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ABSTRACT This article proposes a coordinated optimization and control algorithm for coordinated
secondary voltage control (CSVC) in multi-generator power systems. Firstly, to obtain a smaller voltage
deviation and avoid the curse of dimensionality simultaneously, an artificial emotional reinforcement
learning (AERL) is applied to automatic voltage regulation (AVR). Secondly, to obtain a smaller fitness
value with lesser random for the decentralized independent variables optimization problem of the CSVC,
a complex-valued encoding dragonfly algorithm (CDA) is proposed. Thirdly, the CDA and the AERL are
coordinated for the CSVC and the AVR in multi-generator power systems. To verify the control performance
of the AERL and the convergence of the proposed CDA, three simulation cases, i.e., IEEE 57-bus, 118-bus
and 300-bus systems, are considered. The simulation results show that the CDA-AERL effectively obtains
the smallest control objectives and the convergence for the CSVC in multi-generator power systems.

INDEX TERMS Coordinated secondary voltage control, artificial emotional reinforcement learning,
complex-valued encoding dragonfly algorithm, automatic voltage regulation, multi-generator power
systems.

I. INTRODUCTION
The conventional voltage control of power systems con-
tains three levels, i.e., automatic voltage regulation (AVR)
for real-time level, secondary voltage control (SVC) for
middle-term level, and tertiary voltage control (TVC) for
long-term level [1]–[3].

Generally, the AVR is controlled by a proportional-
integral-derivative (PID) algorithm, which of parameters
should be configured by operator experience or optimization
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algorithms. Numerous algorithms have been addressed to
reduce the control errors of the PID, such as, modified differ-
ential evolution [4], [5], firefly algorithm [6], [7], and particle
swarm optimization (PSO) [8], [9]. Nevertheless, the param-
eters of PID controllers should be reconfigured when the
systemic parameters have changed. To obtain higher control
performance for dynamic systems, reinforcement learning
can be employed to a dynamic system [10]–[13]. To obtain a
more accurate control strategy, more actions have been added
to reinforcement learning [14]. Both the calculation memo-
ries of Q-value matrix and P-value matrix of reinforcement
learning then will be increased when the number of actions
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is increased. However, the programming of the reinforcement
learning may out of memory, the curse of dimensionality
then will occur [15]. As one branch of artificial intelligence,
artificial emotion has been applied to increase the control
performance of reinforcement learning [16], [17]. For exam-
ple, the artificial emotional reinforcement learning (AERL)
has been utilized in load frequency control of power systems
in the previous work [18]. Consequently, the AERL can be
introduced to the AVR. The major features of the AERL can
be summarized as follows.

1) The agent based on the AERL consists of two parts,
i.e., the artificial emotional part and reinforcement
logic part.

2) Since the output actions can be updated by the artificial
emotional part of the AERL, the curse of dimensional-
ity can be mitigated and the control performance can
be increased simultaneously.

3) The controller based on AERL can update the control
strategy on-line for a dynamic system.

In a conventional framework of power systems, the SVC
and the TVC are optimized independently [19]. The SVC in
the conventional framework has one deficiency, the nodes of
one control area are compacted, while the nodes of other con-
trol areas are loosed [20]. From power systems perspective,
any control area should be a general node. To mitigate this
deficiency, coordinated secondary voltage control (CSVC)
has been applied in power systems [21]. The CSVC, which
has been introduced by Paul et al. [22], aims to increase
voltage stability in highly constrained areas [23]. Conse-
quently, the CSVC can regulate the free variables of the
reactive power flow [24]. Since the CSVC can be employed
into systemic voltage control, the TVC is unnecessary for
the power system [25]. Besides, since the CSVC can be
applied to power grids, systemic voltage control contains only
two levels, i.e., the CSVC and the AVR. Compared with the
SVC, the major features of the CSVC can be summarized as
follows [26], [27].

1) The CSVC aims to minimize the voltage deviation of
the dominant node when the voltage stability margin of
the power system is sufficient.

2) The CSVC can balance the reactive power flow of each
control area and can maintain enough dynamic reactive
power flow when the voltage stability margin of the
power system is sufficient.

3) The CSVC aims to minimize the control cost of the
power system when the voltage stability margin of the
power system is insufficient.

Carbon dioxide emissions are related to all the sources of
a power system. For example, carbon dioxide emissions have
been considered in stochastic wind and solar power [28] and
land transport infrastructure [29]; carbon dioxide emissions
have been considered in natural gas and heat delivery system
[30]; and carbon dioxide emissions have been considered in
optimal power flow [31]. The carbon-energy combined-flow
has been applied in multi-energy power systems [32], [33].

Therefore, the carbon-energy combined-flow is considered in
the CSVC.

Recently, single-objective optimization problems, discrete
optimization problems and multi-objective problems have
been solved by a dragonfly algorithm (DA) [34]. The DA
has been applied to numerous parameters optimization prob-
lems, such as the parameters optimization of support vector
machine [35], numerical optimization problems [36] and
improving the grey model [37]. Besides, an improved DA
has been proposed for feature selection problem, which is
an optimization problemwith decentralized independent vari-
ables [38]. Therefore, the DA has been utilized for decentral-
ized independent variable optimization problems. Since the
CSVC optimization problem contains various decentralized
independent variables, an improved DA is proposed for the
optimization problem of the CSVC.

Numerous meta-heuristic optimization algorithms
(e.g. grey wolf optimizer (GWO) [39]) have been proposed
by Mirjalili, who proposed the DA [34]. In general, a meta-
heuristic optimization algorithm can be improved by at least
five types of operations: (1) more grouped operation: grouped
grey wolf optimizer has been proposed for the parame-
ters optimization of the maximum power point tracking of
doubly-fed induction generator based wind turbine [40];
swarm moth–flame optimizer has been proposed for the
racking of doubly-fed induction generator [41]; whale opti-
mization algorithm has been grouped for standard benchmark
functions [42]; (2) combined operation: the combined genetic
algorithm (GA) and the PSO has been developed for hybrid
wind-photovoltaic-battery system [43]; the GWO has been
combined with a whale optimization algorithm for pressure
vessel design [44] (3) adaptive parameters operation: an
improved Jaya with self-adaptive weight has been applied
for the parameters identification of photovoltaic models
[45]; a teaching-learning-based optimization algorithm has
been improved by adaptive inertia weights [46]; epsilon
multi-objective genetic algorithm has been applied for PID
parameters optimization [47]; (4) knowledge matrix based
operation: knowledge matrix is employed to remember the
optimization task [48]; transfer reinforcement learning with
Q-value matrix has been proposed for reactive power opti-
mizations [49]; a transfer matrix with Kriging model has
been introduced into amulti-objective optimization algorithm
[50]; (5) different coded operation: a real-coded GA has been
applied into numerical optimizations [51]; binary coded GA
has been employed to solve the path planning of mobile
robots [52]; a binary operation has been added into the
social minic optimization method [53]; hexadecimal coded
optimization algorithm based on field-programmable gate-
array has been applied for parallel computing [54]; complex-
valued encoding operation has been employed to improve the
optimal performance of the wind-driven optimization [55].
Furthermore, both more grouped operation and combined
operation can obtain the global solution rather than a local
solution; both adaptive parameters operation and knowl-
edge matrix based operation can accelerate the convergence
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process of optimization algorithm; different coded operations
can fit for different fitness functions or different types of opti-
mization problems. Therefore, the complex-valued encoding
operation is introduced to increase the optimal performance
of the DA for the CSVC. Consequently, a complex-valued
encoding dragonfly algorithm (CDA) is proposed for the
CSVC in this article. Therefore, the major contributions of
this article can be summarized as: (i) the imaginary part is
added into the real part, the CDA contains two parts for
increasing the convergence speed; compared with current
improved DA, the CDA is a complex coded operation based
optimization algorithm; (ii) the previous AERL is applied
into the AVR for reducing the voltage deviation of the power
system; compared with current reinforcement learning and
the PID, the AERL contains two parts, i.e., an emotional
part and a logical part; with the emotional part is added into
the AERL, the AERL is more intelligent than the agent with
only logical part; (iii) the proposed CDA is coordinated with
the AERL for the CSVC and the AVR of a power system;
compared with current voltage control framework, the CSVC
and the AVR are coordinated more effectively.

The rest of the article is structured as follows. The CSVC
is analyzed in Section II. Section III shows the AERL. The
proposed CDA is presented in Section IV. Simulation results
considering three power systems are shown in Section V.
Conclusion is given in Section VI.

II. COORDINATED SECONDARY VOLTAGE CONTROL
OF MULTI-GENERATOR POWER GRIDS
A. COORDINATED SECONDARY VOLTAGE
CONTROL MODELS
The voltage control of a power system contains three time
slots, i.e., the AVR, the SVC, and the TVC. The AVR is often
referred to as automatic voltage control, which is regulated
by generators’ excitation or control algorithm. The control
period of the AVR is several seconds. The SVC can be
controlled by a closed-loop control algorithm, for example,
PID, and reinforcement learning. The control period of the
SVC is set to one minute to five minutes. The TVC can be
regulated by an optimal algorithm, such as GA, PSO, GWO,
moth-flame optimization algorithm (MFO), and DA.

To mitigate the coupling structure of a power system with
multiple control areas, the CSVC is considered (FIGURE 1)
in this article. The dominant node of the CSVC can be
coordinated regulated by the AVR (FIGURE 2). For the i-th
generator in FIGURE 2, Efie is the steady-state value of the
excitation voltage;KAi means the gain constant of the voltage
regulator; Urefi is the generator terminal reference voltage
(standard value); TAi is the time constant of voltage regu-
lator; Efi means excitation voltage; ki is feedback gain, and
ki ∈ [1, 100]; xdi means d-axis synchronous reactance; E ′qie
means the steady-state value of transient electromotive force;
E ′qi is transient electromotive force; x ′di is d-axis transient
reactance; Qei means reactive power output; Uti is generator

FIGURE 1. Framework of coordinated secondary voltage control.

FIGURE 2. Framework of automatic voltage regulation.

terminal voltage (standard value); Vdi and Vqi are the d-axis
and q-axis stator voltage, respectively.

B. OPTIMIZATION OBJECTIVE AND CONTROL OBJECTIVE
The optimization objective of the CSVC that considering
carbon emission flow can be described as,

F = min
(
µ1 C ′ds + µ2 Ploss + µ3 Vd

)
(1)

where µ1, µ2, and µ3 are the weights of carbon-energy
combined-flow, active power losses, and stable voltage com-
ponent, respectively; and µ1 + µ2 + µ3 = 1. The stable
voltage component Vd is calculated as

Vd =
nG∑
j=1

∣∣∣∣∣2Vj − V
max
j − Vmin

j

Vmax
j − Vmin

j

∣∣∣∣∣ (2)

where nG is the number of generator nodes; Vj, Vmax
j , and

Vmin
j are the real voltage, the maximum voltage and the

minimum voltage, respectively. The active power losses can
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be presented as,

Ploss =
∑
i,j∈nL

gij
[
V 2
i + V

2
j − 2ViVj cos θij

]
(3)

where nL is the number of load nodes; θij is the phase angle
difference between the i-th and the j-th load node; Vi and Vj
are the voltages of the i-th and the j-th load nodes, respec-
tively; gij is the conductance between the i-th and the j-th
load nodes. The real carbon-energy combined-flow C ′ds can
be calculated as,

C ′ds =
∑
i,j∈nL

∑
w∈W

(
A−1iw Pswδsw

(
1− αg

)
P′ni

)
1Pij (4)

where w means the w-th generator, w ∈ W ; Aiw can be
calculated as,

Aiw =


1, i = w
−Pwi/Pni, w ∈ i+

0, i 6= w & w /∈ i+
(5)

where Pwi means power flow value from the w-th node to the
i-th node; Pwi = 0 when the i-th node and the w-th node
are not connected; Psw is the power flow value from the s-th
node to the w-th node; δsw means carbon emission intensity;
i+ means the connection of all the input bus of the i-th node;
P′ni means the power flow output; αg and βg are the weights
of the carbon emissions of the generator and the power grid,
respectively (FIGURE 3).
All the inequality and equality constraints of the power

flow equation can be described as,

PGi − PDi − Vi
∑
j∈Ni

Vj
(
gij cos θij + bij sin θij

)
= 0

QGi − QDi − Vi
∑
j∈Ni

Vj
(
gij sin θij − bij cos θij

)
= 0

Vmin
Gi ≤ VGi ≤ V

max
Gi , i ∈ NG

Qmin
Ci ≤ QCi ≤ Qmax

Ci , i ∈ NC

kmin
ti ≤ kti ≤ k

max
ti , i ∈ Nk

Pmin
Gi ≤ PGi ≤ P

max
Gi , i ∈ NG

Qmin
Gi ≤ QGi ≤ Qmax

Gi , i ∈ NG

Vmin
i ≤ Vi ≤ Vmax

i , i ∈ NB

|Si| ≤ Smax
i , i ∈ NL

(6)

FIGURE 3. Carbon emission ratios of generator, power grid and consumer.

where Si is the complex power value; PDi and QDi mean
the active and reactive power flow output, respectively; PGi
and QGi imply the active and reactive power flow input,
respectively; bij implies the susceptance between the i-th and
the j-th load node; Ni means the node vector that connected
to the i-th node; NG, NB, NC, Nk and NL are the generator, bus
vectors, AVR device, on-load tap-changer and branch vectors,
respectively; all the terminal voltage VGi, reactive power
value QCi, and transformer ratio kti are the variables need to
be optimized by the optimization algorithm; the superscript
‘‘max’’ and ‘‘min’’ mean the maximum and the minimum
values of related variables.

The CSVC aims to maintain the generator terminal volt-
age Uti to the generator terminal reference voltage (standard
value) Urefi. Therefore, the input of the AVR controller is
Efi; the output of the AVR controller is voltage commands,
which can be converted to sinusoidal pulse width modulation
commands.

III. ARTIFICIAL EMOTIONAL REINFORCEMENT LEARNING
A. REINFORCEMENT LEARNING
A basic reinforcement learning consists of an agent and an
‘‘environment’’. At the (k + 1)-th control iteration, the envi-
ronment provides reward value R and system state sk to the
agent; the agent then provides action a(k+1) to the environ-
ment. The agent can update its strategy at each iteration.
Therefore, the state-action pair of reinforcement learning can
be reinforced by these iterations, which means the agent is
trained on-line. As a model-free algorithm, reinforcement
learning is not based on an accurate system model.

The Q-value of reinforcement learning is reinforced as,

Q(k+1)(sk , ak ) = Qk (sk , ak )+ α[R(sk , s(k+1), ak )

+ γ max
a′∈A

Qk (s(k+1), a′)−Qk (sk , ak )] (7)

where Qk (sk , ak ) is the Q-value of reinforcement learning;
sk ∈ S is the state of the environment; ak ∈ A is the action
of action set A; the ranges of learning rate α and discount
coefficient γ are set to be 0 < α < 1 and 0 < γ < 1,
respectively; the initialization of Q-value is set to 0.
The action selection strategy in reinforcement learning is

the key step for the control strategy. Generally, a greedy
policy π∗, which means the action of maximum Q-value will
be select as the output action ak , is presented as,

π∗(s) = argmaxQk (s, a)
a∈A

(8)

Since the agent will select the action with the maximum
Q-value at the sk state in the greedy policy, the other actions
at the sk state may not be searched enough. To search all the
actions at the sk state enough, a probability distribution selec-
tion policy is applied to select the action in this article. In the
probability distribution selection policy, each Q-value corre-
sponds to each P-value. Therefore, the computer memory of
P-value and Q-value matrices are the same. The P matrix at
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the s state can be updated as,{
Pk+1s (ag) = Pks (ag)+ β(1− P

k
s (ag))

Pk+1s (a) = Pks (a)(1− β), ∀a ∈ A, a 6= ag
(9)

where β is the probability coefficient of probability distribu-
tion selection policy, 0 < β < 1; Pks (a) implies the selected
probability in the s state; ag means selected action by the
greedy policy. After enough searched on-line, one selected
probability of the Pks (a) will be converged to 1, which means
an optimal control strategy. The reward function of the AERL
for the AVR can be designed as follows,

R = −101v2 (10)

where 1v is the voltage deviation of the power system.

B. ARTIFICIAL EMOTION
Reinforcement learning belongs to the category of machine
learning, which belongs to the category of artificial intel-
ligence. Another major branch of artificial intelligence is
artificial psychology, which includes artificial emotions, arti-
ficial consciousness, and artificial cognition. Furthermore,
artificial emotion is the major branch of artificial psychology.

The artificial emotion should be quantified when the arti-
ficial emotion is applied to an engineering problem. The
quantizer output fn and emotional coefficient η (FIGURE 4)
are simultaneously calculated as

fn =
n∑
i=1

λi =

n∑
i=1

θiωi (11)

η =

{
kη, if 1/fn ≥ ηmax

kη/fn, if 1/fn < ηmax
(12)

where λi is calculated by emotional weight ωi and input
information θi; fn means the emotion value of the agent; kη
means the configured maximum emotional coefficient; ηmax
is the maximum agent emotion, and ηmax is set to 1 in this
article.

FIGURE 4. Artificial emotion quantizer.

The quantified emotion value Cf (η) is calculated as

Cf (η) = kaη2 + kbη + kc (13)

ka, kb and kc are the quadratic, linear, and constant coeffi-
cients, respectively. Then, the output of the AERL can be
calculated as,

aAERL = Cf(η)aLogicpart (14)

where aLogicpart is the selected action from the logical part of
the AERL by Eqs.(7)-(10).

C. ARTIFICIAL EMOTIONAL REINFORCEMENT LEARNING
To achieve smaller voltage deviation and avoid the curse
of dimensionality simultaneously, the artificial emotion is
applied to update the output action of the reinforcement
learning.

The more intelligent agent of the AERL contains two parts,
i.e., a logical part and an emotional part (FIGURE 5). The
output action of the logical part is modified by the emotional
part as,

aoutputk = Cf (η) ak (15)

The major framework of the AERL is a framework of rein-
forcement learning. Compared with conventional reinforce-
ment learning, the AERL can provide continuous actions
rather than discrete actions for controlled systems. Since the
AERL is a special reinforcement learningwith a large number
of actions, the AERL is a reinforcement learning based on
the Markov decision process. More details of the proof of the
Markov decision process have been presented in [56], [57].
Therefore, the convergence of the AERL can be proved by the
Markov decision process as the convergence of reinforcement
learning.

FIGURE 5. Structure of artificial emotional reinforcement learning.

IV. COMPLEX-VALUED ENCODING DRAGONFLY
ALGORITHM
A. DRAGONFLY ALGORITHM
The DA has been proposed by Mirjalili [34]. Two major
processes of the dragonflies swarm (i.e., hunting and migra-
tion) are similar to exploration and exploitation, respectively.
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FIGURE 6. Behavior of dragonflies swarm: (a) separation behavior;
(b) alignment behavior; (c) cohesion behavior; (d) attraction behavior;
(e) distraction behavior.

Three primitive principles of the dragonflies swarm behaviors
are separation Si, alignment Ai and cohesion Ci, which are
calculated as,

Si = −
N∑
j=1

(X − Xj) (16)

Ai =

∑N
j=1Uj
N

(17)

Ci =

∑N
j=1 Xj
N

− X (18)

where N means the number of individuals X ; Xj and Uj are
the position and velocity of individual, respectively.

The attraction Fi and distraction Ei behavior can be
described as,

Fi = X+ − X (19)

Ei = X− + X (20)

where X+ and X− represent target position and enemy posi-
tion, respectively.

The position vectors at the (t + 1)-th iteration can be
updated as,

X (t+1)
= X t +1X (t+1)

= X t + ksSi + kaAi + kcCi + kfFi + keEi + kx1X t

(21)

where ks, ka, kc, kf, ke, and kx imply the weight coeffi-
cients of the updated positions. Since all these weight coef-
ficients should be configured for the convergence of the DA,
an improved randomness stochastic behavior of the artificial
dragonflies for exploration with a random walk (Lévy flight)
can be employed to update the dragonflies’ positions at the t
iteration as,

X (t+1)
= X t + Lévy(d)× X t (22)

where d means variables dimension; Lévy flight Lévy(d) can
be described as [58],

Lévy(d) = 0.01×
r1(d)× σ
|r2(d)|1/βL

(23)

where r1(d) and r2(d) are two generated random numbers
from 0 to d ; βL is a constant, and βL can set to be 1.5; σ
can be presented as,

σ =

(
0(1+ βL)× sin(πβL/2)

0 ((1+ βL)/2)× βL × 2(βL−1)/2

)1/βL
(24)

where 0(x) is a factorial function, 0(x) = (x − 1)!.

B. COMPLEX-VALUED ENCODING DRAGONFLY
ALGORITHM
To explore and exploit the solution with more spaces,
the CDA is proposed in this article. Each individual in the
CDA is recorded as,

Xp = Rp + iIp, p = 1, 2, . . . , N (25)

where Rp and Ip are the real and imaginary values of the
complex-valued position, respectively. The upper and lower
absolute individual values are |Xmax

p | and |X
min
p |, respectively.

The complex-valued position of the p-th individual can be
described as,

Rp + iIp = ρp(cos θp + i sin θp) (26)

where the range of the radius and the angle of the

complex-valued position are ρp ∈
[
0,
|Xmax
p |−|Xmin

p |

2

]
and

θp ∈ [−2π, 2π ], respectively.
The real and imaginary values of the complex-valued posi-

tion vectors can be updated as,

Rt+1 = Rt + Lévy(d)× Rt (27)

I t+1 = I t + Lévy(d)× I t (28)

The fitness value is calculated by the real number, which
can be converted from the complex-valued position, as fol-
lows.

Xp = ρpsgn
(
sin
(
Ip
ρp

))
+
Xmax
p + Xmin

p

2
(29)

where ρp =
√
R2p + I2p , p = 1, 2, . . . , N .

The convergence of the DA has been verified in [34].
Since the last step of the CDA can provide a real number
position, the CDA has the same updated process with the
DA. Consequently, the convergence of the CDA has the same
convergence of the DA.

The computation complexities of the GA, the PSO,
the GWO, the MFO and the DA are O(niter × nsize); where
niter and nsize are the number of maximum iteration and
the population size of these optimization algorithms. Since
the imaginary part is added into the CDA, the computation
complexity of the CDA is O(2niter × nsize).

C. COORDINATION OF COMPLEX-VALUED ENCODING
DRAGONFLY ALGORITHM AND ARTIFICIAL EMOTIONAL
REINFORCEMENT LEARNING
To obtain the highest control performance and the conver-
gence performance simultaneously in the CSVC and the
AVR, the proposed CDA and the AERL are coordinated in
this article, i.e., a coordinated CDA-AERL. The proposed
coordinated CDA-AERL (FIGURE 7) is employed to a coor-
dinated framework with two voltage control levels, i.e., the
CSVC and the AVR (FIGURE 8). Then, the coordinated
CSVC-AVR framework can replace the three layers voltage
control framework. With the imaginary part is added into
the CDA, the proposed CDA can coordinate with the AERL

VOLUME 8, 2020 180525



L. Yin et al.: Coordinated Complex-Valued Encoding DA and AERL for CSVC and AVR in Multi-Generator Power Systems

FIGURE 7. Flow chart of coordinated complex-valued encoding dragonfly
algorithm-artificial emotional reinforcement learning.

FIGURE 8. Framework of voltage control: (a) three voltage control levels;
(b) coordinated two voltage control levels.

for optimizing the CSVC; with the emotional part is intro-
duced into the logical part, the designed AERL can provide a
real-time strategy for the AVR of power systems.

Compared with conventional voltage control, the major
characteristics of the coordinated framework are listed as
follows.

1) After the off-line training of the AERL, the AERL
can effectively update the control strategy on-line for
dynamic systems.

2) From the multi-agent system perspective, the game
playing agent based on the AERL of each reactive
power control device game with each other through the
dynamic system.

3) The reactive power commands of all the agents are
optimized by the CDA.

V. SIMULATION RESULTS
A. ARTIFICIAL EMOTIONAL REINFORCEMENT LEARNING
The proposed AERL is compared with PID and reinforce-
ment learning (Q learning) in the simulation of a three-phase
generator rated 200MVA, 13.8 kV. The parameters of the PID
(i.e., kP = 0.0001, kI = 28.7652, kD = 0.01) are optimized
by the GA with 1500 population size and 200 maximum
iterations.

To achieve a smaller control error, the number of Q learn-
ing actions should be increased. In this article, the param-
eters of Q learning are set as that: action set A =

[−0.68, −0.612, . . . , 0.68 ]︸ ︷︷ ︸
21

; α = 0.1; β = 0.05; γ =

0.09; the number of states of the Q learning is set to 21.
the parameters of the AERL are set as that: action set A =
[−0.49, −0.392, . . . , 0.49 ]︸ ︷︷ ︸

11

; α = 0.1; β = 0.05; γ = 0.09;

the number of states of the AERL is set to 11; the weight
of emotion ω = 0.0705; the quadratic, linear, and constant
coefficients of the quantified process of the emotional part of
the AERL are set to 0.5, 0.4, and 0.01, respectively.

The results obtained by these simulated methods
(FIGURE 9) show that: (i) the number of the simulated Q
learning is larger than the number of the simulated AERL,
i.e., 21> 11; while the terminal voltage obtained by the sim-
ulated AERL is nearer to the input voltage than the terminal
voltage obtained by the simulated Q learning; (ii) compared
with the terminal voltages obtained by the optimized PID
and the configured Q learning, the terminal voltage obtained
by the configured AERL with the same configuration as the

FIGURE 9. Voltage curves obtained by the simulated control algorithms.
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simulated Q learning except the actions set is the nearest
voltage to the input voltage. The calculation times of the PID,
the reinforcement learning and the AERL are 0.000174 s,
0.000265 s and 0.000327 s, respectively.

The simulation results (FIGURE 9) obtained by the pro-
posed AERL show that: (i) the agent based on the proposed
AERL can effectively obtain the highest control performance
when compared with the other simulated control algorithms;
(ii) since the AERL can obtain higher control performance
with lesser computation memory than Q learning, the curse
of dimensionality can be mitigated. Therefore, with the emo-
tional part in the agent, the agent based on the AERL is
more intelligent than the agent based on conventional rein-
forcement learning. Besides, with the emotional part is added,
the agent based on ‘‘emotional part+ logical part’’ can obtain
higher control performance than the agent only based on the
logical part.

B. COMPLEX-VALUED ENCODING DRAGONFLY
ALGORITHM
The CDA based on the AERL for the CSVC is applied
into three cases, i.e., IEEE 57-bus, 118-bus and 300-bus
systems. Each optimization algorithm simulated ten times for
all these three power systems. All the cases are simulated on
an Intel(R) Core(TM) i7-7820HK CPU 3.90 GHz and 64 GB
RAM server with MATLAB R2019b.

1) IEEE 57-BUS SYSTEM
IEEE 57-bus system contains 7 generator nodes, 50 load
nodes and 80 branches (FIGURE 10). This case contains nine
variables, i.e., three AVR nodes (i.e., 18, 25, and 53 nodes)
and six transformer tap changers (i.e., 4-18, 21-20, 34-32,
39-57, 7-29, and 9-55). Each variable has five options, i.e., -
40%, -20%, 0%, 20%, and 40% for the AVR nodes; 0.80 p.u.,
0.90 p.u., 1.00 p.u., 1.01 p.u., and 1.02 p.u. for the transformer
tap changer.

The numbers of individuals and iterations of all the com-
pared optimization algorithms (i.e., GA, PSO, GWO, MFO,
DA, and CDA) in this case are configured as 1000 and 200,
respectively. The parameters of all the simulated approaches
in this case are set to similar values or default values, which
are given in TABLE 1.

The convergence curves of one time of each compared
optimization algorithm in this case are shown in FIGURE 11.
FIGURE 11 shows that: (i) the CDA can obtain the minimum
fitness function value when compared with the simulated
methods; (ii) the CDA can convergence to the minimum
fitness function value with the smallest iteration number.
The optimal solutions obtained by all the compared methods
are given in TABLE 2. The statistical results of these ten
times simulations in this case are shown in FIGURE 12.
FIGURE 12 shows that: compared with the simulated meth-
ods, since the CDA can obtain multiple approximate min-
imum fitness function values with multiple simulations,
the CDA has a stable convergence feature, which means that

FIGURE 10. Framework of IEEE 57-bus system.

TABLE 1. Parameters of all the compared optimization algorithms.

FIGURE 11. Fitness value curves obtained by simulated approaches in
IEEE 57-bus system.

an optimization algorithm can obtain a nearly similar solution
with multiple random running. The statistical calculation
times of these ten times simulations in this case are shown
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TABLE 2. Optimal solutions obtained by all the compared algorithms at
IEEE 57-bus system.

FIGURE 12. Statistical results of the fitness values achieved by simulated
approaches in IEEE 57-bus system.

FIGURE 13. Calculation times of simulated approaches in IEEE 57-bus
system.

in FIGURE 13. FIGURE 13 shows that the calculation time
of the CDA is approximate to the calculation times of other
compared methods.

The simulation results (FIGURE 11 and FIGURE 12) of
this case show that:

1) Compared with other algorithms, the fitness value
obtained by the proposed CDA is the smallest one
(FIGURE 11).

2) From the statistical results of the fitness value with ten
times (FIGURE 12), compared with other algorithms,
the convergence of the proposed CDA is higher than
that of other algorithms.

2) IEEE 118-BUS SYSTEM
A total of 25 variables of this case, which consists of 54 gener-
ators (FIGURE 14), are selected (TABLE 3). The numbers of
individuals and iterations of all the compared approaches in
this case are set to 2000 and 200, respectively. The parameters
of all the compared optimization algorithms in this case are
given in TABLE 1.

The convergence curves of one time of each compared
optimization algorithm in this case are shown in FIGURE 15.
FIGURE 15 shows that: compared with the convergence
curve obtained by the DA, the CDA can obtain a conver-
gence curve with smaller fitness function value. The statis-
tical results of these ten times simulations in this case are
shown in FIGURE 16. FIGURE 16 shows that: with the same
configurations as the compared methods, the CDA has more
opportunity to obtain a more optimal solution. The statistical
calculation times of these ten times simulations in this case
are shown in FIGURE 17. FIGURE 17 shows that the average
calculation time of the CDA is smaller than the calculation
times of other compared methods.

FIGURE 14. Framework of IEEE 118-bus system.

FIGURE 15. Fitness value curves obtained by all the compared algorithms
at IEEE 118-bus system.
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TABLE 3. Variables of IEEE 118-bus system.

TABLE 4. Variables of IEEE 300-bus system.

FIGURE 16. Statistical results of the fitness value obtained by all the
compared algorithms at IEEE 118-bus system.

The simulation results (FIGURE 15 and FIGURE 16) of
this case show that the CDA can obtain the optimal objective
with a stability feature effectively for IEEE 118-bus system.

3) IEEE 300-BUS SYSTEM
A total of 111 variables in this case are selected (TABLE 4)
in this case, which contains 69 generators (FIGURE 18). The
numbers of individuals and iterations of all the compared
approaches in this case are configured as 300000 and 200,
respectively. The parameters of all the compared optimization
algorithms in this case are given in TABLE 1.
The convergence curves of one time of each compared

optimization algorithm in this case are shown in FIGURE 19.
FIGURE 19 shows that: compared with the convergence
curves obtained by the simulated methods, the CDA can
obtain a convergence curve with the minimum fitness func-
tion value. FIGURE 11, FIGURE 15 and FIGURE 19 show
that the CDA can obtain the minimum fitness function value

FIGURE 17. Calculation times of all the compared algorithms at IEEE
118-bus system.

with a complex optimization problem. The statistical results
of these ten times simulations in this case are shown in
FIGURE 20. FIGURE 12, FIGURE 16 and FIGURE 20 show
that: with the same configurations as the compared methods,
the CDA has more opportunity to obtain a more optimal
solution for both simple and complex optimization problems.
The statistical calculation times of these ten times simulations
in this case are shown in FIGURE 21. FIGURE 21 shows that:
for a complex optimization problem, the average calculation
time of the CDA is less than the average calculation times of
other compared methods except for the GA.

The simulation results (FIGURE 19 and FIGURE 20) of
this case show that the proposed CDA can effectively obtain
the economical operation.

The statistical simulation results (FIGURE 12,
FIGURE 16, and FIGURE 20) obtained by all the compared
methods under IEEE 57-bus, 118-bus and 300-bus systems
show that: (i) the CDA can obtain the highest performance
for the CSVC; (ii) since the complex-valued encoding is
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FIGURE 18. Framework of IEEE 300-bus system.

FIGURE 19. Fitness value curves obtained by simulated approaches in
IEEE 300-bus system.

FIGURE 20. Statistical results of the fitness values achieved by simulated
approaches in IEEE 300-bus system.

considered in the DA, the CDA can fit optimization problems
with decentralized independent variables more effectively
than the DA; (iii) after simulating multiple times, the fitness
values obtained by the CDA are the values that have one
smaller range than that of other simulated algorithms under
all the simulated cases.

The average fitness values obtained by all the simulated
algorithms under IEEE 57-bus, 118-bus and 300-bus systems

FIGURE 21. Calculation times of simulated approaches in IEEE 300-bus
system.

TABLE 5. Average fitness values obtained by all the simulated algorithms
under three simulated systems.

are given in TABLE 5, which shows that the proposed CDA
can effectively fit the CSVC than other compared algorithms.

C. DISCUSSIONS
Although the AERL of the coordinated optimization and
control algorithm can obtain higher control performance with
nearer voltage curves to reference voltage curses than opti-
mized PID and configured Q learning, the control perfor-
mance obtained by the AERL could be changed with learning
rate, probability distribution, discounted rate, the number of
states, the weight of emotion and coefficients of the quan-
tified process of the emotional part of the AERL. After
numerous testing: (i) the ranges of learning rate, probabil-
ity distribution and discount coefficient of AERL can be
configured as [0.001, 0.2], [0.0001, 0.1] and [0.01, 0.99],
respectively; (ii) the number of states of the AERL can be set
as {9, 11, . . . , 51}; (iii) the weight of emotion of the AERL
can be set as [0.001, 0.1]; (iv) the ranges of the quadratic
coefficient, the linear coefficient and the constant coefficient
of quantified process of the AERL can be set as [0.3, 0.9],
[0.1, 0.9] and [0.001, 0.01], respectively.

Since the CDA can fit the optimization problems with
decentralized independent variables more suitable than other
compared optimization algorithms, the final optimal objec-
tive values obtained by the CDA are smaller than other com-
pared optimization algorithms. Generally, the convergence
performances of the CDA are stable when the population
size and the maximum iterations of the CDA are larger
than 3 times optimized variables and 100, respectively. For
example, the numbers of individuals and iterations of CDA
should be large than 27 (or 3× nine variables) and 100 for
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IEEE 57-bus system, respectively. Therefore, the maximum
calculation times used by the CDA for IEEE 57-bus, 118-bus
and 300-bus systems are 21.68 s, 67.20 s and 248.64 s, respec-
tively, which are lesser than the optimization periods of the
CSVC of these simulated systems. After numerous iterations
in the optimization process of the CDA, the sensitivity of the
configured weight coefficients of the CDA can be mitigated
by the random features of the Lévy flight function. After
the population size and the maximum iterations are respec-
tively configured larger than 3 times optimized variables and
100, the weight coefficients of the updated positions of the
CDA can be configured as random values with the range
of (0, 1]. Graphics processing units and field programmable
gate arrays can be applied to reduce the calculation time of
the CDA.

The simulation results show that the improved optimiza-
tion algorithm by the complex-valued encoding operation
can fit optimization problems with decentralized independent
variables. Numerous other similar optimization algorithms
can be improved by the complex-valued encoding operation,
such as the GWO, the MFO, etc. Besides, these five types
of operations can be mixed together to improve optimization
performance. For example, the more grouped operation can
be integrated with the different coded operation. Although
the CDA can fit optimization problems with decentralized
independent variables, more complex optimization problems
with complex constraint conditions could not be effectively
fitted by the CDA.

VI. CONCLUSION AND PROSPECT
The AERL is applied to the AVR in this article. A novel
complex-valued encoding optimization algorithm, which is
named as CDA, is proposed in this article. Then, the CDA
and the AERL are coordinated for the CSVC and AVR. To
compare with the convergence of the CDA and the control
performance of the AERL, three simulation cases (i.e., IEEE
57-bus, 118-bus and 300-bus systems) are simulated in this
article. Themajor features of the coordinatedCDAandAERL
can be summarized as follows.

1) Compared with the simulation results obtained by the
AERL and other algorithms, the AERL can effectively
obtain the highest control performance. Since the agent
based on the AERL has an artificial emotional part,
the agent based on the AERL is more intelligent than
the agent based on only reinforcement learning.

2) Since the output of the AERL can be modified by the
artificial emotional part of the AERL, the AERL can
update the control strategy on-line and can mitigate the
curse of dimensionality.

3) Since the two voltage control levels are coordinated,
the proposed coordinated CDA and AERL can effec-
tively obtain the optimal convergence for the CSVC and
AVR in multi-generator power systems.

4) The proposed CDA can effectively fit optimization
problems with decentralized independent variables.

In the future works: (i) the proposed coordinated CDA
and AERL could be employed into numerous optimization
problems with decentralized independent variables, such as
the coordinated economic dispatch and automatic generation
control; (ii) the proposed coordinated CDA could be applied
to mix integer nonlinear decentralized independent variables
optimization problems, such as the unit commitment of power
grids, energy and production efficiency optimization prob-
lems, etc.
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