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ABSTRACT Because charging coordination is a solution for avoiding grid instability by prioritizing charging
requests, electric vehicles may lie and send false data to illegally receive higher charging priorities. In this
article, we first study the impact of such attacks on both the lying and honest electric vehicles. Our evaluations
indicate that lying electric vehicles have a higher chance of charging, whereas honest electric vehicles may
not be able to charge or may charge late. Then, an anomaly-based detector based on a deep neural network is
devised to identify lying electric vehicles. The idea is that since each electric vehicle driver has a particular
driving pattern, the data reported by the corresponding electric vehicle should follow this pattern, and any
deviation due to reporting false data can be detected. To train the detector, we first create an honest dataset
for the charging coordination application using real driving traces and information provided by an electric
vehicle manufacturer, andwe then propose a number of attacks as a basis for creatingmalicious data.We train
and evaluate a gated recurrent unit model using this dataset. Our evaluations indicate that our detector can
detect lying electric vehicles with high accuracy and a low false alarm rate even when tested on attacks that
are not represented in the training dataset.

INDEX TERMS Security, false data injection, charging coordination, electric vehicles, smart grid.

NOMENCLATURE
ADASYN Adaptive synthetic sampling.
AUC Area under the curve.
CC Charging coordinator.
DNN Deep neural network.
EV Electric vehicle.
GA Genetic algorithm.
GRU Gated recurrent unit.
MLP Multilayer perceptron.
NSGA Non-dominated Sorting Genetic Algorithm.
RNN Recurrent neural network.
ROC Receiver operating characteristic.

The associate editor coordinating the review of this manuscript and

approving it for publication was Salvatore Favuzza .

SMOTE Synthetic Minority Over-sampling Technique.
SoC State of charge.
TCC Time to complete charge.

I. INTRODUCTION
Recently, there has been growing interest in adopting more
green transportation in an effort to reduce the associated
carbon emissions and reduce the dependency on crude oil.
One promising possibility is to replace gasoline-powered
vehicles with electric vehicles (EVs). In recent years, the
number of EVs on the road has been experiencing a dra-
matic increase [1]. Another important factor promoting the
widespread use of EVs is the recent trend of adopting more
renewable energy sources on the consumer side by installing
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solar cells on rooftops. Due to the intermittent nature of
these sources, EVs are advantageous as a way to store excess
energy. Nevertheless, despite the numerous advantages
offered by EVs, several challenges also need to be addressed
regarding the deployment of a large number of EVs.

The uncoordinated and simultaneous charging of EVs may
stress the power system and, in severe cases, destabilize the
grid [2], [3]. Accordingly, charging coordinationmechanisms
have been developed to avoid this problem by balancing the
charging load and power supply [4]. The idea is that each
EV should report data (such as the state of charge (SoC)
of its battery) to a charging coordinator (CC) that then uses
these data to prioritize the EVs’ charging requests, allowing
EVswith high-priority requests (typically those with low SoC
values) to charge in the current time slot without exceeding
the maximum charging energy capacity and deferring other
requests to future time slots [5]. Several previous papers in the
literature have presented charging coordination mechanisms
[6]–[8]. However, these mechanisms assume that the electric
vehicles report correct data; unfortunately, this assumption
cannot be guaranteed to be satisfied because electric vehicles
are motivated to report false data (i.e., lower state of charge
values) to guarantee that they can charge before their charging
requests expire.

In this article, we first evaluate the impact of lying EVs
that report false data on charging coordination. Specifically,
we focus on evaluating the gains achieved by the lying EVs
and the harm they cause to honest EVs. Our evaluations
confirm that reporting false data is beneficial for EVs because
they are able to charge sooner, whereas honest EVs are
harmed by being unable to charge or being required to charge
late. To resolve this issue, we devise a machine learning
model to detect lying EVs. The idea is that each EV should
report its battery SoC periodically, e.g., every 30minutes, and
the reported data can then be used both for load prediction
(for energy management) and for the detection of lying EVs.
Since each EV driver has a particular driving pattern, the SoC
values of the corresponding EV should follow this pattern,
and deviations from this pattern due to false SoC reports can
be detected through machine learning.

To train the model, we first create a dataset for the charging
coordination application. To do so, we use the real driving
traces of vehicles provided in [9] and real EV information
provided by the automotive manufacturer Kia in [10]. Then,
we propose several attacks in which EVs report false SoC
values to the charging coordination mechanism. To balance
the data, we use adaptive synthetic sampling (ADASYN) [11]
to compensate the number of samples in the minority class to
be equal, or nearly equal, to the number of samples in the
majority class. Finally, we use the created dataset to develop
a machine learning model to detect lying EVs.

Deep learning has been used in many applications, such as
facial recognition, intrusion detection, and speech analysis,
because of its high accuracy [12]. In this article, a deep recur-
rent neural network (RNN) [13] is selected as the machine
learning model because it is suitable for handling the time

series nature of our dataset. However, choosing the best set of
hyperparameters for the deep neural network is a hard opti-
mization problem. Therefore, we use a version of a genetic
optimization [14] technique to find the best architecture for
our detector. Extensive experiments conducted to evaluate
our detector are reported. Our evaluations confirm that our
RNN detector can identify lying EVs with high accuracy and
a low false alarm rate. To evaluate how considering the time
series nature of our data can improve accuracy, we compare
our detector to a multilayer perceptron (MLP) [15] detector,
and our evaluations indicate that our detector outperforms the
MLP detector. Tests of our detector on attacks that are not
represented in the training dataset show that it can also detect
such unseen attacks with high accuracy.

This article makes the following main contributions to the
literature:

1) We investigate the impacts of EVs reporting false data
on the charging coordinationmechanism. Then, we cre-
ate a new dataset that contains both benign and mali-
cious data for charging coordination application.

2) We propose a deep learning model for identifying lying
EVs and present extensive experiments conducted to
evaluate this model.

The remainder of this article is organized as follows. The
related work is discussed in Section II. Section III describes
the system model. The evaluation of the impacts of lying
EVs on the charging coordination mechanism is presented in
Section IV. The dataset created for the charging coordination
application is presented in Section V. The proposed deep-
learning-based detector is discussed in detail in Section VI.
Our evaluations of the proposed detector and experimental
results are discussed in Section VII. Our conclusions are
presented in Section VIII.

II. RELATED WORK
In this section, we first present the existing works on charg-
ing coordination mechanisms. Then, we discuss works that
address the uncertainty of EV charging. Finally, we discuss
the existing datasets for EVs.

A. CHARGING COORDINATION MECHANISMS
Several works in the literature have investigated charging
coordination mechanisms for EVs. Arias et al. [16] pro-
posed an optimized charging coordination mechanism for
finding the best charging schedule that satisfies the EVs’
requirements while respecting the operational capacity of the
electrical distribution system. The authors considered three
optimization algorithms: tabu search, a greedy randomized
adaptive search procedure, and a new hybrid optimization
algorithm that combines these two algorithms.

Hajforoosh et al. [17] proposed a charging coordina-
tion mechanism based on the fuzzy discrete particle swarm
optimization algorithm and a fuzzy genetic algorithm. The
main objective of the proposed mechanism is to maximize
the amount of electrical power delivered to the EVs while
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minimizing grid losses, distribution transformer loading and
the cost associated with energy generation.

Franco et al. [18] proposed a charging coordination mech-
anism for unbalanced electrical distribution systems using a
mixed integer linear programming technique. The proposed
mechanism aims to reduce the energy cost of EV charging
by considering several factors, such as the three-phase circuit
representation and the load imbalance, to produce a nonlinear
programming model. This model can be converted into a
linear model using linearization techniques to allow it to be
easily solved.

Mahmoud et al. [19] introduced a privacy-aware charging
coordination mechanism that preserves the privacy of EV
drivers while still optimizing the power supplied to the EVs
without exceeding the total charging capacity. The idea is
that each EV encrypts its charging request in addition to a
one-time secret key using the public key of the CC so that
only the CC can decrypt the request. Then, the CC uses the
provided data to compute the charging schedules and encrypts
them using the secret keys sent by the EVs. Additionally,
random noise is added to the data sent by the EVs to prevent
the ability to link different charging requests sent from the
same EV to preserve privacy. In addition, a modified version
of the knapsack optimization algorithm is used to schedule
the charging of the EVs.

Baza et al. [5] introduced a decentralized charging coor-
dination mechanism using blockchain and smart contract
technology. Baza et al. [20] proposed two privacy-preserving
charging coordination mechanisms. The first mechanism has
a centralized architecture and uses a blind signature cryp-
tosystem for anonymous authentication. The second mech-
anism has a decentralized architecture in which the various
EVs run the mechanism in a distributed manner. The idea is
that one EV is selected to act as a head node that decrypts
the EVs’ aggregated charging demand and broadcasts the
aggregated demand to the EVs without being able to learn
the data of the individual EVs to preserve privacy. Then, each
EV can compute its own charging schedule such that the
maximum charging energy capacity is not exceeded.

To the best of our knowledge, the existing works in the
literature assume that the electric vehicles report correct
data to the charging coordination mechanism. However, this
assumption cannot be guaranteed to be satisfied because
the electric vehicles are motivated to report false data to
guarantee that they can charge before their charging requests
expire. In addition, no existing work has studied the impact of
reporting false data on the charging coordination mechanism
or proposed a solution for identifying electric vehicles that
report incorrect data.

B. UNCERTAINTY OF EV CHARGING
Numerous works in the literature have investigated the uncer-
tainties in EV charging applications. Xu and Chung [21]
identified the main uncertainties encountered in the charg-
ing of EVs, including the rounding of time units, charging
component failure, punctuality, errors in energy consumption

forecasting, aggregator failure, EV absence, and grid realiza-
tion. Then, techniques for incorporating these uncertainties
into the system were introduced.

Ghosh and Aggarwal [22] proposed a pricing mechanism
for EV charging under uncertainty in EV arrival. The idea
is that the charging stations provide contracts specifying
the amount of energy, price, time to charge, etc. Then, the
EV driver selects the best option for charging. The authors
attempted to solve two optimization problems to maximize
both the profit of the charging stations and the social welfare
achieved.

Pradhan et al. [23] used information gap decision theory to
address price uncertainties that could arise at a charging node.
The proposed mechanism guarantees a minimum amount of
profit in the case of fluctuations in the charging price.

These mechanisms aim to resolve the issues presented by
various uncertainties in the charging application, such as an
electric vehicle that does not charge as planned or charges less
power than it requested, but they cannot solve our problem,
in which some electric vehicles report false state of charge
values to gain higher charging priorities than honest EVs.

C. DATASETS FOR EVs
Akhavan-Hejazi et al. [24] created a dataset for hybrid EVs
(powered by both electricity and gasoline) that contains
minute-by-minute SoC data as well as the nodal and tem-
poral charging loads of plug-in hybrid EVs. The dataset was
created using driving traces from 536 gasoline-powered taxi
vehicles equipped with Global Positioning System (GPS)
devices in San Francisco and the nominal operation data of
various plug-in hybrid EV brands. The main goal was to
find the SoC and charging patterns of vehicles with the same
movement patterns but equipped with various plug-in hybrid
EV technologies. As these vehicles are moving, they switch
between using electrical energy and gasoline. The dataset
considers two types of plug-in hybrid EVs. The first is the
charge depleting type, which switches to gasoline once the
electric battery is depleted. The second is the charge blending
type, which may switch to the gasoline engine to increase
the torque of the vehicle even if the electric battery is not
depleted.

Wang [25] proposed a model for predicting the amount of
energy stored in the EVs in a specific area. A neural network
model combined with a linear chain conditional random field
was used to create the model. The dataset used to train the
neural network was created using the GPS trajectories of a
set of taxis in Beijing. In that paper, it was assumed that the
SoC of each EV varies linearly with respect to the distance
driven. However, the linear model used to compute the SoC
values was not described. The paper also assumed that all EVs
recharge to full capacity at the beginning of each day, which
may not be guaranteed in practice. Moreover, the dataset has
not been shared publicly.

Oh et al. [26] provided a dataset for vehicles including
gasoline-powered vehicles, hybrid EVs, plug-in hybrid EVs,
and EVs. The dataset was collected based on real-world
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FIGURE 1. The considered system model.

driving scenarios for a set of vehicles, including driving
in various environments, from highways to traffic-dense
regions. The information in this dataset is divided into static
and dynamic information. The static information consists
of the vehicle parameters, such as the vehicle type and
engine configuration. The dynamic information consists of
time-stamped driving records for each vehicle, such as the
vehicle’s speed, battery current, voltage, and SoC. However,
this dataset contains the data for only three EVs; thus, it is a
very small dataset for training machine learning models.

In contrast to these works, in this article, we create a new
dataset for the charging coordination application, including
data for lying electric vehicles, by proposing various attacks
as the basis for creating malicious data.

III. NETWORK AND THREAT MODELS
As shown in Fig. 1, the considered system model consists of
the following entities:

• Charging coordinator (CC): The CC receives charging
requests from the EVs, computes the charging schedules
and sends them to the EVs. It must be ensured that the
scheduled charging amounts do not exceed the available
charging energy.

• Electric vehicles (EVs): The EVs send charging requests
containing information such as the battery SoC to the
CC, which uses this information to compute the charging
schedules for the EVs.

• Collectors: A collector is responsible for collecting the
charging requests of the EVs in a given area and sending
them to the CC. It also receives charging schedules from
the CC and forwards them to the EVs in its area.

• Charging points (CPs): The CPs provide the EVs with
the needed electrical power for charging.

As shown in Fig. 1, the charging coordination mechanism
is executed by the CC for each geographic area, where each
area is usually connected to one electrical bus. The total
amount of charging energy for the EVs in each area should not
exceed the maximum charging energy capacity that is known
to the CC. Time is divided into slots, e.g., 30 minutes per
slot, and the charging coordination mechanism is run at the
beginning of each time slot. When an EV needs to charge,
it sends a charging request to the CC; this request includes
information such as the battery SoC and the time to complete
charge (TCC). The SoC is the amount of energy stored in
the battery, represented as a number between zero and one,
where SoC= 1when the battery is fully charged and SoC = 0
when the battery is fully depleted. The TCC is the expiration
time of the charging request, i.e., the EV needs to charge
before the TCC has elapsed. After the CC has received the
charging requests from the EVs in a certain area, if the total
charging demand does not exceed the maximum charging
energy capacity, all EVs can charge. Otherwise, the CC must
execute a charging coordination mechanism to select a subset
of the EVs to charge in the current time slot and defer the
charging of the other EVs to later time slots. This mechanism
should prioritize all requests and select the highest-priority
requests for charging such that the charging energy limit is
not exceeded. Typically, higher priority is given to EVs with
lower SoC values. In the literature, various approaches for
selecting the subset of EVs that can charge in the current time
slot have been presented [16]–[18].

Regarding the threat model, we focus on attacks launched
by lying EVs that send false SoC values in their charging
requests to illegally gain higher priorities for charging. In this
article, we propose various ways in which EVs can report
false SoC values. We also report the training of a machine
learning detector that uses the SoC values reported by an EV
to classify the EV as honest or lying.
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IV. EVALUATION OF THE IMPACT OF LYING EVs
In this section, we present multiple experiments conducted
to evaluate the impact of falsely reported SoC values on
the charging coordination mechanism. Specifically, we are
interested in investigating how such attacks (1) benefit the
lying EVs and (2) harm honest EVs.

A. SETUP AND METRICS
We use MATLAB [27] to simulate the following charg-
ing coordination scenario. Consider a set of n EVs (E =
{EV1,EV2, . . . ,EVn}), a set of days (D = {1, . . . , d}), and
a set of time slots of equal length (T = {1, 2, . . . ,T }). For
EVi ∈ E, the SoC value on day d ∈ D at time t ∈ T is
denoted by Si(d, t). At time t , EVi sends a charging request
that contains information such as the SoC of the EV (Si(d, t))
to the CC. A charging coordination mechanism that takes
the EVs’ charging requests as input is executed to determine
which EVs can charge in the current time slot. However,
a lying EV reports a false SoC value (i.e., a lower value),
denoted by β ∗ Si(d, t), where 0 ≤ β < 1, to the CC to
illegally gain a higher charging priority to ensure that it can
charge before its request expires.

In our experiments, we assume that the maximum capacity
of each EV’s battery is 200 units of energy and that the total
number of EVs sending charging requests in each time slot is
100, including both lying and honest EVs. Each simulation is
run for a total of 30 time slots. In addition, simulations are run
using two maximum charging energy capacities per time slot,
namely, 800 and 1500 units of energy, to evaluate the impact
of falsely reported SoC values on the charging coordination
mechanism for two different levels of the available charging
supply. Initially, the SoC value of each EV is set to a random
number between 0.25 and 0.75, and the TCC is equal to four
time slots.

In our experiments, we apply the charging coordination
mechanism proposed in [19], which is based on the knapsack
algorithm, as described in Algorithm 1. The algorithm needs
to calculate a priority index (PI) for each charging request;
this index takes values between 0 and 1, and the priority of a
request increases as PI increases. PI is calculated as follows:

PI = εf1(SoC)+ (1− ε)f2(TCC),

where ε, which takes values between 0 and 1, determines the
relative weights given to the SoC and TCC and f1() and f2()
are two functions that map the SoC and TCC, respectively,
to values between 0 and 1. We assume that ε is 0.6, that f2(x)
is equal to 0.4 when 0 < x ≤ 4 and is equal to 0.2 otherwise,
and that f1(x) = 1 − x. In addition, the SoC reported by an
honest EVi is Si(d, t), while the SoC reported by a lying EVi
is β ∗ Si(d, t), where 0 ≤ β < 1 and Si(d, t) is the true SoC
value. As shown in line 10 of Algorithm 1, the CC divides the
priority index of each vehicle (PIi) by its energy demand (Pi)
and then selects the EVs with the highest ratios for charging
such that the maximum charging energy capacity (Csys) is
not exceeded. We assume that all EVs need to fully charge

Algorithm 1 Charging Coordination Mechanism Used
in [19]

1 function Charging_Coordination (SoC, TCC, P,
EnergyCapacity)

// Pi: the charging amount
requested by

// EVi
// X: the amount of energy each EV

can
// charge in this time slot

2 Csys← EnergyCapacity

3 ε← 0.6

4 for i ∈ X
5 Xi← 0
6 end

// PI: compute the priorities of
the EVs

7 for i ∈ PI
8 PIi← εf1(SoCi)+ (1− ε)f2(TCCi)
9 end

10 A← PI1/P1 ≥ PI2/P2 · · · ≥ PIn/Pn

11 for i ∈ A
12 if Pi ≤ Csys

13 Xi← Pi

14 Csys← Csys − Pi

15 A← A− i

16 end
17 end

// If there is any remaining power,
provide

// it to the EV with the highest
priority

18 L ← argmaxAPI

19 XL ← Csys

20 Return X

their batteries, i.e., to charge until the SoC is 1; therefore,
Pi = (1− SoC)× Battery_Capacity.
The key metrics used to evaluate the impact of EVs report-

ing false SoC values on the charging coordination mechanism
are as follows. The first metric is the probability that a lying
electric vehicle will be charged before the expiration of its
charging request. The second metric is the probability that
an honest electric vehicle will be able to charge before the
expiration of its charging request in the presence of lying
EVs. In the experiments, we vary β to study different cheating
behaviors, where as β decreases, the SoC value reported by a
lying EV is lower than the real value to a greater degree.
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FIGURE 2. The charging selection probabilities for honest and lying EVs under different values of β and the total charging energy.

B. SIMULATION RESULTS
Fig. 2 shows the selection probabilities for honest and lying
EVs under different values of β and the total charging energy.
The probability that a lying EV will be selected for charging
is calculated as the number of lying EVs that can fully charge
before their charging requests expire divided by the total
number of lying EVs. Similarly, the probability that an honest
EV will be selected for charging is calculated as the total
number of honest EVs that are selected for charging before
their charging requests expire divided by the total number of
honest EVs.

The figure shows that as the number of lying EVs
increases, the selection probability for honest EVs decreases.
This is because more lying EVs are selected for charging due
to their higher priorities. With a certain number of lying EVs,
the selection probability for honest EVs becomes very low.
This is because in this case, very few honest EVs are selected
for charging, whereas most of the lying EVs are selected. For
instance, when β is 0.1, the total charging energy is 800, and

the number of lying EVs is 50, the selection probability for
honest EVs is approximately 0.05, whereas the lying EVs
have amuch higher probability of being selected because they
have higher priorities.

It can also be seen that the selection probability for honest
EVs eventually increases again at very high numbers of lying
EVs, i.e., low numbers of honest EVs. This is not because
more honest EVs are selected but rather because the total
number of honest EVs decreases as the number of lying EVs
increases, and thus, the selection of only a few honest EVs
for charging substantially increases the selection probability
for honest EVs. Note that the total number of EVs (including
both honest and lying EVs) is always 100. Moreover, as β
decreases, fewer honest EVs are selected for charging. For
instance, in Figs. 2(a) and 2(b), where β is 0.1 and 0.5, respec-
tively, when the number of lying EVs is 50, the selection
probabilities for honest EVs are 0.05 and 0.15, respectively.

For lying EVs, the selection probability is consistently
high until the number of lying EVs reaches a certain value,
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after which the probability starts to decrease. This behav-
ior can be explained by the fact that when the system
contains many lying EVs, some of the lying EVs may
not be selected for charging before their charging requests
expire.

Moreover, by comparing Figs. 2(a), 2(c), 2(b) and 2(d),
it can be seen that when the total charging energy is reduced
from 1500 to 800, fewer total EVs are selected for charging
in each time slot. This results in the selection of fewer honest
EVs and also reduces the selection probability for lying EVs
because of the smaller total number of selected EVs. There-
fore, lying EVs have a more severe impact on honest EVs as
the available charging energy decreases.

Based on the above results, we can draw the following
conclusions. (1) Reporting lower SoC values is beneficial
for EVs because it can significantly increase their chance of
charging before their requests expire. (2) Honest EVs have a
very low chance of charging before their charging requests
expire, especially as the total charging capacity decreases,
as the number of lying EVs increases, and as the lying EVs
report lower SoC values (i.e., as β decreases).

V. DATASET
In this section, we explain how we created a dataset for
the charging coordination application using real driving
traces of vehicles and technical information released by
an EV manufacturer. Although our focus was to create
a dataset for use in training a detector to identify lying
EVs, our dataset can also be used for other applications,
such as energy demand prediction for energy management
applications.

A. HONEST DATASET CREATION
To create the honest dataset, we used the driving routes
of 536 taxis in San Francisco, CA, released in [9]. Data
recording began on May 17, 2008, and finished on June
10, 2008. For each taxi, each row of data contains a time
stamp, latitude, and longitude. In our dataset, we consider
the Kia Soul EV [10]. Therefore, in addition to using the real
routes in [9], we also used information released by Kia. This
information is summarized in Table 1. The EVuses a charging
technique in which the grid provides the EVwith the required
amount of electrical power using alternating current (AC),
which is converted into direct current (DC) by the EV’s own
rectifier (converter) [10].

To compute the SoC every minute for each EV, we ran-
domly initialized the SoC value and then, for every minute,
checked whether the EV was moving. If it was moving, then
we first computed the distance traveled using the EV speed
and the time, subsequently computed the power consump-
tion of the EV by multiplying this distance by the power
consumption rate given in Table 1, and finally updated the
SoC value by subtracting the ratio of the power consumed to
the maximum battery capacity from the current SoC value.
In other words, the SoC is linearly dependent on the distance

TABLE 1. Operational data of the Kia Soul EV.

driven by the EV [25] and is computed as

NewSoC = OldSoC−
ConsumptionRate× Distance

MaxCapacity
,

where the amount of power consumed is calculated by mul-
tiplying the distance traveled by the EV in miles by the EV’s
power consumption rate. If the EV was not moving, then we
checked whether it was charging. If it was charging, then the
SoC value was updated by adding the ratio of the amount
of the power drawn to the EV’s capacity. If the EV was not
charging, then the SoC value was left unchanged.

In this way, a benign dataset was created for each of
the 536 EVs to describe its normal behavior (i.e., driving
pattern). In the dataset, the behavior of each EV is captured
by 24 rows representing the normal behavior of that EV
over 24 days. Each row contains T features, representing the
SoC values reported every τ minutes by that EV. For the
construction of the dataset, τ was selected to be 30 minutes,
resulting in a set of T = 48 features in each row. Thus, the
benign dataset contains a total of 12, 864 data samples.

FIGURE 3. The SoC values of two EVs from the dataset throughout one
day.

Fig. 3 shows the SoC values of two EVs throughout one
day. As observed from the plots, the initial SoC values are
different, and the SoC values begin to decrease at a certain
hour, which indicates that the EVs are moving; at certain
times, the SoC values also increase, indicating that the EVs
are charging at these times.

Fig. 4 shows the average SoC values of the same two EVs
over 24 days. These plots show that each of the two EVs
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FIGURE 4. The average SoC values of two EVs from the dataset
over 24 days.

has a different SoC pattern corresponding to charging vs. not
charging and moving vs. remaining still. This observation
suggests that each electric vehicle has its own normal behav-
ior, reflected by its state of charge pattern; accordingly, our
detector will attempt to detect electric vehicles that appear to
deviate from their normal behavior and label them as liars.

TABLE 2. Attacks for reporting a false SoC.

B. MALICIOUS DATASET CREATION
For the creation of the malicious dataset, various attack sce-
narios were formulated regarding the reporting of false SoC
values to the CC. These attacks are summarized in Table 2.
Four types of attacks are considered: two versions of a partial
reduction attack and two versions of a selective time filtering
attack [28]. The SoC of EVi at time t on day d is denoted by
Si(d, t), and the SoC reported by EVi to the CC is denoted by
RSi(d, t). If EVi is honest, then RSi(d, t) is equal to Si(d, t)
at all times.

As illustrated in Table 2, in Attack 1, the attacker attempts
to deceive the CC by multiplying the correct SoC value by
a constant value α of less than one to report a lower SoC
in order to gain a higher charging priority. In Attack 2, the
EV attempts to deceive the CC by multiplying the reported
SoC value by a time-dependent function βi(d, t) whose value
is less than one at all times. In Attack 3, the EV uses a
selective time filtering technique in which it reports an SoC
of zero (or a small value) during an interval tb ≤ t ≤ te but
reports its correct SoC (Si(d, t)) otherwise. Attack 4 is similar
to Attack 3 except that EVi selects a specific time interval

tb ≤ t ≤ te in which to report SoC values that are multiplied
by a time-dependent function βi(d, t) whose value is always
less than one, whereas at other times, EVi reports its actual
SoC (Si(d, t)). These four attacks were applied on each row in
the benign dataset to produce a malicious dataset containing
51, 456 (= 12, 864(benign samples)× 4) records.

C. DATASET PREPARATION
In this subsection, we discuss the preparation of the dataset
used to train and evaluate the detector. As discussed in
Section V-A, an honest dataset was created with 12, 864
data samples, while the malicious dataset introduced in
Section V-B was created with 51, 456 data samples. The
original dataset obtained by combining these two datasets
contains 64, 320 data samples. As shown in Table 3, this
dataset is divided into three parts: a training dataset for train-
ing the detector, a validation dataset for avoiding overfitting
during the training process, and a test dataset for evaluating
the model. For both the evaluation and testing phases, the two
classes are balanced, with 2, 000 samples in each class. How-
ever, in the training dataset, the two classes are imbalanced,
with the malicious class containing more samples than the
honest one.

TABLE 3. Samples in our dataset.

The class imbalance problem arises when one class in a
dataset contains more samples than other classes [29]. In our
training dataset, the honest class is the minority class that
needs to be balanced with the malicious class. Training a
classifier model using imbalanced data can produce a clas-
sifier that is biased towards the class (or classes) represented
by more samples in the dataset. Therefore, to create accurate
classifiers, data balancing techniques should be applied when
there are some data distributions that significantly dominate
other data distributions in the sample space. One solution
to this problem is to use a data augmentation technique to
synthetically increase the number of samples in the minority
class.
Data augmentation is the process of increasing the number

of data samples for the purpose of creating a more accurate
and robust model [30]. It is known that as the number of
samples in the training dataset increases, the trained model
becomes more accurate [31]. The most common data aug-
mentation techniques used to balance a dataset are over-
sampling techniques. The two most common categories of
oversampling techniques [11] are as follows:

• Sampling techniques: In these techniques, the imbal-
anced dataset is compensated by copying some of the
samples in the minority class.
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• Synthetic data generation: In these techniques, the
imbalance problem is solved by generating synthetic
data samples to balance the original dataset. Common
techniques in this category are the Synthetic Minority
Over-sampling Technique (SMOTE) [32] and the adap-
tive synthetic sampling approach (ADASYN) [11].

For our dataset, we used a synthetic data generation technique
because sampling techniques can lead to overfitting due to
the creation of exact copies of the original data [33]. Specifi-
cally, we selected ADASYN, which is considered an improved
extension of SMOTE [11], for balancing the minority class
in the training dataset. The main advantage of ADASYN is
that it uses a density distribution to automatically determine
the number of synthetic samples that should be generated for
each sample in the minority class, in contrast to the SMOTE
algorithm, which generates the same number of synthetic
samples for each original minority sample. For the appli-
cation of ADASYN [11] to our dataset, the dataset should
contain only two classes: a minority class (the honest class)
and a majority class (the malicious class). This is because
ADASYN attempts to balance the minority class with the
majority class by calculating the ratio between the numbers
of samples in the two classes and then adding synthetic sam-
ples to the minority class until the number of minority class
samples approximately reaches the number of majority class
samples. As indicated in Table 3, the ADASYN data aug-
mentation technique was applied only to the training dataset,
resulting in a total of 95, 052 data samples, with 47, 596 being
benign samples and 47, 456 being malicious samples. The
ADASYN algorithm can be summarized as consisting of the
following steps:

1) The degree of class imbalance in the dataset is
computed:

R =
mmin

mmaj
,

where mmin and mmaj are the numbers of samples in
the minority andmajority classes, respectively, and R ∈
(0, 1].

2) If R < Rth, where Rth is the maximum tolerance thresh-
old for the class imbalance ratio, then the following
steps are performed:
• The total number of synthetic minority data sam-
ples that need to be generated by ADASYN is
calculated as

G = (mmaj − mmin)ξ,

where ξ ∈ [0, 1] is a parameter used to specify
the required degree of balance after synthetic data
generation. When ξ = 1, this indicates that the
dataset is required to be fully balanced when the
generation process is complete.

• For each minority sample, the k nearest neighbors
are considered to calculate the r value:

ri =
∂i

k
,

where ∂i is the number of samples belonging to
the majority class among the k nearest neighbors
of sample i based on the Euclidean distance rule
in n-dimensional space. The ri value indicates the
dominance of the majority class in the neighbor-
hood.

• Before the number of synthetic samples to be gen-
erated is finally determined, the ri values for all
minority samples are normalized such that their
sum is one:

r̂i =
ri∑
ri
,

where
∑
r̂i = 1.

• The number of synthetic samples to be generated
in each neighborhood is calculated as follows:

gi = r̂i ∗ G.

Since gi is calculated using the corresponding ri
value for every minority class sample, ADASYN
creates more synthetic samples in neighborhoods
where the ratio of majority to minority observa-
tions is greater.

• For each sample xi in the minority class, gi samples
are generated by looping from 1 to gi and doing the
following:
– A data sample xj is randomly chosen from

among the k nearest neighbors of data sample
xi.

– A synthetic observation is generated:

si = xi + (xj − xi)λ,

where si is the generated synthetic sample, xi
is sample i from the minority class, and λ is a
random number between 0 and 1.

VI. PROPOSED LYING EV DETECTOR
In this section, we discuss the details of the proposed lying EV
detector. An abstract representation of the operations needed
to develop the proposed detector is shown in Fig. 5. The
proposed detector is based on a deep neural network (DNN)
classifier, and its development process consists of two stages.
The first stage is for learning (training) and hyperparameter
optimization, in which the structure and parameters of the
detector are defined. For our detector, we choose an RNN
detector with a gated recurrent unit (GRU) structure to exploit
the time series nature of our data. During the training process,
the model’s hyperparameters are tuned using a genetic algo-
rithm. The second stage is for testing, in which the detector
is evaluated using the test dataset.

In the following subsections, we will briefly introduce the
GRU classifier that is used in the lying EV detector as well as
the optimization algorithm used to tune themodel parameters.
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FIGURE 5. An abstract representation of the operations needed to develop the proposed detector.

A. GRU DETECTOR
An RNN is a type of artificial neural network in which
the node-to-node connections form a directed graph with a
temporal sequence and thus can reflect temporal dynamic
behavior. Unlike feedforward neural networks, RNNs can
process input sequences using their hidden states (memory),
which makes them perfect for tasks such as unsegmented
handwriting recognition or voice recognition [34]. Feedback
loops are used to process the input data sequence to produce
the final output sequence. Such feedback loops allow the
retention of information, and this capability is often regarded
as a memory functionality that preserves all measured param-
eters and links the inputs together, thus allowing sequential
and temporal information to be processed by RNNs. The
algorithm that is used in RNNs to update the network weights
is backpropagation through time (BPTT) [35].

RNNs can suffer from the vanishing gradient problem; that
is, when the gradient of a weight becomes too small as it is
backpropagated through time, it can no longer contribute suf-
ficiently during the learning process. Accordingly, a special
kind of RNN structure has been introduced in the literature to
solve this problem, namely, the GRU structure [36].

As shown in Fig. 6, our GRU detector consists of an input
layer, a set of hidden layers and an output layer. The input
layer receives the input vector RSi(d, ∗), which represents the
SoC values of EVi during day d in different reporting time
periods t ∈ T; this vector consists of T values. Following
the input layer are L hidden layers, each of which consists
of N neurons with a given activation function. The input
layer receives an input vector and sends data to the hidden
layers, which perform computations and send the resulting
data to the output layer, which consists of two neurons for
classifying a given input as corresponding to either an honest
or lying EV. Accordingly, the output of the last layer is
a two-element vector of the form y(RSi(d, ∗)) = (0, 1)T

for a benign (honest) EVi or y(RSi(d, ∗)) = (1, 0)T for a
lying EVi.
Given L hidden layers, for each layer l ∈ {1, 2, . . . ,L},

the output is denoted by olt , and o
0
t = RSi(d, ∗). Each hidden

layer l ∈ {1, 2, . . . ,L − 1} has the following parameters:

FIGURE 6. The architecture of the GRU-based detector.

• The input at time t is ol−1t , which is the output of the
previous layer l − 1.

• The hidden state slt−1 represents the memory computa-
tions using the previous layer’s hidden state.

• The update gate for layer l and state t is computed
using the input vector ol−1t and the previous hidden state
slt−1 as follows: z

l
t = σ (o

l−1
t U l

z + s
l
t−1W

l
z + b

l
z). Here,

σ (·) is the activation function, while blz is the bias for
the neurons in layer l. During the learning process, the
weight matrices U l

z and W
l
z are modified to reduce the

error.
• The reset gate is calculated as follows: r lt = σ (o

l−1
t U l

r+

slt−1W
l
r + blr ), where U

l
r and W l

r are weights that are
learned during the training process.

• Finally, the current hidden state is computed as
slt = (1− zlt )� h

l
t + z

l
t � s

l
t−1, where� is the Hadamard

product and hlt = tanh(ol−1t U l
h + (slt−1 � r lt )W

l
h + b

l
h).

The output at time t is olt = softmax(V l
os
l
t + blo), where

V l
o, U

l
h, andW

l
h are weight matrices that are determined

via the training process.
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B. HYPERPARAMETER OPTIMIZATION
Optimizing the parameters improves the performance of
a detector. However, tuning a detector’s hyperparameters
is a difficult and time-consuming process because of the
extensive computation required, and an exhaustive search
for the optimal hyperparameters is practically impossible.
Accordingly, we use the Non-dominated Sorting Genetic
Algorithm II (NSGA-II) [37], [38] to find an efficient solu-
tion in less time than would be required for an exhaustive grid
search [39].

A genetic algorithm (GA) [40] uses a search strategy to find
the best or fittest solution to a given (optimization) problem.
In a GA, a population of candidate solutions is represented
using a genetic representation. The GA then moves toward
a better solution by applying evolutionary concepts such as
natural selection and survival of the fittest.

In this article, NSGA-II is used to tune the hyperparam-
eters of the GRU architecture, such as the number of hid-
den layers (L), the number of neurons per layer (N ), the
type of optimization algorithm applied (O), the method used
for parameter initialization (H ), the dropout rate (D), the
weight constraint (J ), and the activation functions used in the
hidden layers (Ahd ) and the output layer (Aop). NSGA is a
multiple-objective optimization algorithm and is an instance
of an evolutionary algorithm. There are two versions of this
algorithm: the classical NSGA and the updated and currently
canonical form, called NSGA-II. The objective of NSGA is to
enhance the adaptive fit of a population of candidate solutions
to a Pareto front restricted by a set of objective functions.
The algorithm uses an evolutionary process with surrogates,
using selection, genetic crossover, and geneticmutation as the
evolutionary operators. The population is sorted into a hier-
archy of subpopulations based on Pareto superiority. Optimal
selection of the hyperparameters significantly improves the
detection performance.

We used the dataset described in Section V-C for GRU
model training, hyperparameter tuning, and testing. The
model architecture produced in this way consists of 4 hidden
layers of 512 neurons each, the tanh activation function in
the hidden layers, and the softmax activation function in the
output layer.

VII. EXPERIMENTS AND RESULTS
In this section, the evaluation methodology used to measure
the performance of the proposed detector is explained, and
then the evaluation results are discussed.

A. KEY PERFORMANCE METRICS AND EXPERIMENTAL
METHODOLOGY
We define the following key performance metrics used in our
evaluation process:
• Detection Accuracy (ACC): The ratio of the number of
true positives and true negatives to the total number of
EVs.

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
(1)

TP represents the number of true positives and is defined
as the number of lying EVs that are correctly classified
as lying. TN is the number of true negatives and is
defined as the number of honest EVs that are correctly
classified as honest. FP denotes the number of false
positives and is defined as the number of honest EVs
that are incorrectly classified as lying. FN represents the
number of false negatives and is defined as the number
of lying EVs that are incorrectly classified as honest.

• False Alarm Rate (FA): The ratio of the number of false
positives to the total number of honest EVs.

False Alarm Rate (FA) =
FP

TN + FP
(2)

• Detection Rate (DR): The ratio of the number of cor-
rectly detected lying EVs to the total number of lying
EVs.

Detection Rate (DR) =
TP

TP + FN
(3)

• Highest Difference (HD): The difference between the
detection rate (DR) and the false alarm rate (FA).

Highest Difference (HD) = DR− FA (4)

• Area Under the Curve (AUC): The area under the
receiver operating characteristic (ROC) curve. The ROC
curve is a graphical means of capturing the relationship
between DR and FA [41].

TABLE 4. Cases considered for training and evaluation of the detector.

To evaluate the performance of our GRU model, we used
the dataset described in Section V-C. The various cases con-
sidered in our evaluations are summarized in Table 4. The
main objective of case 1 was to evaluate the performance of
the classifier on a test dataset consisting entirely of attacks
already seen during the training phase. To evaluate the ability
of our detector to detect new attacks, the main objective of
cases 2, 3, 4, and 5 was to evaluate the performance against
new attacks other than those on which the detector was
trained. Specifically, in each of these four cases, we trained
the detector on three attacks and tested it on the fourth attack
that was not represented in the data used in the training phase.
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FIGURE 7. The ROC curves for the GRU and MLP detectors in case 1.

B. RESULTS AND DISCUSSION
In this subsection, the evaluation results for the proposed
detection model are discussed.

1) EVALUATION OF THE PROPOSED DETECTOR
In case 1, the detector was trained using honest data as well
as lying (malicious) data corresponding to all four attacks
discussed in Section V-B. During the testing phase, the detec-
tor was similarly tested using honest samples in addition to
malicious samples corresponding to all four attacks. For com-
parison with the GRU detector, another DNN detector based
on amultilayer perceptron (MLP)model [42] was also trained
and tested to evaluate how the GRU model benefits from
the ability to exploit the time-series nature of the data. The
results obtained with the best network architectures, i.e., the
architectures that produced the best results, for both the GRU
and MLP models are presented in Table 5. The best MLP
results were obtained using a complicated architecture with
6 hidden layers of 768 neurons each, the sigmoid activation
function in the output layer and the ReLU activation function
in the hidden layers.

TABLE 5. Evaluation results for the DNN models in case 1.

It can be seen from Table 5 that the GRU detector achieves
higher performance with a less complex architecture com-
prising only 4 hidden layers of 512 neurons each, the tanh
activation function in the hidden layers and the softmax acti-
vation function in the output layer. The ROC curves in Fig. 7
visualize the performance of the two detectors in terms of the
AUC metric, which has a value of 0.98 for the GRU detector
and a value of 0.93 for the MLP detector.

As seen from Table 5 and Fig. 7, the GRU detector out-
performs the MLP detector, with higher DR and ACC values
and a lower FA value. These results can be interpreted to
indicate that the GRU detector can better exploit the time
series correlations in the SoC values reported by the EVs

to achieve superior detection results. In addition, to achieve
good detection performance, the architecture of the MLP
detector must be more complex, i.e., with more layers and
neurons.

2) DETECTION OF NEW ATTACKS
The main objective in this subsection is to investigate the
ability of the detector to detect new attacks that are not
represented in the training dataset. The detector was trained
on a dataset containing honest data and data corresponding
to three attacks. Then, we evaluated the detector against the
fourth attack. As shown in Table 4, four different cases were
considered, and the results are presented in Table 6.

TABLE 6. Evaluation results for GRU models in different cases.

Case 2: In this case, the model was trained using a dataset
containing honest data as well as malicious data correspond-
ing to Attacks 2, 3, and 4. In the test phase, the dataset used
consisted of samples of honest data as well as malicious sam-
ples corresponding to Attack 1. In this case, the GRU detector
that achieved the highest performance contained 2 hidden
layers of 512 neurons each, with a linear activation function
in the hidden layers and the softmax activation function in the
output layer.
Case 3: In this experiment, the training and validation

datasets contained honest samples and malicious samples
corresponding to Attacks 1, 3, and 4. Then, the model was
tested using Attack 2 samples in addition to honest samples.
The GRU detector that achieved the highest performance had
an architecture with 2 hidden layers of 768 neurons each, the
tanh activation function in the hidden layers and the softmax
activation function in the output layer.
Case 4: The training and validation datasets contained

samples corresponding to Attacks 1, 2, and 4 in addition
to honest data. The test dataset contained honest data and
samples corresponding to Attack 3. The GRU detector that
achieved the highest performance was based on a model with
only 1 hidden layer of 256 neurons each, the ReLU activa-
tion function in the hidden layer and the sigmoid activation
function in the output layer.
Case 5: In this experiment, the training and valida-

tion phases were performed using a dataset consisting of
malicious samples corresponding to Attacks 1, 2, and 3 in
addition to honest data. In the test phase, the dataset used
contained honest samples and malicious samples correspond-
ing to Attack 4. The GRU detector that achieved the highest
performance had an architecture with 2 hidden layers of 128
neurons each, a linear activation function in the hidden layers
and the softmax activation function in the output layer.
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It can be seen from Table 6 that the false alarm rates are
all low. The detection rate in case three is particularly high.
For cases four and five, although the attacks are stealthy (i.e.,
the attacker sends false SoC values only during a short time
interval and reports the correct SoC values the rest of the
time), the detector is still able to detect them at a reasonable
rate. In Attack 2, the attacker reports its correct SoC value
multiplied by a factor of less than one. Although this is a
difficult attack to detect if the detector is not trained on it
because the pattern of the reported SoC values is close to that
in the benign dataset, our detector is also able to detect this
attack at a reasonable rate.

VIII. CONCLUSION
Recently, the adoption of electric vehicles has started to
gain momentum due to their obvious advantages over gaso-
line vehicles. However, integrating electric vehicles into the
power grid requires a charging coordination mechanism for
balancing the charging load of the electric vehicles with the
power supply. The existing charging coordination mecha-
nisms assume that all electric vehicles report their correct
state of charge values, although this is not beneficial to them.
In this article, we first evaluated the impact of reporting
false state of charge values on the charging coordination
mechanism. Then, we proposed a detector based on deep
learning techniques for identifying lying electric vehicles
that report false state of charge values. To train the model,
we created a new dataset; in particular, we proposed a num-
ber of attacks and used them to create a malicious dataset.
Since the reported state of charge values exhibit time series
correlations, a deep recurrent neural network was selected as
the classifier for use in the detection process. The selection of
the deep network architecture that provides the best perfor-
mance was treated as an optimization problem with multiple
objectives (detection rate and false alarm rate). Accordingly,
to solve this problem, we used the Non-dominated Sorting
Genetic Algorithm. The proposed detector was then experi-
mentally evaluated, and the results indicate that the detector
achieves a high detection rate with a low false alarm rate.
Moreover, to investigate the ability of the detector to detect
new attacks that are not represented in the training dataset,
we also evaluated the detector on new attacks and found that
it could detect them at a high detection rate.
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