is selected for the experimental analysis of the classic infrared
and visible-light image sets. The purpose of the fusion algo-
rithm is to make the fusion image clearly and objectively
reflect the real scene and conform to human vision.
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To verify the accuracy of the algorithm in this paper,
the LSWT-NSST algorithm proposed in this paper is com-
pared with the traditional classical algorithm and recently
proposed advanced algorithm as follows: Non-Subsampled
Shearlet Transform (NSST) [36], Non-Subsampled Con-
tourlet Transform (NSCT) [37], Cross Bilateral Filtering
(CBF) [38], Guided Filtering (GF) [39], Latent Low-Rank
Representation (LLRR) [40], Discrete Cosine and Local Spa-
tial Frequency (DCLSF) [41], Saliency Detection (SD) [22]
and Deep Convolutional Neural Networks (CNN1 and
CNN2) [27], [28]. For experimental parameters setting,
the open-source-code algorithm uses its fixed parameters, and
non-open-source-code algorithm is simulated according to its
detailed description in the references.

As classic algorithms for multi-scale image fusion, NSST
and NSCT have better results than other traditional frequency
domain methods. As classic algorithms for image fusion
based on the spatial domain, CBF and GF have achieved
good results. In particular, CBF smooths images through
a nonlinear combination of neighborhood pixel values and
has strong edge preservation. For LLRR, DCLSF and SD,
which are improved multi-scale fusion algorithms proposed
in recent years in the field of image fusion such as multi-
focus, infrared and visible-light, the fusion effect has been
greatly improved in both subjective and objective aspects.
CNN1 and CNN2 are two deep learning image fusion algo-
rithms proposed in recent years, where a deep convolutional
neural network architecture is trained to extract the features
of the source image in depth. The fused image has clear
targets, rich detailed information, more obvious advantages
and greatly improved performance than the traditional image
fusion methods. Therefore, this paper selects these 9 algo-
rithms as performance comparison algorithms, which are
feasible for evaluating the advantages of our algorithm.

B. MAIN PARAMETER SETTINGS
The rationality of the image fusion algorithm parameter set-
ting determines the level of algorithm fusion performance
directly. Generally, the more layers decomposed by the
multi-scale algorithm, the richer the detailed information
expressed by the image will be. However, the increase in
the number of decomposition layers often leads to a sudden
increase in the amount of calculation. Therefore, in using
the LSWT algorithm and the NSST algorithm to perform
the first-layer and second-layer multi-scale decomposition,
wemust also consider the fusion performance and the amount
of calculation to select the parameters. When using the
LSWT algorithm to carry out the first-level decomposi-
tion, the literature [30] and [44] are referred to, and the
decomposition scale of LSWT is determined to be 3 through
experimental analysis. When using the NSST algorithm for
the second-level decomposition, reference was made to the
literature [15], [26] and [33], and the number of multi-scale
filter directions corresponding to the high-frequency was
determined to be [4 4 4] through experimental analysis. The
corresponding multi-scale filter direction number is [3 3 3].

In the experiment, we found that with the increase of the
LSWT and NSST algorithm’s decomposition scale, their
fusion effect will be improved, and the calculation will be
increased, which is very time-consuming. After careful con-
sideration, we select the decomposition level of LSWT and
NSST algorithms to be 3. There will be a small amount of
high-frequency information in the low-frequency sub-band
of the LSWT domain, and a small amount of low-frequency
information will also be contained in the high-frequency
sub-band of the LSWT domain, so the scale setting is not
appropriate to be too large when performing the second layer
decomposition. The selection of the DCT window and the
LSF window refers to the literature [38], and the settings are
the same. For the selection of the fusion threshold of the low-
frequency sub-band LSF domain and the high-frequency sub-
band contrast area, because the adjustable range of these two
parameters is small and the setting is easy, the general setting
can be used.

The parameter setting is vital for the image fusion algo-
rithm. Based on the above analysis, we reasonably set
the parameters of the algorithm proposed in this paper to
obtain a better fusion effect. The specific parameter set-
tings are as follows: the LSWT decomposition level is set
to 3; the NSST decomposition level is set to 3. Consid-
ering the difference in image high and low-frequency rep-
resentative features, for LSWT multi-scale decomposition
coefficients, the number of multi-scale filter directions cor-
responding to high frequencies is set to [4 4 4]; its low
frequency corresponding multi-scale filter direction num-
ber is set to [3 3 3]. After the three-layer decomposi-
tion, the high-frequency coefficients of the LSWT domain
have insufficient directivity. The filter in the high-frequency
direction of NSST can compensate for the insufficiency of
the high-frequency decomposition direction of LSWT and
obtain more edge and contour information. After the three-
layer decomposition of the low-frequency coefficients in the
LSWT domain, the low-frequency sub-band contains a lot of
detailed information and its low-frequency coefficients have
a good fusion effect, but the low-frequency sub-band contains
some high-frequency information, so better details and edge
features in the low-frequency sub-band filtered by the NSST
low-frequency direction filter can be obtained. The DCT
window size is set to 4 × 4, which greatly affects the image
fusion performance. The LSF window is set to 3× 3, in case
that it is too large to produce large redundant information. The
fusion threshold is set to T = 0.85 for LSF low-frequency
sub-band. The high-frequency sub-band region contrast is set
to 3× 3.

C. EVALUATION OF THE EFFECT OF IMAGE FUSION
The rationality of the image fusion algorithm determines
the quality of the fusion image, while the fusion quality
is another important index. The fusion image has variable
measurement standards because of application purposes or
scene. Therefore, the comprehensive use of multiple eval-
uation criteria can better determine on the fusion effect.

VOLUME 8, 2020 179867



L. Junwu et al.: Infrared and Visible Image Fusion Algorithm Based on LSWT-NSST

Currently evaluation methods are divided into subjective and
objective methods.

1) SUBJECTIVE EVALUATION
The differences between source image and fused image are
directly evaluated by a subjective method with human vision
system and mainly reflected by the image registration and
clarity. The subjective method is suitable for images with sig-
nificant differences, and it is relatively simple and intuitive,
so it is an important method to determine the performance
of the fusion images. However, this method is susceptible to
the subject’s knowledge level and subjective consciousness,
which makes it difficult to set the standard scale and has
great one-sidedness. Therefore, the comprehensive use of
subjective and objective methods can make more accurate
judgment on the fusion effect.

2) OBJECTIVE EVALUATION
The objective evaluation method can quantify the effect of
image quality and effectively reduce the effect of human
subjective factors. A quantifiable performance parameter is
used to determine the pros and cons of each image fusion
algorithm. Ten objective evaluation indicators are used in this
paper: Average Value (AV), Mutual Information (MI), Stan-
dard Deviation (SD), Spatial Frequency (SF), Information
entropy (EN) [41], Average Gradient (AG) [42], QCB [43],
Edge strength coefficient(QABF ) [45], Multi-scale struc-
tural similarity(MS-SSIM) [46] and Comprehensive Rank-
ing Index (CRI).

a: AVERAGE VALUE
AV is the average brightness of the fused image. Larger
AV implies a brighter image, whose mean is defined in
equation (21).

µ =
1

M × N

M∑
i=1

N∑
j=1

F(i, j) (21)

where F(i, j) is the pixel value of the fusion image at
position(i, j);M and N are the width and height of the image.

b: STANDARD DEVIATION
SD is the degree of dispersion between the single pixel and
the average pixel of the image. Larger SD implies that the
image has higher contrast, wider gray value distribution, and
more image information. The definition of standard deviation
is shown in equation (22).

σ =

√√√√√ 1
M × N

M∑
i=1

N∑
j=1

(F(i, j)− µ)2 (22)

where F(i, j) and µ are the gray value and mean value at (i, j)
of the fusion image, respectively.

c: INFORMATION ENTROPY
EN is used to calculate the information richness and reflects
the amount of information in the fused image. A larger EN
indicates that the fused image has richer information and
higher quality. The definition of the entropy value is shown
in equation (23).

H = −
L−1∑
i=0

Pi log2(Pi) (23)

where L is the total gray level of the image. Pi is the ratio of
the number of pixels that the gray value is i to the total number
of pixels of the image.

d: SPATIAL FREQUENCY
SF is the overall activity of the fusion image in the spatial
domain. A larger SF corresponds to more image texture and
edge information and higher quality of the fusion image.
It is mainly composed of spatial Row Frequency (RF) and
spatial Column Frequency (CF) and is defined as shown in
equations (24)-(26).

RF =

√√√√√ 1
M × N

M∑
i=1

N∑
j=2

[F(i, j)− F(i, j− 1)]2 (24)

CF =

√√√√√ 1
M × N

M∑
j=1

N∑
i=2

[F(i, j)− F(i− 1, j)]2 (25)

SF =
√
RF2 + CF2 (26)

e: MUTUAL INFORMATION
MI is the degree of correlation information between the
source image and the fused image. LargerMI implies stronger
correlation, higher retention of the source image, and lower
image distortion. The definition of mutual information is
shown in equation (27).

MI =
L−1∑
i=0

L−1∑
j=0

L−1∑
k=0

PAB,F log2
PAB,F (i, j, k)

PAB,F (i, j)PF (k)
(27)

where L is the total number of gray levels of the image.
PAB and PF are the normalized histogram of the source
image AB and fusion image F . PAB,F is the combined gray
histogram after the normalization of the source image and
fusion image.

f: AVERAGE GRADIENT
AG is the degree of image detail and texture changes. Higher
AG implies that the fused image has more prominent texture
and detail changes and contains more content. The definition
of the average gradient of the image is shown in equation (28).

AG =
1

M × N

M−1∑
i=0

N−1∑
j=0

√
(1I2x +1I2y )/2 (28)
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where Mand Nare the width and height of the image.
1Ixand 1Iy are the differences between directions x and y,
respectively.

g: QCB
QCB [43] is an evaluation index based on human visual
perception. This method uses the Contrast Sensitivity Func-
tion (CSF) to calculate the local contrast of each image.
Suppose that the input source image is IA and IB, and
the fusion image is IF , then its definition is shown in
equations (29)-(30).

QC (x, y) = λA(x, y)QAF (x, y)+ λB(x, y)QBF (x, y) (29)

QCB = QC (x, y) (30)

where λA and λB are the salient maps of the source image
IA and IB, respectively.QAF ∈ [0, 1] andQBF ∈ [0, 1] are the
fidelity of information from source images IA and IB to fusion
image IF , respectively. QCB is the average value of the entire
fusion quality map QC .

h: EDGE INTENSITY COEFFICIENT
QABF [45] quantifies the amount of information retained on
the edge of the image. It reflects the amount of edge infor-
mation obtained from the source image of the fused image.
QABF ∈ [0, 1], the closer the QABFvalue is to 1, the more
abundant the edge information of the source image is retained
in the fusion image, and the better the fusion quality of the
image. The definition is shown in equation (31).

QABF =

M∑
i=1

N∑
j=1

(QAF (i, j)× ωA(i, j)+ QBF (i, j)× ωB(i, j))

M∑
i=1

N∑
j
(ωA(i, j)+ ωB(i, j))

(31)

where (i, j) is the pixel position, M and N are the size of the
image.QAF andQBF represent the edge strength of the source
image A and B and the fused image F respectively. ωA(i, j)
and ωB(i, j) represent the quantization weights of QAF and
QBF respectively.

i: MULTI-SCALE STRUCTURAL SIMILARITY
MS-SSIM [46] is an indicator based on the human visual sys-
tem. It is suitable for extracting structural information from
the scene, and its measurement can better approximate the
visual perception of better image quality.MS-SSIM canmake
SSIM measure the structural similarity between multi-scale
images. The larger the value is, the better the fusion image
effect. The definition is shown in equation (32).

MS−SSIM (A,B) = [lS (A,B)]αS
S∏
i=1

[ci(A,B)]βi [si(A,B)]γi

(32)

where l is the brightness comparison between images
A and B, c is the image contrast, s is the image structure,

α, β, and γ are the relative importance of adjusting image
brightness, contrast and structure, and S is the image scale.

j: COMPREHENSIVE RANKING INDEX
To evaluate the image fusion effectiveness of the proposed
algorithm as a whole, a Comprehensive Ranking Index (CRI)
was designed based on the above seven objective evaluation
indices. The brightness, contrast, amount of information and
details of the fusion image are comprehensively considered.
The design idea is as follows:

a. Calculate the ranking of each fusion algorithm in this
index in sequence. The value is S jai, i = 1, 2, · · · ,Z ,
j = 1, 2, · · · ,R.

b. Calculate the single index score. If the ranking is Sai,
the single score is Z − S jai + 1.

c. Calculate the comprehensive index score and weighted
sum.

d. Normalize the index score. The definition is shown in
equation (33).

CRI =

Z∑
i=1

R∑
j=1

S jai × (Z − S jai + 1)

R× Z
(33)

where R is the number of indicators, and Z is the
number of algorithms.

3) EXPERIMENTAL RESULTS AND DISCUSSION
The experiment verifies the effectiveness of the algorithm
in this paper through the individual experimental analysis
of four groups of classic infrared and visible-light images
and overall fusion experiment of 21 pairs of classic infrared
and visible-light image sets. In order to better compare and
analyze the performance of the algorithms, we marked the
top three indicators in bold. The value in bold blue indicates
that it ranks first in the indicator and the fusion quality is the
best, the value in bold green indicates that it ranks second in
the indicator and the fusion quality is second, and the value
in bold red indicates that it ranks third in the indicator and the
fusion quality is third.

(1) The first set of source image pairs ‘‘Kayak,’’ the res-
olution is 256 × 256, which is the night view of the city
including pedestrians, vehicles and buildings and other vis-
ible and infrared image scenes. The detailed information of
IR and VI images is extracted to determine the performance
of the fusion algorithm. The source image and fused images
by all algorithms are shown in Figures 6 (a)-(k). From (c),
(d) and (h) of Figure 6, the global contrast of the image is low.
Figures (c), (d), (e), (g) have dotted artificial noise at
the lights. In Figures (f) and (j), the bright light of
the car lights disappeared, and the extracted infrared
light information is too much, which causes the dis-
torted visual effect. The brightness of the street lamps in
Figures (c), (d), (e), (f), (g), (i) and (j) is obviously darker,
and there are noises or distortions around the street lamps
in several figures. In contrast, CNN2 based on deep learning
and the algorithm based on LSWT-NSST proposed in this
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FIGURE 6. Source images and fused images using different methods in the first pair of IR and VI. (a) IR. (b) VI. (c) NSCT. (d) NSST. (e) CBF. (f) GF. (g) SD.
(h) LLRR. (i) DCLSF. (j) CNN1. (k) CNN2. (l) Proposed method.

paper have close fusion effects from a visual viewpoint, and
the discrimination is not obvious, but they are better than
the other 8 fusion algorithms. Thus, these two algorithms
can effectively extract the important features of infrared and
visible images, and the resulting fusion image is clearer and
has better visual effects than other methods as shown in
Figures (k) and (l).

Table 2 lists the fusion quality indicators of the first pair
of image fusion methods. From the perspective of these
10 objective evaluation indicators, the proposed algorithm in
this paper ranks first for indicators AV, SF, EN and CRI, sec-
ond for indicators SD and AG, and third for indicators MI,
QCB, QABF and MS-SSIM. In particular, it is 0.8889 on

CRI, which leads the DCLSF, CNN1 and CNN2 algorithms
by 14.45, 16.67 and 26.67 percentage points, respectively.
The fusion frameworks CNN1 and CNN2 based on deep
learning have certain advantages for certain indicators such
as MI, SD and MS-SSIM, but the proposed algorithm index
in this paper ranks higher as a whole, which indicates that the
algorithm in this paper is optimal.

(2) The second set of source images is ‘‘Bristol Queen’s
road’’ with a resolution of 280 × 360. The person sheltered
by trees in the IR image is clearly visible, but the details of the
surrounding environment are blurred. The details of trees and
fences in VI are very clear, and the contrast is higher, which is
more suitable for human vision, but the person is not visible.
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TABLE 2. Fusion quality indices with different methods for the first pair of IR and VI.

By extracting the details of IR and VI images, we determine
the performance of the algorithm. The source image and
fused images by all algorithms are shown in Figures 7 (a)-(l).
From the perspective of visual effects, the characters
in Figures (f), (g), (i), (j), (k) and (l) are brighter and more
prominent. The characters in Figures (c), (d) and (h) are rel-
atively dim and there is a hole in the middle of the target
person’s body in Figure (e), which fails to well retain the
prominent person target in the infrared image. In terms of
details, there are noise and artifacts in the grass in the lower
left corner of the building in Figures (c), (d), (e), (f), (g), (h),
(i), (j) and (k). Especially in Figures (g), (i) and (j), the grass
background is connected as a whole, and it is difficult to
identify. The grass background in Figure (l) has a clear con-
tour, which is better than other algorithms. The infrared white
objects on both sides of the road in Figure (j) disappear, and
there is a lot of noise in Figure (g). In general, the detail
information in Figure (l) is clearer than that in other images
and suitable for human eyes to observe.

Table 3 lists the fusion quality indicators of the second
pair of image fusion methods. From the perspective of these
10 objective evaluation indicators, the algorithm proposed in
this article ranks first for indicators AG, SF and CRI, second
for indicators MI and AG, third for indicators SD EN, QABF
andMS-SSIM.Although it ranks fourth for indicatorQCB, the
difference with the first is only 0.011, which is very small.
CRI is 0.8556, which leads the second to fourth by 7.78,
23.34 and 25.56 percentage points, respectively. The fusion
frameworks CNN1 and CNN2 based on deep learning have
certain advantages for certain indicators such as MI, SD, EN,
QABF and MS-SSIM. The visual effects of CNN2 and the
proposed algorithm are better than other algorithms. From the
overall evaluation and analysis, the algorithm proposed in this
paper has the best effect.

(3) The third pair of source image pairs "Bristol Queen’s
road" has a resolution of 496 × 632. The image is a street
view of the city, including visible and infrared image scenes

of pedestrians, vehicles and public facilities. Detailed infor-
mation is extracted from IR and VI images to determine the
performance of the fusion algorithm. The source image and
fused image by all algorithms are shown in Figures 8 (a)-(l).
In Figure 8 (c)-(f), the fusion image has artifacts. The text on
the "Advertising Board" on the Figures (d) and (e) is blurred
compared to other algorithms, and artificial noise has been
introduced, in particular, Figure (e) has serious noise. The
overall brightness and contrast of Figures (c), (d), (h) and
(j) are darker. There is a serious artifact between the car and
the person on the left of Figure (j), and the car and the person
are connected together. From a visual viewpoint, Figures (i),
(k) and (l) have the best overall effect. However, after careful
observation, the color of the eaves on the right side of the
text baffle in Figure (k) is too dark, and the visual effect
is not good. The two windows in the upper left corner of
Figure (i) are less clear than Figure (l). From this group
of experiments, the brightness of the image fused by the
algorithm in this paper is closer to the source visible-light
image and the target object is closer to the source infrared
light image.

Table 4 lists the fusion quality indicators of the third pair
of image fusion methods. From the perspective of these
10 objective evaluation indicators, the proposed algorithm in
this paper ranks first for indicators AV, EN, MS-SSIM and
CRI, second for indicators SF, AG and QCB, and third for
indicators MI, SD and QABF . The CRI is 0.8333, which leads
the second to fourth by 8.89, 14.44 and 27.77 percentage
points, respectively. The CBF algorithm has much larger SF
and AG indicators than other algorithms because it introduces
a lot of artificial noise, as shown in the figure. Fusion frame-
works CNN1 and CNN2 based on deep learning have certain
advantages for certain indicators such as SD, QCB and QABF .
The effect of most fusion algorithms is not subjectively ideal.
However, the proposed algorithm in this paper, CNN2, and
DCLSF algorithms have clear contours, high contrast and
better results than other algorithms.
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FIGURE 7. Source images and fused images using different methods in the second pair of IR and VI. (a) IR. (b) VI. (c) NSCT. (d) NSST. (e) CBF. (f) GF. (g) SD.
(h) LLRR. (i) DCLSF. (j) CNN1. (k) CNN2. (l) Proposed method.

(4) The fourth pair of source image pair ‘‘Lake’’ has
a resolution of 576 × 768. The image is a scene of a
wild lake, including visible and infrared light scenes of
lakes, trees, chairs and roads. By extracting the detailed
information of IR and VI images, the performance of the
fusion algorithm is determined. The source image and fused
image by all algorithms are shown in Figures 9 (a)-(l). From
Figures 9 (i), (j), (k) and (l), the brightness contrast of the
image is higher, and the other images are darker. The object
in the upper left corner of the chair in Figures (c)-(h) is blurry,
and the details are not clear. In Figure (e), there are dark
shadows in the pond at the left end of the lower chair and

many irregular noises on the lake surface, and it has more
noise overall. The lake surface in Figures (e), (f), (g) and (h)
is darker. The reflections of the clouds on the left of
Figures (i) and (j) are severely distorted. Figures (c), (d), (h),
(i), (j) have serious fusion distortion at the upper left corner
of the woods. Figures (k) and (l) have higher brightness
than other figures, and the target details are clear. After
careful observation, the near-focus parts of Figure (l) is more
prominent than that in Figure (k), but the far-focus parts of
Figures (k) and (f) are more prominent than that in Figure (l).
Comparing these 10 algorithms, there is always a small
part of the fused picture with noise, artifacts or distortion.
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TABLE 3. Fusion quality indices with different methods for the second pair of IR and VI.

TABLE 4. Fusion quality indices with different methods for the third pair of IR and VI.

The comprehensive analysis shows that compared with other
algorithms, the infrared and visible images fused by the algo-
rithm in this paper have rich scenes, clear target contours, and
strong contrast, but there are distortions in some parts, so the
visual effect must be further improved.

Table 5 lists the fusion quality indicators of the fourth
pair of image fusion methods. From the perspective of these
10 objective evaluation indicators, the proposed algorithm in
this paper ranks first for indicators AV, EN and CRI, second
for indicator AG, third for indicator SF,QABF and MS-SSIM,
and fourth for indicators MI, SD and QCB. In particular, the
comprehensive index CRI is 0.8222, which leads the second
to fourth by 5.55, 10.00 and 15.55 percentage points, respec-
tively, and is nearly 20 percentage points ahead of other algo-
rithms. The fusion frameworks CNN1 and CNN2 based on
deep learning have certain advantages for certain indicators
such as MI, SD and MS-SSIM. The overall evaluation of this
algorithm is better than other algorithms in terms of fusion
quality.

(5) Comprehensive Experiment
Select twenty one sets of classic infrared and visible-light

images for experimental verification.
(6) Comparison of calculation efficiency
Figure 10 shows eight pairs of images randomly selected

from the classic 21 pairs of infrared and visible-light images,
and images fused using the algorithm proposed in this paper.
From the fused images in Figure 10, it can be seen that the
image fused using the algorithm in this paper has clear targets
and outlines, contains more detailed information and contains
less noise, and the overall fusion effect is good.

Table 6 uses different fusion algorithms to calculate each
evaluation index’s average value for 21 classic infrared
and visible-light image sets. Table 7 shows the EN objec-
tive evaluation index table for 21 pairs of classic infrared
and visible-light images using different fusion algorithms.
Figure 11 is a graph of EN objective evaluation indicators
drawn using different fusion algorithms for 21 pairs of classic
infrared and visible-light images.
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FIGURE 8. Source images and fused images using different methods in the third pair of IR and VI. (a) IR. (b) VI. (c) NSCT. (d) NSST. (e) CBF. (f) GF. (g) SD.
(h) LLRR. (i) DCLSF. (j) CNN1. (k) CNN2. (l) Proposed method.

It can be seen from Table 6 that the fusion image index
of the algorithm proposed in this paper is in the top three
of the ten evaluation indexes. It is ranked first in indicators
MV and CRI, second in indicators SF, EN, AG and QCB, and
third in indicators MI, SD, QABF and MS-SSIM. Especially
in the CRI index, it leads the second to fourth places by
4.45, 15.56, and 24.45 percentage points. It shows that the
algorithm proposed in this paper has a better overall effect
on 21 pairs of image sets. It can be seen from Table 7 that
the EN index of the fused image of our proposed algorithm
is in the top three overall on the 21 pairs of image sets, but

it is ranked fifth on image13 and image17, which is differs
from the first place by 0.5229 and 0.3885 respectively. The
gap is not big. It can also be seen from Figure 11 that the EN
index of the image fused by the algorithm proposed in this
paper is shown in the red pentagon, which is at the forefront
of the 21 pairs of image sets as a whole. The EN index reflects
the average information and texture richness of the image.
It can be concluded that the fusion image of the algorithm
proposed in this paper contains more information and rich
texture information than other algorithms, and the overall
fusion effect is the best.
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FIGURE 9. Source images and fused images using different methods in the fourth pair of IR and VI. (a) IR. (b) VI. (c) NSCT. (d) NSST. (e) CBF. (f) GF. (g) SD.
(h) LLRR. (i) DCLSF. (j) CNN1. (k) CNN2. (l) Proposed method.

(6) Comparison of calculation efficiency
The running time index cannot be ignored for the objective

evaluation of the image fusion method. In this paper, four
pairs of IR and VI images of different sizes in Figure 5 are
used as examples of the calculation cost analysis, and the
average value is run 10 times respectively. Its running effi-
ciency is shown in Table 8. To conveniently compare and
analyze the algorithms, the longest and shortest running times
of the algorithm are bolded. The bold red value indicates
the longest running time among all methods, and the bold
blue value indicates the shortest running time among all
methods.

Table 8 shows that when the size of the images increases,
the average running time of each algorithm increases.
To facilitate comparative analysis, the maximum and mini-
mum average fusion times of various algorithms of the four
groups of image sets are displayed in bold red and bold blue,
respectively.

The GF algorithm has the shortest running time for the
four image sets; the largest-size "Lake" image pair algorithm
run for only 1.0273 seconds; the CNN1 algorithm has the
longest running time on the four image sets; the running
time of the largest-size "Lake" image pair algorithm was
208.2961 seconds. In the "Kayak" image pair, the running
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TABLE 5. Fusion quality indices with different methods for the fourth pair of IR and VI.

FIGURE 10. 8 pairs of fusion images using the proposed method from 21 pairs of infrared and visible-light images.

time of this algorithm is only shorter than that of CNN1 and
higher than those of the other 8 algorithms. In the "UNCamp"
image pair, the running time of the algorithm in this paper is
shorter than the deep learning CNN1 and CNN2 algorithms
and longer than the other 7 algorithms. In the "Road" image
pair, the efficiency of the algorithm in this paper has been
greatly improved and is lower than those of CNN1, LLRR,
CNN2 and DCLSF algorithms. In the "Lake" image pair,
the efficiency of this algorithm continues to improve, which

is far lower than the 124.987 seconds for CNN1 algorithm
and 100.0626 seconds for LLRR algorithm. When the image
size continues to increase, the running efficiency of the
algorithm in this paper will continue to improve, which has
obvious advantages compared to multi-scale decomposition
algorithms and deep learning.

However, even in large-scale image collections, the run-
ning time of the algorithm in this paper is only medium and
much longer than the CBF, GF, SD and NSST algorithms.
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TABLE 6. The average values of fusion quality indexes with different methods for 21 pairs fused images.

TABLE 7. The EN values for 21 fused images which obtained by fusion methods.

The reason is that CBF and GF algorithms are spatial fusion
algorithms, and their processing is pixel-based and does not
undergo multi-scale decomposition, so the time is shorter.
Although SD and NSST are multi-scale decomposition algo-
rithms, SD only performs two-level decomposition, which is
far lower than the decomposition scale of the algorithm in
this paper. The LSWT-NSST algorithm is based on NSST
multi-scale decomposition; to obtain a better fusion effect,
the decomposition scale is larger than that based on the tra-
ditional NSST algorithm, so the running time will be longer
than that of NSST algorithm. NSCT, LLRR and DCLSF are

multi-scale decomposition algorithms and relatively compli-
cated. The LLRR and DCLSF algorithms introduce many
mathematical calculations to improve the fusion rules. The
LSWT algorithm in this algorithm runs faster than the SWT
algorithm of the DCLSF algorithm. Because we introduce
NSST into the LSWT algorithm, the performance is mediocre
in small-size image sets, but the efficiency is significantly
improved in large or extra-large image sets. CNN1 and
CNN2 are recently popular deep learning fusion algorithms.
The image fusion quality of this algorithm is high, but it
runs slowly on the CPU, as shown for the ‘‘Lake’’ image set.
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FIGURE 11. Plotting EN for 21 fused images obtained by the fusion
methods experimentally compared.

TABLE 8. Average run time of different algorithms.

However, with the development of GPU and other hardware
acceleration technologies and the reduction of costs, the run-
ning efficiency of deep learning will continue to accelerate.

The algorithm in this paper takes advantage of the fast
calculation speed, saved memory, reduced storage space, and
easy realization of inverse transformation of LSWT, which
improves the running efficiency of the algorithm. It not only
guarantees the quality of the fusion image but also reduces the
running time of the algorithm. Because the running efficiency
of the algorithm in this paper is medium, the running speed
of the algorithm needs to be further improved.

V. CONCLUSION
This paper proposes an infrared and visible image fusion
algorithm based on LSWT and NSST, which effectively uti-
lizes the complementary advantages of LSWT and NSST
multi-scale decomposition. First, the LSWT algorithm is used

to perform a multi-scale decomposition of the IR and VI
images to obtain low and high-frequency sub-band coeffi-
cients. Second, the high and low-frequency sub-bands of the
LSWT domain are used in the multi-scale decomposition
of NSST to further extract the target features and detailed
features of the source image. The NSST algorithm can
compensate for the insufficiency of the LSWT algorithm in
decomposing the continuous curves and edges of the image;
the LSWT algorithm can compensate for the disadvantage of
the NSST algorithm in decomposing subtle features of the
image. Through the high and low-frequency coefficients of
the NSST domain, the target features of the low-frequency
sub-bands of the LSWT domain and detailed features of
the high-frequency sub-bands of the LSWT domain can be
enhanced. Third, by combining the characteristics of IR and
VI images and the characteristics of high and low-frequency
coefficient representation, we design different fusion strate-
gies for image fusion rules. The low-frequency part intro-
duces the DCT algorithm and LSF features; then, adaptive
weighted fusion rules are designed by LSF to enhance the
regional characteristics of the DCT. The high-frequency part
combines the imaging mechanism of human vision to design
an improved regional contrast fusion strategy. Finally, IDCT,
INSST and ILSWT algorithms are used to generate the final
fusion image.

This paper conducts individual fusion experiments on
four groups of classic infrared and visible-light images and
conducts overall fusion experiments on 21 pairs of clas-
sic infrared and visible-light image sets. Nine classic and
advanced image fusion algorithms are selected to compare
fused images’ subjective and objective effects with the algo-
rithm proposed in this paper. Based on the objective eval-
uation, nine classic evaluation indices are selected, and a
comprehensive ranking index is designed, which realizes the
comprehensive consideration of image brightness, chroma,
contrast, etc. The experimental results were comprehensively
analyzed from the subjective and objective aspects. In terms
of visual perception, the fusion image target with clear edges
and high contrast in this paper is prominent. The ten objective
evaluation indices are also higher than other algorithms, and
the running efficiency is moderate. In summary, both subjec-
tive vision and objective evaluation show that the algorithm
fusion image in this paper has the best effect and high quality
and is an effective IR and VI image fusion algorithm.

Although the algorithm in this paper has a better fusion
effect and a higher evaluation index than other algorithms,
it faces some limitations in the running time of the algorithm,
which reduces its performance of the algorithm to a certain
extent. With the continuous development of deep learning
technology, deep learning has achieved remarkable results
in CV fields such as target detection, image recognition and
image noise reduction, and the application in image fusion
will also become more popular. The traditional image fusion
method has certain advantages in some fields. In future
research, the authors will combine advanced deep network
models and traditional image processing algorithms to further
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extract multi-dimensional features of the image and per-
form unsupervised end-to-end image fusion. In terms of run-
ning efficiency, the suitable GPU acceleration technology or
FPGU real-time processing technology is adopted to further
improve the running efficiency and real-time performance of
the algorithm. By improving the algorithm, we hope to obtain
better fusion results.
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