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ABSTRACT This article presents a novel framework for acquiring visual data around 3D infrastructures,
by establishing a team of fully autonomous Micro Aerial Vehicles (MAVs) with robust localization, planning
and perception capabilities. The proposed aerial system reaches high level of autonomy on a large scale,
while pushing to the boundaries the real life deployment of aerial robotics. In the presented approach,
the MAVs deployed around the structure rely only on their onboard computer and sensory systems. The
developed framework envisions a modular system, combining open research challenges in the fields of
localization, path planning and mapping, with an overall capability for a fast on site deployment and a reduced
execution time that can repeatably perform the mission according to the operator needs. The architecture
of the established system includes: 1) a geometry-based path planner for coverage of complex structures
by multiple MAVs, 2) an accurate yet flexible localization component, which provides an accurate pose
estimation for the MAVs by utilizing an Ultra Wideband fused inertial estimation scheme, and 3) visual
data post-processing scheme for the 3D model building. The performance of the proposed framework has
been experimentally demonstrated in multiple realistic outdoor field trials, all focusing on the challenging
structure of a wind turbine as the main test case. The successful experimental results, depict the merits of
the proposed autonomous navigation system as the enabling technology towards aerial robotic inspectors.

INDEX TERMS Collaborative aerial infrastructure inspection, collaborative coverage, dense reconstruction,
micro aerial vehicles, ultra WideBand inertial state estimation.

I. BACKGROUND & RELATED WORKS

Nowadays, Micro Aerial Vehicles (MAVs) are gaining more
and more attention from the scientific community, constitut-
ing a fast-paced emerging technology that constantly pushes
their limits for accomplishing complex tasks [1]. These
platforms are characterized by their mechanical simplicity,
agility, stability and outstanding autonomy to reach remote
and distant places. Endowing MAVs with proper sensor
suites, while navigating in indoors/outdoors, cluttered and
complex environments, could establish them as a powerful
aerial tool for a wide span of applications. Some charac-
teristic examples of application scenarios for such a novel
deployment of the aerial technology include infrastructure
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inspection [2], public safety-surveillance [3], [4] and search
and rescue missions [5], [6].

One of the most common application areas that MAVs are
employed, is in the filming industry, but there are efforts
from other industries such as Mining, Oil, and Energy
Providers, to invest in the commercialization of MAVs to
perform remote inspection applications. Towards this vision,
MAVs are powerful tools that have the profound potential
to decrease the risks of human life, decrease the execution
time and increase the efficiency of the overall inspection
task, especially when compared to conventional methods [7].
Despite the fact that the research in the aerial robotics has
reached significant milestones regarding localization [8],
planning [9] and perception [10], successful real-life demon-
strations of autonomous inspection systems have been rarely
reported in the literature, with the majority of the applications
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focusing on impressive laboratory trials under full control
environments and in most of the cases under the utilization of
expensive motion capturing systems [11] or small scale and
well defined outdoor environments [12], [13].

In [14] a UWB state estimation framework has been pro-
posed for a quadrotor platform. The method used the dynamic
model of the platform together with measurements from an
IMU and the UWB to observe the platform’s state. The
method included the thrust constant estimation for predict-
ing the acceleration of the vehicle. Similarly, in [15] an
UWRB-Inertial localization scheme has been proposed. The
method is based on a non-linear observer that fuses mea-
surements from the accelerometer, the gyroscope and the
magnetometer with the UWB ranges. In [16] an UWB local-
ization framework for two robot state estimation has been
proposed. In this work the main aim is to extract the relative
position between the robots, considering an anchor robot and
a tag robot. In [17] a high accuracy and energy efficient
localization scheme has been develloped. The system is based
on UWB using the time-difference of arrival (TDOA) topol-
ogy in which the mobile nodes transmit periodically and the
infrastructure-based nodes are mostly passive.

In the related literature there have been many works that
addressed the CPP problem in 2D spaces [18] and fewer
approaches that addressed coverage of 3D spaces. In [19],
a complete survey was presented on CPP methods in 2D
and 3D. Towards the 3D CPP, Atkar et al. [20] presented
an off-line 3D CPP method for the spray painting of auto-
motive parts. Their method used a CAD model and the
resulting CPP could satisfy certain requirements for paint
decomposition. In [21], the authors presented a CPP with real
time re-planning for inspection of 3D underwater structures,
where the planning assumed a priori knowledge of a bathy-
metric map using an autonomous underwater vehicle, while
their overall approach contained no branches. The authors
in [22] introduced a new algorithm for producing paths that
cover complex 3D environments. The algorithm was based
on off-line sampling for autonomous ship hull inspection,
while the presented algorithm was able to generate paths for
structures with unprecedented complexity.

Observing the related literature it seems that there is a
continuously evolving effort to deploy MAVs for infrastruc-
ture inspection [23]. In this survey although multiple appli-
cation scenarios are listed for MAVs, the wind turbine case
is not presented. In [24] a system for Micro Aerial Vehicle
infrastructure inspection has been proposed based on an ultra-
sonic beacon network for localization, a CNN for damage
detection and a geo-tagging method for damage localization.
The authors report that due to regulations they could not
perform field tests providing results from constrained lab
environment, in contrary to the proposed system that has been
experimentally deployed in a real wind turbine infrastructure.
Nevertheless, performing experiments in real infrastructures
reveals issues and lessons learnt that are not visible during
the lab tests. In [25] present a method for localizing an aerial
vehicle while simultaneously performing model fitting of a
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wind turbine using a skeletal parametrization. The authors
in this work use a CNN network to estimate the projections
of the skeletal model into image frames from the onboard
camera. The method is based on graph optimization that
considers measurements from the IMU and the GPS. In this
work the method has been evaluated using datasets collected
from already performed flights, therefore the method was not
used to collect the datasets. Similarly, in [26] the authors
proposed a method to estimate the relative position of the
aerial platform and the wind turbine, as well as the position
of the blades, based on Hough transform, while evaluating
the method on already pre-recorded data and without using
the method for the dataset collection. In [27] the authors
proposed a method vision based method for MAV navigation
around wind turbines. In this system the authors combined
visual odometry with Hough transform to detect the position
of the hub and the angle of the blades aiming to identify
the relative position of the platform with the infrastructure.
The overall goal was to extract 3D waypoints for the plat-
form to visit, while using a path planner for generating the
trajectories. This method has been experimentally verified in
a downscaled 3 meter tall mocap wind turbine, showing the
difficulty and complexity of getting access to such infrastruc-
tures. In [28] an aerial inspection system has been developed
for dataset collection and damage analysis through histogram
processing of images. In this work three aerial vehicles have
been deployed to collect images from an infrastructure. The
authors selected a bridge infrastructure which differs from
a wind turbine since it scales horizontally in urban scenery
and is more relevant for vision based approaches compared
to high altitude wind turbines surrounded by forest. Similar
work is presented in [29].

Thus, one of the most important contributions of this article
is the establishment of an aerial system capable to visually
pre-inspect an outdoors large scale infrastructure, through the
coordination of multiple aerial vehicles. Towards this contri-
bution, the article will further contribute with the implemen-
tation of a novel and accurate localization enabled scheme
for collaborative aerial based visual data collection of infras-
tructure, a scheme that is based on Ultra WideBand (UWB)
distance measurements and Inertial Measurement Unit (IMU)
sensor fusion. In this approach, the aerial platforms navi-
gate autonomously based on the UWB-Inertial fused state
estimation, using a local UWB network, placed around the
structure of inspection. A second contribution of this article is
the experimental evaluation of a Collaborative Coverage Path
Planner (C-CPP) algorithm that has the ability to guarantee
the full coverage of the infrastructure by considering camera,
geometry, collision, and other application posed constraints.
The coverage path is generated for every MAYV, based on
the structure geometric characteristics, while identifying and
assigning parts of the structure to different agents, leading
to faster mission execution. Additionally, the coverage path
planner allows to define the desired overlap between spa-
tially adjacent frames in the dataset, which is needed for 3D
model generation. The final contribution stems from the real
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FIGURE 1. The main inspected wind turbine and the MAV, left to the wind
turbine in the background, while flying around the blades, where it should
be noted the profound scale of the infrastructure in relation to the MAV.

life successful demonstration of a fully functional onboard
visual sensor scheme that it is able to have the dual role of
providing: a) low resolution compressed data for the visual
assessment of the structure, and b) high resolution for post
processing e.g. build 3D models and area image stitching. The
overall concept of the proposed collaborative aerial system
is presented in Figure 1, where two collaborative MAVs are
performing an aerial data acquisition around a wind turbine
with a corresponding video .!

The rest of the article is structured as follows. The over-
all system is described in Section II. More specifically,
Section II-C presents the geometric approach for the C-CPP
problem for infrastructure navigation. Section II-D provides
an analysis on UWB fused inertial based localization for
aerial platforms, while Section II-E establishes the 3D recon-
struction problem from multiple images and multiple MAVs.
Section III demonstrates the experimental setup and presents
the experimental trials for the proposed system. Finally, the
concluding remarks are presented in Section V.

Il. AERIAL DATA ACQUISITION SYSTEM

This article, inspired by the increasing capabilities of MAVs,
establishes an autonomous aerial system, which is specialized
in large scale industrial facilities. The system is realized by
either a single agent or a team of agents and is characterized
by advanced localization and structure coverage capabilities,
all demonstrated in real life by inspecting a wind turbine
power plant, where the aim of the system is to provide visual
data to infrastructure owners for further analysis and asset
management. The overall scheme of the proposed system is
depicted in Figure 2.

A. FIELD TRIALS AND OPEN CHALLENGES

During the development of the proposed aerial framework,
the wind turbine site located in Bured, Sweden have been
visited multiple times. In these sites, the wind speed was

1 https://youtu.be/z_Lu8HvINoc
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FIGURE 2. An overview of the overall system.

measured up to 13 m/s, while the wind turbine structure
depicted in Figure 1, had a base diameter of approximately
4.5 m, with a top diameter of approximately 1.5 m and with
the height of the tower being 64 m. Moreover, the length of
each blade was 22 m with a corresponding cord length, at the
root of the blade, of approximately 2 m and at the top of the
blade of 0.2 m, while the length of the hub and nacelle was
approximately 4 m.

Operating MAVs outside the lab, and especially around
large scale infrastructures such as wind turbines, raises sig-
nificant multidisciplinary research issues where one of the
most important is to provide an accurate localization system
that at the same time would be easily deployable. At the
wind turbines the GPS solution fails at low height due to the
multipath errors, which happen when the GPS receiver cannot
distinguish a direct signal from a reflection, a fact that causes
significant errors in the measurements. Usually, the GPS
works well in positions where the interference from the build-
ing is small enough, however this is only at significant heights
in this case. Moreover, the trending technology of visual
based odometry, opposite to GPS, cannot provide reliable
localization feedback in high altitudes. These algorithms base
part of their processing in visual measurements by detecting
areas of high contrast and texture [30], to extract visual
landmarks/features in the image used for the rotation and
translation estimation. The feature-based methods aim to find
distinctive points in the image and determine their position in
pixels. The identified pixels should be uniquely described in
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FIGURE 3. A sample of features detected on the wind turbine tower and
the surrounding environment.

a way that can be found in adjacent frames, usually tracking
them using vectors that describe the local region around the
identified points consisting the feature descriptors [31]. Most
common features found in literature are Harris corner detec-
tor [32] FAST [33], ORB [34], BRIEF [35], SURF [36]. Fea-
tures are usually denoted by a) pixel locations that correspond
to the local maximum of the first derivative, b) intersection of
edges, c) gradient rate of change and direction.

More specifically, in high altitudes this processing
becomes unreliable, since they cannot detect and extract
distinctive features from the environment due to lack of
feature-rich local surfaces/areas, e.g. in the case of wind
turbines which are simply described by a flat white color. This
makes it difficult for the visual inertial odometry software to
converge its state of movement to the actual state. As depicted
in Figure 3, the detected features are far-away, while there
are no features on the wind turbine tower itself except for
unstable boundary features, and egomotion causes very little
feature movement to the background.

Furthermore, the challenges of the visual sensors, identi-
fied for localization, extends also to other visual processing
tasks, such as 3D reconstruction, where during the performed
experimental trials it was found that the depth and stereo
sensors failed to provide a solid 3D model of the wind
turbine. Additionally, MAVs provide a limited flight time,
which can be affected by external disturbances, such as wind
gusts, payloads and temperature of the environment. This
limits the feasibility of the mission with one MAYV, especially
in large scale structures, such as wind turbines. Moreover,
strong wind gusts cause significant drift of the MAV from
the predefined trajectory and it should be compensated by
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FIGURE 4. AscTec NEO platform equipped with the utilized full sensory
system for the aerial inspection.

the MAV’s position controller. Thus the limited flight time
and the deviation from the trajectory should taken under
consideration or the overall system can fail to perform the
task, or even worse result in a collision with the infrastructure
that might cause damages to both the infrastructure and the
aerial platform.

B. SYSTEM HARDWARE

1) MAV

For the envisioned aerial inspection system for large scale
infrastructures, the Ascending Technologies NEO hexacopter
was utilized as the MAV platform, where in Figure 4 the
overall specifications and the selected sensors are presented.
This platform is capable of providing a flight time of up to
26 min without payload and in ideal conditions, with a max-
imum payload capacity up to 2 kg. For onboard processing,
the belly of the MAV contains an Intel NUC computer with
a Core 17-5557U and 8 GB of RAM that runs Ubuntu Server
16.04 with the Robotic Operatic System (ROS) as its core.
The platform has been equipped with a large set of different
sensors, as depicted in Figure 4, where each component will
be explained in the sequel.

2) LOCALIZATION SYSTEM

Due to the feature-less surface of the wind turbines for visual
odometry and the existence of multipath errors in the GPS
measurements, as was discussed in the prequel, the local-
ization algorithms based on cameras and GPS failed during
the field trials, and thus the proposed localization system
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was based on UWB and IMU fusion. This component is
extensively explained in Section II-D.

3) SENSOR SUITE

The proposed sensory suite for the aerial system included
3 different cameras: a) the Visual-Inertial (VI) sensor, b) the
GoPro Hero4, c) the PlayStation Eye, and an additional laser
range finder RPLIDAR, as depicted in Figure 4. The VI sen-
sor developed by Skybotix AG with a weight of 0.117 kg was
attached below the hexacopter with a 45 ° tilt from the hori-
zontal plane, which is a monochrome, high dynamic range,
global shutter stereo camera with 120° DFOV and with a
resolution of 752 x 480 pixels, moreover it is housing an
Analog Devices ADIS16445 tactical grade IMU. Both cam-
eras and IMU were tightly temporally aligned with hardware
synchronization, while the cameras were operated at 20 fps.
The GoPro Hero4 camera was attached on top of the hexa-
copter facing forward with a weight of 0.2 kg, while it was
capable of recording high-definition video at various resolu-
tions, ranging from 720p to 4000p and at a rate of 15-120 fps,
while during the experimental trials the camera was operated
with a 2K resolution at 30 fps. The Playstation Eye camera
was attached in the middle of the hexacopters housing, facing
forward with a weight of 0.150kg, this camera was operated
at 20 fps and with a resolution of 640 x 480 pixels. The variety
in the specifications of the camera suite was motivated by the
need to test their performance under challenging conditions,
regarding the dataset collection. Thus, the main aim was
to use the captured frames for direct visual inspection by
experts in the structure maintenance, while the data from the
VI sensor and the GoPro camera were also used to provide
3D models of the inspected parts. Finally, RPLDAR was a
low cost laser sensor, which provides a 360° scan field at
a 5.5Hz/10 Hz rotating frequency with guaranteed 8 meter
range. This laser scanner has also been tested during the
experimental trials for enabling the online obstacle avoidance
schemes.

C. COOPERATIVE COVERAGE PATH PLANNER

Towards the vision of the inspector MAV, the theoretical
framework established in [2] is integrated in the autonomous
framework and experimentally tested in the complex case of
a wind turbine structure. The major difference of the appli-
cation scenario is the scale difference between the campus
fountain and a real wind turbine, 10 meters height com-
pared to 60 meters height respectively. Moreover, another
consideration among those two types of infrastructure is the
location, where the fountain is located in a public space at
the university, while the wind turbine is located in a windy
private place without any public access. Briefly, the coverage
scheme is capable of providing a path for accomplishing a
full coverage of the infrastructure, without any shape simpli-
fication, by slicing it by horizontal planes to identify branches
of the infrastructure and assign specific areas to each agent.
Complicated structures have multiple branches e.g. in wind
turbine the base and each blade are considered as branches,

181654

Ai
¢ ©2 ©3
N R \\ z II
~ N . \\ ‘ I[
N \ ]
yr X y
Aik
A
A 14 o
1
L S o
1 - - = - - - -4 >

FIGURE 5. An overview of the mathematical notations used in the C-CCP
algorithm.

where the proposed method identifies these branches and
assign paths to n agents. If the structure has one branch all n
agents are assigned to the same branch, otherwise the n agents
are equally distributed to different branches. Furthermore,
to guarantee a full coverage to facilitate visual processing,
the introduced path planning creates for each agent an over-
lapping visual area. The novel established C-CPP scheme,
in addition to the position references, provides also yaw
references for each agent to assure a field of view, directed
towards the structure surface.

For the use of the C-CPP, initially the general case of an
aerial platform equipped with a limited Field of View (FOV)
sensor was considered, determined by an aperture angle «
and a maximum range 7,,,. Furthermore, @ € R is the
user-defined offset distance (2 < ryqy), from the infras-
tructure’s target surface and AX is the distance between each
inspected plane. A is equal to % tan /2, where the param-
eter B € [1, +00) represents the ratio of overlapping. The
horizontal planes are defined as A;, with i € N. The 3D map of
the infrastructure is provided as a set S with a finite collection
of points, denoted as § = {p;}, and p; = [xi,yi,z,-]T €
R3. Furthermore, Ci(x,y,z) with j € [l,m] are the points
in each branch and m is the overall number of branches in
the structure. The proposed C-CPP method has been entirely
implemented in MATLAB. The inputs for the method are a
3D approximate model of the object of interest and specific
parameters, which are the number of agents (n), the offset
distance from the object (£2), the FOV of the camera (&),
the desired velocity of the aerial robot (V) and the position
controller sampling time (7). The generated paths are sent
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FIGURE 6. Flowchart of the overall C-CPP scheme.

to the NEO platforms through the utilization of the ROS
framework. A graphical overview of this C-CCP scheme is
presented in Figure 6.

D. UWB INERTIAL ODOMETRY FRAMEWORK

UWB Radio Frequency (RF) communication is based on
using a wide band of the RF spectrum, rather than a single
frequency as a carrier wave radio does, which has the tem-
poral representation of a pulse and as a result is sometimes
referred to as a pulse radio. Due to the high center frequency
(3.1 to 4.8 GHz and 6.0 to 10.6 GHz) and the spectral width
of the pulse (499.2 to 1331.2 MHz) the pulses have good
spatial resolution, which makes them ideal for time stamping
RF packets, referred to as messages, with high accuracy.
This property of accurate timestamps, together with good
reference clocks, give the ability to estimate the distance
between two transceivers by exchanging 2 or more packets
and thus it could be considered that the distance estimation is
a byproduct of communication.

Furthermore, one major drawback of a carrier wave based
radio is the problem of multipathing, where the carrier wave
forms destructive interference with itself, effectively reduc-
ing the received signal strength, or introducing an unknown
phase shift. This is a problem that is severely mitigated in
the UWB radio, where the spatial length of each pulse is
small enough for each pulse to be detected uniquely and this
allows the receiver to reconstruct the pulse from multiple
reflections. In a sense, the more the reflections are available,
the stronger the received signal is, in contrary to GPS, which
can give highly misleading measurements when close to tall
structures.

In Figure 4, the UWB node developed by LTU is depicted
when mounted on the MAV. This hardware contains all the
embedded electronics including the microprocessor, 3-axis
accelerometer, 3-axis gyroscope, the UWB RF transceiver
and the antenna to enable the UWB communication and
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localization, while this system is fully self contained and can
directly be deployed for enabling full localization of the MAV
state.

For a proper operation of the estimation framework, it is
needed to have the UWB transceivers with known and fixed
positions, called anchors (while the transceiver on the MAV is
called a tag), spread out in the working area to act as known
positions to measure distances for the later trilateration and
fusion with the IMU, as described in [37]. This configuration
is directly analogous to GPS, while here the ‘satellites”
(anchors) are placed as needed within the operating vol-
ume, conceptually presented in Figure 7. The state vector
of the UWB-Inertial Odometry is formulated as shown in
Equation 1.

>

T
~[pbuhalmnt] emes

where py, uy € R3 refer to the position and velocity in the
coordinate frame of the UWB anchor network, q(Tj, € SO3)
refers to the quaternion of the relative attitude between the
IMU coordinate frame and the UWB coordinate frame. bz),
bl e IR3 are the biases for the gyroscope and the accelerom-
eter respectively.

The UWB-Inertial Odometry framework in this work con-
siders the Error State Kalman Filter formulation proposed
in [38] where the state is re-formulated as a nominal part and
an error part (X = X, ® 5x), where the nominal part integrates
the IMU measurements and the errors are observed through
the UWB distance measurements. The error state is shown in
Equation 2

~ T
5k = [5pT su” 507 sb7 SbZ] e RISXI5 )

where §q = Ll, %86T] is the minimal state representation
using the small angle approximation of the error quaternion.

The error-states are observed through the UWB distance
measurements (Equation 3) which is a function of the nomi-
nal and error states while including the distance between the
IMU and the center of the UWB antenna.

da,, = | (Pn + 8p + R (a4, ® 8Q) pc.; — Pa,,) ”2 S

E. SURFACE RECONSTRUCTION

As stated in the prequel, this work targets the application
scenario of autonomous data acquisition by single or multiple
MAVs, where the objective of the missions is the collection
of high resolution visual data of regions of interest and the
generation of 3D surface models. All available data will be
used afterwards by inspection experts to analyze and detect
possible defects on their assets. To this end, each aerial plat-
form is equipped, but not limited, with a camera to record the
required data from the infrastructure.

During the navigation of the MAVs around the struc-
ture, the raw visual stream is directly available for defect
assessment. Regarding the surface reconstruction, the main
approach to process the data considers a monocular camera
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FIGURE 7. An overview of the UWB localization system, where A, - A5 are
the stationary anchors and N, is the tracked node mounted on the MAV,
while the dashed lines highlight the measured distances.

Structure from Motion (SfM) [39], where the MAVs fly
around covering specific parts, with the aim to collaboratively
process all the captured data into a global representation. The
selection of monocular mapping is driven by the application
scale and the object characteristics. Generally, the perception
of depth using stereo cameras is bounded to the stereo base-
line, essentially reducing the configuration to monocular at
far ranges and to this end, stereo algorithms cannot perform in
cases with large structures and high altitudes. The employed
SfM approach is an offline process that provides a sparse 3D
reconstruction and accurate MAV poses, by using different
camera viewpoints and consists of a massive optimization
process. Finally, the data collected during the navigation mis-
sion is down sampled, since they contain redundant informa-
tion from all the camera frames and there is a need to keep the
resulting outcome within a reasonable time, while the sparse
pointcloud is inserted into Multi View Stereo (MVS) algo-
rithm Clustering Views for Multi-view Stereo (CMVS) [40]
to provide a densely reconstructed 3D model, by clustering an
image set into overlapping view clusters and applying MVS
algorithms.

F. SYSTEM SOFTWARE

The navigation system of the aerial platform is integrated
within the ROS framework, where two main components pro-
vide autonomous flight, namely an UWB inertial odometry
estimator, where a specific implementation of the ESKF is
used based on the Multi Sensor Fusion Extended Kalman
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Filter (MSF) [41] and a linecar Model Predictive Con-
trol (MPC) based position controller [42]. The sensor fusion
node consists of an EKF filter that does tight inertial fusion
from the hexacopter’s IMU during the state propagation and
the UWB range measurements are utilized during the filter
correction step. The outcome of the UWB inertial odom-
etry are the position, orientation (pose), the linear/angular
velocity (twist) of the aerial robot and the IMU biases. This
consists of an error state Kalman filter performing sensor
fusion as a generic software package that has the unique
feature to handle delayed measurements, while staying within
the desired computational bounds. The linear MPC position
controller [42] generates attitude and thrust references for the
NEO'’s predefined low level attitude controller, with the aim
to have separation of concerns, as the high level control and
planning algorithms should have minimal knowledge of the
low level controllers. The overall functional schematic of the
experimental setup is presented in Figure 8 and the system
architecture is described in Algorithm 1.

The C-CPP method, described in Section II-C, has been
entirely implemented in MATLAB. The inputs for the method
are a 3D model of the infrastructure of interest and specific
parameters, which are the number of agents (n), the offset
distance from the object (£2), the FOV of the camera (&),
the desired velocity of the aerial robot (V) and the position
controller sampling time (7). The generated paths are sent
to the NEO platforms through the utilization of the ROS
framework.

Algorithm 1 System Architecture

Input: 3D Structure Geometry S
QOutput: Onboard Visual Data or 3D map
Initialisation:
1: Coverage Planner Path Generation
LOOP Process
2: while Path Z @ do
UWB-Inertial
3:  EKF State estimation X
4:  Onboard actuation commands u generation
5 Record onboard visual data
6: end while
7
8
9

: return LAND

: if LANDED then

. Visual Data Post Processing for 3D map generation
10: end if

Ill. EXPERIMENTAL RESULTS

A. MISSION PRELIMINARIES

The presented aerial platform with the sensor systems
and combined with the developed algorithmic components,
described in previous section, constitutes the autonomous
aerial system. The capabilities of the system have been pub-
licly demonstrated for the case of wind turbine infrastructure
in Sweden, where the mission scenario was two-fold by
targeting the coverage of two separate parts of the structure,
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FIGURE 8. An overview of the proposed aerial system’s software architecture.

TABLE 1. UWB anchor placement locations.

Coordinate Ay Ay Az Ay As
X Om 26.1m 6.6m 19.5m 14.6 m
y Om Om 24.8 m 182m  -21.7m
z Om Om Om Om Om

namely the wind turbine tower and the wind turbine blades.
The requirements for the system were to provide a complete
coverage of the inspected parts autonomously, while storing
all necessary visual data for further analysis. Although, two
agents were used for the specific case presented in this work,
the presented inspection system can operate either in a single
agent or multi-agent mode, depending on the application
needs and the flying limitations of the MAVs.

The initial step for the deployment of the system was to
setup the ground station for monitoring the operations and
fix 5 UWB anchors around the structure, with specific coordi-
nates presented in Table 1, which constitute the infrastructure
needed for the localization system of each aerial platform.
The number of anchors as well as their position has been
selected in a manner to guarantee UWB coverage around
all parts of the wind turbine. From a theoretical point of
view [37], only 3 anchors are needed, however it is common
that one anchor will be behind the wind turbine for the MAV’s
point of view, which gives rise to a minimum of 4 anchors to
compensate, while a fifth anchor was added as redundancy.
The resulting fixed anchor positions provide a local coordi-
nate frame that guarantees repeatability of the system, and
with the significant ability to revisit the same point multiple
times, in case the data analysis shows issues that require
further inspection. An important note for all the cases on the
wind turbine and for the system in operation is that the blades
are locked in a star position, as shown in Figure 7, which
simplifies the 3D approximate modeling of the structure.

In the proposed architecture, all the processing necessary
for the navigation of the MAVs is performed onboard, while
the overview of the mission and the commands from the
mission operators (inspectors) is performed over a WiFi link,
while the selection of WiFi is not a requirement and can be
replaced with the communication link of choice e.g. 4G cellu-
lar communication. The UWB based inertial state estimation
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runs at the rate of the IMU, which in this case was 100 Hz,
and the generated coverage trajectory has been uploaded to
the MAV before take-off, which is followed as soon as the
mission started by the command of the operator. The paths
have been followed autonomously, without any intervention
from the operators on the site, and the collected data have
been saved onboard, while after downloading the mission
data post processing is performed in the ground station or
in the cloud. The data provided by the system can be used
for position aware visual analysis, examining high resolution
frames or they can be post-processed to generate 3D recon-
structed models. The key feature to be highlighted from the
task execution is that any detected fault can be fully linked
with specific coordinates, which can be utilized by another
round of inspections or for guiding the repair technician. The
final, is a major contribution of the presented aerial system,
since this need is the fundamental information that is needed
towards enabling a safe and autonomous aerial inspection that
has the potential to performed the human based ones.

B. WIND TURBINE VISUAL DATA ACQUISITION

For the specific case of wind turbines the C-CCP generated
paths have been obtained with two autonomous agents in
order to reduce the needed flight time, and still be within the
battery constrained flight time of the utilized MAV. However,
due to the limited flight time of the MAVs in the field trials,
the navigation problem has been split into the tower part
and the blade part, where the specifics of each is presented
in the sequel Table 2, while both can be performed at the
same time with more MAVs to reduce the mission time even
further. A common characteristic for both of the cases is that
the generated path for each MAV keeps a constant safety
distance from the structure, while at the same time is keeping
it in view of the visual sensors, and maximizing the safety
distance between agents, which gives rise to the agents being
on opposite side of the wind turbine at all times. The area
in which the field tests were performed is generally of high
wind and while the tower part is protected from wind, owing
to the forest, the blade part is above the tree line. Thus, the
aerial platform have been specifically tuned to compensate
strong wind gusts that were measured up to 13 m/s, where
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TABLE 2. Overview of the system configurations.

Mission Configuration Tower Blade
Number of agents 2 1
Inspection Time 144 sec 206 sec
Safety Distance 7m 9m
Velocity 1m/s 1.2m/s
Starting height 8m 30m
Finishing height 24m 45m

the tunning was targeting the MAV’s controller’s weight on
angular rate that has been increased to significantly reduce
the excessive angular movement.

1) TOWER COVERAGE
In the specific case of the wind turbine base and tower cov-
erage, the generated paths are of a circular shape, as depicted
in Figure 9, which is the result of the constant safety distance
from the structure based on the C-CCP algorithm. As can be
seen from the tracked trajectories the controllers perform well
with an RMSE of 0.5464 m, while at the top of the trajectory
a more significant error can be seen that is induced from the
specific MAV transitioning above the tree-line, where a wind
gust caused the deviation from the desired trajectory where
the MAV compensates and finishes it’s coverage trajectory.
From the depicted reconstruction in Figure 9, it is possible
to understand that the base of the wind turbine, which is
feature rich, provides a good reconstruction result, while as
the MAV continues to higher altitudes, the turbine tower loses
texture due to its flat white color, causing the reconstruc-
tion algorithms to not provide a successful reconstruction.
However, the visual camera streams do have position and
orientation for every frame, as depicted in Figure 9 for some
instances, which allows for a trained inspector to review the
footage and be able to determine if there are spots which need
extra inspection or repairs. For the reconstruction in Figure 9,
the [43] and [39] algorithms have been used, the former for
pre-processing the images for enhance their contrast, while
the latter was the SfM approach for providing the 3D model
of the structure. The reconstruction took place on a PC with
the configuration 17-7700 CPU and 32 GB of RAM, where
the processing lasted approximately 4 hours.

2) BLADE COVERAGE

Compared to the base and tower coverage, for which the
C-CCP algorithm generated circular trajectories, a similar
approach was followed for the base case. This comes from the
fact that this task is performed on the blade with a direction
towards the ground and with the trailing edge of the blade
towards the tower, which would cause the C-CCP algorithm
to generate half-circle trajectories. However, in this case the
same agent can inspect the final part of the tower by merging
both tower and blade trajectories, as can be seen in Figure 10,
while minimizing the needed flight time and demonstrating
at a full extend the concept of aerial cooperative autonomous
inspection. With the available flight time of the MAYV, it is
possible to inspect the blade with only one operating MAYV,
allowing for the safety distance between agents to be adhered
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FIGURE 9. Coverage paths followed by 2 agents with actual (solid) and
reference paths (dashed) together with desired direction, which resulted

in the depicted 3D reconstruction and sample camera frames of the base
and tower to be used by the inspector.

to, by the separation of the inspected parts. However, during
the blade coverage task, the tracking performance of the MAV
was reduced to an RMSE of 1.368 m, due to the constant
exposure to wind gusts and the turbulence generated by the
structure, and as these effects were not measurable, until the
effects are observed on the MAYV, it has reduced the overall
observed tracking capabilities of the aerial platforms. The
second effect of the turbulence was the excessive rolling and
pitching of the MAV, which introduced a significant motion
blur in the captured video streams, due to the fixed mounting
of the camera sensor, introducing the need for adding a gim-
bal for stabilizing the camera and reducing the motion blur.
Finally, as can be seen in the camera frames in Figure 10,
there are no areas of high texture on the wind turbine tower or
blades which caused 3D reconstruction to fail. However, the
visual data captured is of high quality and suitable for review
by an inspector.

IV. LESSONS LEARNED
Throughout the experimental trials for this application sce-
nario, many different experiences were gained that assisted
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FIGURE 10. Coverage path followed by the agent with actual (solid) and
reference path (dashed) together with desired direction, which resulted in
the depicted 3D reconstruction and sample camera frames of the blade to
be used by the inspector. Note the flat white color of the tower.

in the development and tuning of the algorithms utilized.
Based on this experience, an overview of the lessons learned
is provided in the sequel with connections to the different
utilized field algorithms.

A. MAV CONTROL

When performing trajectory tracking and position control
experiments indoors a dedicated laboratory many distur-
bances, which are significant in the field trials, can be
neglected and this is especially true for strong wind gusts
and turbulence caused by the structure. In the case of indoor
experimental trials, the MAV can be tuned aggressively to
minimize the position tracking error, while in the full scale
outdoor experiments this kind of tuning would provide exces-
sive rolling and pitching due to the controllers trying to fully
compensate for the disturbances. However, this has the side
effect of making the movements jerky and oscillatory, and
overall reduce the operator’s trust in the system as it seems
to be close to unstable. Furthermore, in the case that the con-
trollers were tuned for a smooth trajectory following, larger
tracking errors would have to be accepted in the trajectory
following. During the field trials, some wind gust can even be
above the operational limits of the MAV, causing excessive
errors in the trajectory tracking. To reduce the effect in the
outdoor experiments, the controller’s weight on angular rate
was increased to significantly reduce the excessive move-
ment, while in general the tuning of the high level control
scheme, for the trajectory tracking, is a tedious task and it
was found to be extremely sensitive to the existing weather
conditions.

B. PLANNING

The path planner provides a path to guarantee for a full
coverage of the structure, however in the field trials, due to
high wind gusts, there are variations between the performed
trajectory and the reference. Thus, there is a need for an
online path planner for considering these drifts and re-plan
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the path or to have a system that it is able to detect if a specific
part of the structure has been neglected and provides extra
trajectories to compensate. Additionally, due to the payload,
the wind gusts and the low ambient temperature, the flight
time was significantly less than the expected value from the
MAV manufacturer. In certain worst cases, this time was
down to 5 minutes, which is a severe limitation that should
be considered in the path planning and task assignment to
correctly select the correct number of agents for achieving
a full coverage of the infrastructure.

C. SYSTEM SETUP

One of the most challenging issues when performing large
scale infrastructure inspection is to keep a communication
link with the agents performing the inspection, which is
commonly used for monitoring the overall performance of the
system. In this specific case, WiFi was the communication
link of choice, mainly due to its simplicity of directly per-
forming as expected, however it was quickly realized that the
communication link was unstable due to height or occlusion
of the MAV behind the wind turbine tower. To mitigate this
issue, a different communication link should be used, e.g. the
4G cellular networks, and while WiFi can be used to upload
mission trajectories it is not a reliable communication link at
this scale.

Moreover, if it is desirable that the same mission can be
executed again, the positions of the UWB anchors need to
be kept. One possible way to achieve this is to consider the
UWB anchors as supporting part of the infrastructure and
have them permanently installed around the wind turbines,
or to re-calibrate and consider the wind turbine as the origin,
while only compensating for the rotation of the wind turbine
depending on the mission setup.

D. 3D RECONSTRUCTION

Various visual sensors have been tested in the challenging
case of wind turbine. The most beneficial sensor proved to be
the monocular camera system. More specifically, the fixed
baseline for stereo cameras can limit the depth perception
and eventually degenerate the stereo to monocular percep-
tion. The reconstruction performance can also vary slightly,
depending on the flying environment due to visual feature dif-
ferences, therefore a robust and reliable, invariant to rotations
feature tracker should be used. Another important factor for
the reconstruction is the camera resolution, since it poses the
trade off between higher accuracy and higher computational
costs. Additionally, the path followed around the structure
affects the resulting 3D model, which in combination with
the camera resolution can vary the reconstruction results.
Generally, the cameras should be calibrated and it is preferred
to have set manual focus and exposure to maintain the cam-
era parameters for the whole dataset. For SfM techniques
it is required a large motion in rotation and depth among
sequential frames to provide reliable motion estimation and
reconstruction.
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Moreover, a low cost LIDAR solution, that was tested dur-
ing the field trials, failed to operate due to sunlight interfering
with the range measurements. This sensor technology, should
be further examined with more tests since they could be useful
in obstacle avoidance and cross-section analysis algorithms.

E. LOCALIZATION

While UWB positioning was the main localization system in
the presented approach, it should be noted that this should not
operate stand-alone. In the case of infrastructure inspection,
one reference system should not act as a single point of
failure, and it should be the aim to fuse as many sensors as
possible. In the case of a wind turbine, the GPS does not
provide a reliable position until the MAV is at significant
height and the UWB localization system works best at lower
height, hence it should be the aim to fuse both and utilize
the sensor that is performing optimally depending on the
current height. Moreover, neither UWB localization nor GPS
provides a robust heading estimate, and the wind turbine
causes magnetic disturbances that causing the magnetometers
to fail and thus in this case visual inertial odometry is a robust
solution to provide heading corrections since the landscape
can be used as a stable attitude reference.

V. CONCLUSION

This work presents a framework for autonomous aerial visual
data acquisition of a 3D infrastructure by utilizing multiple
MAVs. To address this problem, the developed framework
combined the fundamental tasks of path planning, local-
ization and visual perception. Initially, a geometry-based
path planner was employed for the collaborative coverage
of complex structures, while the navigation of the platform
has been performed through a localization component which
provided accurate pose estimates of the MAVs by using
a UWB-Inertial estimation scheme. Moreover, the defined
task considered compressed visual data streaming and visual
data post processing for 3D model building. The perfor-
mance of the proposed framework has the significant merit
of being experimentally evaluated in realistic outdoor large
scale infrastructure inspection experiments.
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