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ABSTRACT The purpose of this study is to propose a novel hybrid dynamic probability-based failure
analysis technique consisting of dynamic Bayesian discretization (DBD) and stochastic Petri nets (SPNs)
for railway rolling stock (RS) failure analysis. Performing failure analysis and diagnoses for integrated
RS subsystems is challenging and can lead to operational delays affecting fleet reliability and availability.
This paper presents an integrated feature of updative adaptation using DBD methods to analyze prior
continuous and discrete probability data—by means of evidence-based propagation to ascertain posterior
faulty component states and simultaneously allowing for rapid failure notification, detection, and isolation of
multiple RS subsystems using the reachability tree characteristics of SPNs. Unlike other dynamic probability
methods, the DBD-SPN hybrid model presented here reduces computational time and enhances convergence
accuracy using the Kullback–Leibler measure, sequential event analysis, and stable and low-entropy-error
characteristics. In an extensive UK-based RS case study, it was observed that this approach is suitable
for rapid failure notification, detection, and isolation of traction door interlock failure. It is also believed
that the current study represents a useful contribution to the research and technology of hybrid DBD and
SPNs for the failure analysis of a system consisting of multiple subsystems, since its application makes
the difference between being able to evaluate realistically common cause and sequential failure analyses of
complex systems.

INDEX TERMS Adaptive updating, dynamic Bayesian discretization, probability-based modeling, rolling
stock, stochastic Petri nets.

I. INTRODUCTION
The growing complexity of modern engineering systems
and the dynamic behaviors of their individual components
makes it challenging to analyze the multiple interactions of
faults with classical and steady-state probabilistic risk assess-
ment (PRA) methods such as failure mode effects analysis
(FMEA), fault tree analysis (FTA) [1]–[4] and event tree
analysis. This problem is further compounded by the fact that
the subsystems associated with individual complex systems
are furnished with unique software that offers minimal infor-
mation about its underlying source code, diagnostic inaccu-
racies, and internal functionalities [5]–[10].

In order to adequately overcome the limitations and chal-
lenges of engineering failure analysis, other data driven
methods such as Bayesian networks (BNs), stochastic Petri
nets (SPNs), Monte Carlo simulations (MCSs), and Markov
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chains have been proposed by earlier studies [11], [12].
However, most of such dynamic failure models are often
plagued by shortcomings that impede their functionalities
when applied as standalones, which has necessitated the
incorporation of numerous sensors [13]–[16]. While recent
sensor-enhancement initiatives have no doubt improved the
population of detectable faults, the complexity of signal
processing has correspondingly increased [16]. The fusion
of complex signal processing with and already complicated
system architecture immensely raises diagnosis downtime as
well as the possibility of errors. Based on these premises,
it would be beneficial to further investigate the use of error-
based probability features of complex systems to improve the
speed of failure detection and notification [17].

Consequently, the current paper presents a hybrid dynamic
probability-based model that applies DBD and stochastic
SPN. The proposed harmonized method relies on the rela-
tive strengths of the extended DBD method with an adap-
tive updating feature that allows for evidence-based forward
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TABLE 1. Summary of dynamic probabilistic methods.

and backward propagation. Additionally, the presence of a
reachability tree feature for sequential failure analysis of the
SPN provides reliable notification of faults that subsequently
prompt the initiation of appropriate maintenance actions.

II. LITERATURE REVIEW
Dynamic probability-based techniques are powerful mathe-
matical models that are capable of explicitly handling interac-
tions among subsystems, components, and process variables
of complex systems. They represent a more realistic way of
modeling the probabilistic features of complex systems based
on their physical behavior and characteristics, by integrating
different types of system information (both quantitative and
qualitative), including labeled, ranked, discrete real, continu-
ous interval, and Boolean logic data. In instances whereby
multiple failures from different subsystems can potentially
affect overall system performance with a number of different
consequences, the system model requires a representation of
multiple state variables beyond that provided by conventional
failure analysis techniques [17]. Although there are many
different forms and extensions of dynamic probabilisticmeth-
ods for complex failure analysis, including Markov chain,
MCS, BNs, and SPNs, their capabilities have been proven to
be limited when applied standalone methods, as depicted by
Table 1 [19–[35].

Although the individualized forms of the aforementioned
dynamic probability models (shown in Table 1) have been
proven to have various shortcomings, the integration of two
or more of such techniques provides an alternative approach
whereby strength(s) of one tool compensates for the weak-
ness of another. While there have been advances in research
and application of standalone DBD and SPN methods [6],
[27], [31], [33], [36], [41], [39], [45], [61]–[64], there are

very limited research as well as application-based examples
of hybrid DBD-SPN methods for failure analysis of complex
systems. Notable but scarce examples are the investigations
by Fenton et al. [62] into hybrid BNs using dynamic dis-
cretization as well as Fenton et al. [61] that used BNs to pre-
dict software defects and reliability. This therefore iterates the
existence of knowledge gaps in the area of hybrid DBD-SPN
methods for failure analysis of systems that are associated
with multiple subsystems.

While the Markov-Chain-Monte-Carlo hybrid probability
model attempts to simulate various continuous distribution
functions from different sources, the rate of convergence is
generally low with limited capability to handle prior infor-
mation compared to the DBD-SPN hybridization model [22],
[59]. In addition, hybrid SPN-MCSmodels suffer from fixed-
based probability transitions, and the accuracy of the simu-
lations can be affected by the quality of the pseudo-random
numbers generated by the Monte Carlo simulation [32]. Nev-
ertheless, DBD can handle almost any data type. SPNs can
also handle both discrete and continuous data. Based on
this premise, it is envisaged that DBD-SPN hybrid models
could efficiently handle complex systems’ faults with high
accuracies and at reasonable speeds. Although other models
such as SPN-Markov-Chain model can also simulate some
degree of complexity with reasonably good accuracy, they
are less useful for modeling complex problems consisting
of various data forms (such as ordinal data) and are not
acceptable for evidence updating [30]. Similarly, Bayesian-
Markov model is intuitive at handling complex systems with
redundancies and concurrent behavior, they are less suitable
for problems in continuous time, owing to the memoryless
characteristics of the Markovian model. This in turn impedes
their ability to efficiently handle prior information as well
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as seeking stationary solutions [34], [60]. Static hybrid BN-
SPN models suffer from having too many states that have
low probability regions and too few states that have high
probability regions in the results [22], [44], [45]. However,
the DBD-SPN hybrid probability model has a feature that
allows for evidence updating using prior information for both
backward and forward propagations, which can provide an
efficient notification process via the firing of minimum cut
set transitions, including sequential failure analysis through
the reachability tree characteristics. Hence, the primary con-
tributions of this study can be summarized in two parts:

(i) The proposal of an innovative hybrid dynamic DBD-
SPN probability-based model that can predict and diagnose
fault states using multiple data types and sources from multi-
ple subsystems in complex engineering systems.

(ii) The proposed DBD-SPN model allows for real-time
evidence updating while simultaneously providing automatic
notification of the failure status through sequential failure
analysis. These features of the model allow for accurate and
rapid failure diagnoses using known evidence while reducing
the number of false alarms in complex engineering failure
analysis.

Therefore, this paper presents the development of an inno-
vative and enhanced dynamic hybrid probability-based mod-
eling approach using the DBD and SPN techniques to analyze
and diagnose complex engineering systems failures. The
aforementioned objectives of the paper are hereby accom-
plished by organizing the remainder of the paper as follows:

The hybrid probability-based model of DBD and SPN is
described in Section III, while its application on for diag-
nosing complex RS electrical multiple unit (EMU) inter-
lock faults is presented as a case study in Section IV. The
results and discussions are then presented in Section V, while
Section VI offers the concluding remarks.

III. HYBRID DYNAMIC PROBABILITY-BASED FAILURE
MODELING TECHNIQUE
As earlier highlighted, this paper primarily presents a hybrid
dynamic probability based DBD and SPN modeling tech-
nique for analyzing and diagnosing failures caused by mul-
tiple subsystems. The basic concepts of BNs, as described in
the literature [37]–[40], are directed acyclic graphs that rep-
resent a set of variables and their conditional dependencies.
A BNmodel consists of a quantitative component, containing
a direct acyclic graph, and a qualitative component, contain-
ing the prior and conditional probabilities of the BN nodes,
underpinned by a probability theory called Bayes’ Theorem.
The basic concepts of an SPN, as described in the literature
[32], [41]–[43], are a formal graphical and mathematical
modeling technique appropriate for specifying and analyzing
the behavior of complex, distributed, and concurrent systems.
An SPN is a bipartite directed graph represented by the
6-tuple. The DBD component of the model establishes the
fault conditions of multiple subsystems within a complex
system using a posterior probability-based theory with prior
probability information. The SPNs, on the other hand, enable

FIGURE 1. Hybrid dynamic probability-based modeling framework.

a sequence of events or failures to be identified in order to
assess the probability of occurrence of those events or failures
using a reachability tree. The fault conditions are thus realized
through the DBD model using an evidence-based adaptive
updating feature that serves as an input token for the initial
places in the SPN, which in turn provides fault detection,
acknowledgment, and management.

The details of the dynamic probability-based modeling
framework are discussed in this section under the following
assumptions: (i) the component failure rates obey an expo-
nential distribution; (ii) after repairs, the repaired compo-
nent is considered to be as good as new; (iii) the overall
maximum number of iterations required for the DBD model
is 50; (iv) transition firings are considered to be exponen-
tially distributed and immediate. Fig. 1 shows the dynamic
probability-based model, and a flowchart of the proposed
technique is shown in Fig. 2.
Step 1: The proposed dynamic probability-based model-

ing technique begins with the information extraction phase,
in which the data are extracted from various subsystems and
include the design requirements, historical records, reliability
databases, system reliability expert opinions, FMEA sheets,
and environmental data (temperature, pressure)—in the form
of component failure rates. Because the collected data
are generally in different forms—discrete, continuous, and
alphanumeric or imprecise, vague, and limited in nature—
the obtained data are fuzzified into the node data type using
node probability tables (NPTs). More specifically, the failure
rate data are assigned specific continuous distributions, and
discrete parameters are classified as ranked data or Boolean
logic. The data are then used to construct the initial BN
structure of the subsystem considering all component inputs
that lead to subsystem failure.
Step 2: As soon as the input variables, nodes, and NPTs

are known, the BN is converted to an intermediate struc-
ture for dynamic discretization, called a junction tree (JT)
[44]–[46], which provides higher speed and accuracy than
other static discretization approaches [43]–[49]. An initial
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FIGURE 2. Flow chart of the proposed dynamic probability-based
modeling technique.

discretization, 9(0)X , is then assigned to all continuous vari-
ables in the JT.
Step 3: The discretized conditional probability density for

each node in the NPT is estimated using the given initial
discretization for each node,9(0)X , and evidence is propagated
through the BN structure. For example, if X is a continuous
numeric node in a BN, its range is denoted by hypercube �x
and its probability density function (PDF) is denoted by fx .
The discretization approximates fx by first partitioning �x
into a set of intervals 9x =

{
wj
}
, then defining a local

constant function f̄x for each of these partitioned intervals.
This task involves finding an optimal discretization set 9x =

{wi} and optimal values for the discretized probability density
function f̄x . f̄x dynamically searches�x for the most accurate
specification of the high-density regions (i.e., around the
modes) given the model and evidence by iteratively calcu-
lating a sequence of discretization intervals in �x.
Step 4: The BN is queried to obtain a posterior marginal

density for each node, and the intervals are split according to
the highest entropy error in each node. At each stage in the
iterative process, a candidate discretization, 9x , is tested to
determine whether the resulting discretized probability den-
sity function, f̄x , has converged to the true probability density
function, fx , within an acceptable degree of precision. Thus,
at convergence, fx can be approximated by f̄x . The relative

entropy, or Kullback–Leibler (KL) measure, is used to deter-
mine the convergence rule for the discretized function, fx .
The KL measure is defined as the distance between two
density functions f and g, expressed as a metricD of the error
introduced by approximating the true (but unknown) function
f (x) using some approximate function g(x) [44]–[46], and is
calculated by:

D (f ‖ g) =
∫
s
f (x) log

f (x)
g (x)

(1)

In order to approximate the true function fx , a bound on
the KL distance (Ej) based on an estimate of the relative
entropy error between a function f and its discretization f̃
(determined using the mean f̄ , maximum fmax , and minimum
fmin, probability density values g, in the discretization interval
wj) can be estimated as:

Ej=
[

fmax− f̄
fmax − fmin

fminlog
fmin
f
+

f̄ −fmin
fmax − fmin

fmax log
fmax
f

] ∣∣wj∣∣
(2)

where
∣∣wj∣∣ denotes the length of the discretization interval

wj and the probability density values f̄ , fmax , and fmin are
approximated using the midpoint of an interval and its points
of intersection with neighboring intervals.
Step 5: Using known evidence, such as the symptoms of

component failure, the lack of known parameter reading, and
abnormalmeasurements, the conditional probability densities
of the model are iteratively recalculated by propagating the
existing BN with known evidence to obtain the marginal
probabilities. The intervals with the highest entropy error are
then split until the model converges to an acceptable level of
accuracy as determined by two convergence stopping rules:
the stable-entropy-error (SEE) stopping rule and the low-
entropy-error (LEE) stopping rule, both of which apply at the
node level [43]–[49]. Therefore, during calculations, some
nodes will stop discretizing when a stopping rule is triggered,
whereas others will continue. However, the maximum num-
ber of iterations the entire algorithm is allowed to run can be
determined using the beta distribution function to estimate the
number of iterations (i.e., samples) based on the confidence
level and reliability target. The SEE stopping rule observes
three consecutive iterations (k) to determine whether the
entropy has converged to a stable value within some limiting
region defined by (1− α, 1+ α), and is expressed as:

SEE

=

{
1− α ≤

S(l−k)X

S(l−k+1)X

≤ 1+ α∀k = 1, 2, 3, l = 1, ..,m

}
(3)

where m is the maximum number of iterations and S(l)X =∑
W

jEj is the approximate relative entropy error. The LEE

stopping rule determines whether a particular node has
breached an absolute entropy error threshold, and is given by:

LEE =
{
SXi < β

}
(4)
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The stopping rule determines the maximum number of iter-
ations for the model m, which cannot be exceeded; the algo-
rithm will stop after m iterations, regardless of whether the
nodes are sufficiently accurate. The maximum overall num-
ber of runs or iterations m for the model can be determined
by beta distribution logic based on the desired confidence and
reliability target levels, as follows [50]:

m =
In (1− confidence level)

In (reliability)
(5)

Note that the confidence level and reliability target in (5)
are established during initial testing to determine the optimal
number of maximum iterations for which the model may
run. The higher the confidence and reliability target levels,
the higher the number of iterations required.
Step 6: The SPN model for failure notification and detec-

tion initiates when the output from the DBD model con-
vergence rule completes the iteration process and delivers
the output (the faulty component state). The faulty com-
ponent state serves as an input token to initialize the SPN
process through a sequence of failure and reachability tree
analyses. The SPN process is modeled as a 6-tuple directed
bipartite graph, whereN =

(
T ,M ,Fi (τ ) ,QMiMj (τ ) , fij,E

)
,

in which the parameters can be defined as T = {t1, t2, . . . , tn}
is a set of transitions, each of which represents an event or
action that can be fired with a firing rate λi corresponding
to transitions ti, i = 1, 2, . . . , n; M = {M1,M2, . . . ,Mn}
is a set of markings (places) in a reachability tree formed
by the outputs from the DBD; Fi(τ ) is a probability dis-
tribution function of the time interval τ between the time
at which transition ti, i = 1, 2, .., n will be able to fire
and time at which transition ti is completed; QMiMj (τ ) is a
transitional probability function expressing the probability
that markingMi changes toMj because transition tj fired in an
amount of time less than or equal to τ ; fij is the transitional
probability that a process starting in marking Mi will be in
Mj after m additional transitions in a given sequence; and

E =
{
EMiMk , . . . ., EMhMj

}
i 6= k 6= h 6= j is a sequence of

events in which EMiMj indicates that marking Mi changes to
markingMj and |E| = n where n is the number of transitions
[32], [41]–[43].

The reachability tree (Fig. 3) describes the dynamic behav-
ior of the system determined by the outputs of the DBD
model and shows all possible markings and firings at each
marking. Thus, based on the markings (input places with
tokens coming

from the DBDmodel), the possible consequences of failure
and possible sequences of failure, including the probability of
occurrence of a given sequence of failures, can be computed.
Step 7: Establish the transition firing times. The transition

firing times Fi (τ )are considered to be exponentially dis-
tributed, therefore, the probability distribution function can
be assumed as:

Fi (τ ) =
∫ τ

0
λie−λixdx (6)

FIGURE 3. Example of a reachability tree.

where τ is the transition firing times and λ the firing failure
rate. Three possible branching scenarios can be considered
when evaluating a reachability tree [51]–[53]. Scenario 1 con-
siders situations in which there are no branches. Therefore,
the amount of time required to fire transition tl is less or equal
to τ , the transitional probability that marking Mi changes to
Mj in the general case can be written as follows:

QMi,Mj (τ ) = Fl (τ ) =
∫ τ

0
λie−λixdx (7)

In Scenario 2, there is only one branch. In this case, there
is uncertainty regarding which transition should be fired
to compute the probability of firing a specific transition.
Therefore, the probability that transition tl is fired given that
an alternative transition tk is not fired up to the time τ is
estimated. The probability that transition tk is not fired up to
the time τ is given by F̄k = 1−Fk . Therefore, the transitional
probability is given by:

QMi,Mj (τ ) = F1 (τ ) =
∫ τ

0
F̄kdF l (τ ) =

∫ τ

0
λ1e−(λ1+λk )xd

(8)

Fig. 3 presents the alternatives to either fire transition t1 or
transition t6. The probability that marking M1 will change to
M3 or M2 is respectively given by:

QM1,M3 (τ ) =

∫ τ

0
F̄6dF2 (τ ) =

∫ τ

0
λ2e−(λ2+λ6)xdx (9)

QM1,M2 (τ ) =

∫ τ

0
F̄2dF6 (τ ) =

∫ τ

0
λ6e−(λ2+λ6)xdx (10)

. However, in Scenario 3, the number of branches is greater
than one. In this case, the probability that transition tl has
been fired given that the alternative transitions tl , tk , . . . , tn
are not fired up to time τ is estimated. Thus, the transitional
probability QMi,Ml (τ ) that markingMi changes toMj is:

QM1,M2 (τ ) =

∫ τ

0
λτ e−(λl+λk+...+λn)xdx (11)
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Based on Scenarios 1, 2, and 3, the following transi-
tional probabilities for all possible changes of markings are
obtained as:

QMi,Mj (τ )

=


Fi (x) =

∫ τ
0 λie

−λixdxScenario1∫ τ
0 F̄k(x) dF i (x) =

∫ τ
0 λie

−(λi+λk )xdxScenario2∫ τ
0 λτ e

−(λl+λk+...+λn)xdxScenario3
0whereMi = Mj

(12)

Step 8: The next step is to compute the probability of occur-
rence of sequential events assuming a stochastic (or random)
process. A stochastic process is a family of random variables
{X (t) : t ∈ A} defined over a given probability space indexed
by parameter t , where t varies over the index set A. The values
of the random variables are called states. The set of possible
states defines the state space S = {s1, s2, . . . , sn} [54]. Based
on this definition of a stochastic process, the probability fij
for all i, j ∈ E is given by:

fij = P {Xn = j,Xn−1 6= i,Xn−2, . . . ,X1 6= j|X0 = i} (13)

Consider a process that is observed at discrete time points to
be in any one of the possiblemarkingsM , i.e.,M1,M2,. . . ,Mn.
After observing the state of the process for a period of time
T (i.e., assuming a finite time), a transition is fired based
on output from the DBD model. Provided that the process
is in marking Ml at time n when transition t is chosen,
the next marking of the system is determined according to the
transition probabilities QMl ,Mj (t). Based on this description,
if Mn denotes the marking of the process at time n, then:

P {Mn+1= j |M0, t0,M1, t1, . . . ,Mn= i, tn= t}=QMl ,Mj (t)

(14)

Therefore, the transition probabilities are functions of only
the present marking and the subsequent transition that can be
fired to reflect the actual state of the system. Thus, given a
sequence of events E , the probability fij can be computed as:

fij =
∏j

i∈E
QMl ,Mj ,wherei, j,∈ E (15)

Equation (15) is derived by using the following first principle.
Let X = {x1, x2, . . . , xn} be the state vector indicating the
sequence of transitions as follows:

xi =

{
0, if transitionihas failed to fire
1, if transitioni is fired

(16)

Let the structural function φ(x) be:

φ(x) =


0, ifthesequenceoftransitionsisnotfired
whenthestatevectorisX

1, ifthesequenceof transitionsisfired
whenthestatevectorisX

(17)

A sequence of transitions is fired if all transitions in the
sequence are fired; thus, φ(X ) assumes the value 1 when

x1 = x2 = . . . = xn = 1, and 0 otherwise. Therefore:

φ(X ) =

{
0, if the reexistanisuchthatxi = 0
1, iftherexi = 1foralli = 1, . . . , n

(18)

where:

φ (X) = min {x1, x2, . . . , xn} =
n∏
i=1

xi (19)

Step 9: The next step is to estimate whether the transition
probabilities fij have been fired. The memoryless property of
the exponential distribution means that the transitions fired
according to (18) are independent of each other, as follows:

fij = P [φ (X) = 1] = P
[∏n

i=1
xi = 1

]
=

∏n

i=1
p [xi = 1] =

∏n

i=1
pi (20)

where pi is the probability that transition ti is fired; thus,
pi = QMi,Mj . The probability that a process will make a state
transition to state j (notification and detection), given that the
DBD model has an input token beginning from state i, can
then be estimated as:

Rij = 1− Fij,Fij =
∑h

n=1
f nij (21)

where h is the number of possible state transitions from state
i to state j. Given the underlying stochastic nature of the
process, it is not possible to compute the exact duration of
the stay in state j(τj), i.e., the duration of time between when
transition ti, i = 1, 2, . . . , ncan fire and the time at which
transition ti is completed. Therefore, some approximation
is required to compute the likelihood that the system will
reach the failed state by acknowledging the failed status after
a certain time. Accordingly, the procedure for finding the
approximated duration of the stay in state j consists of two
steps. The first step is to normalize all firing rates of the
transitions in a given sequence by summing them together,
then dividing each by the sum to obtain the result (wj). In the
second step, the duration of stay, τj, for each transition is
computed as τj = wj × T , where T is the total time.
Step 10: Finally, an accept/reject failure notification is pro-

vided. If accepted, then the system stops; otherwise, the iter-
ations can be initiated in step 5 to run the hybrid dynamic
probability-based model again with new known evidence (in
the form of fault symptoms). Maintenance and repair actions
can be implemented upon acknowledgment of the failure
notification.

IV. CASE STUDY OF ROLLING STOCK INTERLOCK
FAILURE DIAGNOSIS USING THE PROPOSED MODEL
The traction door interlock circuit is a major safety feature of
all passenger train RS operating on the United Kingdom rail
network. It ensures that all external train doors (either pow-
ered or slam) are correctly closed and locked before the driver
can gain tractive power. The traction door interlock system is
an electrical circuit of microswitches fitted to each external
door subsystem (EDS) and connected in series.When an EDS
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FIGURE 4. Local EMU door control equipment interface with traction
circuits [56].

is closed and locked, the microswitches complete the traction
interlock circuit locally; consequently, all of the switches for
each EDS on the train must be correctly operated in order
for the driver to gain tractive power. If this traction power
circuit is broken while the train is not at a station in response
to the opening of an EDS, a microswitch fault, or a passenger
operating an emergency egress device, the train brakes will
be automatically applied [55].

The failure of the traction door interlock could result in a
serious accident, such as a person falling out of a moving train
at high speeds. In fact, the UK Rail Accident Investigation
Branch (RAIB) reported an accident in which a person was
trapped in a train door and dragged at Jarrow station due to
a fault related to the traction door interlock circuit [56]. This
incident, along with other reported interlock incidents, led the
UK Rail Safety and Standards Board (RSSB) to implement
measures against train movement and provide for immediate
withdrawal from servicewhen a traction door interlock circuit
fault occurs [57]. Maintenance and repair of a door traction
interlock often requires the maintenance engineer to replicate
and isolate the cause of the fault, which can be challenging
for trains already in service. Furthermore, since trains with
traction door interlock issues are typically withdrawn from
service—as per RSSB guidelines [57]—interlock faults play
a significant role in the public performance measure (PPM),
reported by the UK Office of Rail and Road (ORR) to quan-
tify the number of delays and fleet cancellations. According
to the ORR, in the fourth quarter of the 2019–2020 fiscal year,
train cancellations were 3.8% worse than in the same quarter
of the previous year, and delay minutes (i.e., delays of three
minutes or more) increased by 21%, resulting in an average
PPM of 83.8% due to technical fleet failures [57].

A. BACKGROUND OF THE CASE STUDY
The case study evaluated in this research was conducted
on EMU rolling stock from an intercity train operator in
the UK to improve failure isolation and notification during
fault-finding, and aid in-situ repair and maintenance efforts
to reduce delay minutes (i.e., train delays three minutes or

more) and cancellations, thereby improving the reliability and
availability of the RS fleet.

These efforts are expected to reduce penalty charges and
prevent the need to withdraw RS from service, thereby
improving the PPM and operator reputation while reducing
operational costs. To preserve the commercial confidentiality
of sensitive information, the name of the operator and the
collected data are not presented in this paper.

An example of the interface between the local door con-
trol equipment and the traction circuit is shown in Fig. 4.
In this evaluation, only the critical components of the EDS—
the electronic door control unit (EDCU), limit switch (i.e.,
microswitch), drive mechanism, and power supply—are con-
sidered. The EDCU provides overall control and monitoring
of the closing and opening of each passenger door. The limit
switch detects when the door is in its closed and locked
positions. The power supply provides power to the drive
mechanism that opens and closes the door.

The traction subsystem (TS), with which the door inter-
locks the interface, has many components; however, the three
most critical fault-contributing components are the motor
converter, brake resistor, and traction motors. The motor
converter converts the direct current link voltage to a variable
voltage, variable frequency supply for the traction motors.
The brake resistor unit provides forced ventilation to cool the
motor converter; the TS is shut down when its temperature
sensor detects that the maximum allowed temperature has
been reached. The traction motor consists of a three-phase,
four squirrel-cage asynchronous motor (specially designed to
reduce pulsating torque, losses, and the noise levels caused by
the converter supply) that provides the tractive force to move
the train.

Fig. 5 shows a schematic of the three-car EMU evaluated
in this study. The two driving motor cars of the EMU have
two TSs per car. Each TS is connected by an OR gate to
its three main components (motor converter, brake resistor,
and traction motor). The failure of any of these components
could, therefore, lead to a complete TS failure, and thus, to a
train interlock failure. Each traction motor is redundant and is
accordingly connected by an AND gate. There are four EDSs
installed in each car, but the trailer car of the EMU has no
TS, meaning that there must be a hardwired connection from
all the EDSs directly to the train interlock line. Each EDS
is connected to all four of its components (i.e., EDCU, limit
switch, drive mechanism, and power supply) via an OR gate.
Therefore, the failure of any of these components could lead
to the complete failure of the EDS. Tractive power can thus
only occur if the traction door interlock is achieved locally
and between all three EMU cars at the same time.

B. CASE STUDY DATA AND INFORMATION
The analysis began with data and information extraction to
determine the prior probabilities for the primary event nodes
of the critical components of both the EDS and TS using
a criticality analysis. The root nodes for the components
were defined to establish the node data types as continuous
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TABLE 2. Failure rate and prior probability computations for dynamic discretization.

FIGURE 5. Schematic of the three-car EMU.

interval, discrete real, Boolean logic, ranked, and labeled. The
time-to-failure, τ , for components with continuous intervals
assuming an exponential failure distribution function λ at
operation time t was evaluated as e−λt . Under a constant
failure rate assumption, the NPTs for the components with
continuous interval nodes, such as the EDCU, drive mech-
anism, traction motor, brake resistor, and motor converter
were computed as shown in Table 2. The temperature sensor
was represented as a Boolean logic data type residing in
either the ‘On’ or ‘Fail’ state. The BNs containing the JT
structures of each node of the EDS and TS components
were then constructed. The next step was to recalculate the
NPT approximations (i.e., marginal posterior probabilities)
over the current discretized domains for each component
node. For the discrete variables (Boolean algebra), this was

accomplished by propagating the discrete BN of each node
to compute the approximate marginal posterior probability
density functions, fx , using (1)–(4).
Other synthetic nodes such as the EDS evaluation node

(Eva), EDS car type failure, overall EDS failure, traction
motor evaluation (TM_Eva), continuous traction evaluation
(Cont_Eva), car type traction subsystems, reliability states,
and overall TS failure were introduced as child nodes to allow
for the mixture of continuous interval and Boolean logic
nodes.

V. RESULTS AND DISCUSSION
The traction door interlock failure analysis was conducted
using Bayesian network software for risk analysis and
decision-making by AgenaRisk [58]. Table 2 summarizes the
NPT and prior information used for each node. To evaluate
the use of the proposed DBD-SPN modeling technique,
we considered two test scenarios: (i) in Test Scenario
1, there was no interlock failure (normal system opera-
tion) after an operation time of t = 500 h, and (ii)
in Test Scenario 2, the limit switch, power supply for
the DMC1 EDS, and temperature sensors of DMC1 and
DMC2 were considered to have failed after an operation
time of t = 500 h.
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A. TEST SCENARIO 1 (NORMAL OPERATION, NO
FAILURE REPORTED)
The hybrid probability-based dynamic model was analyzed
to establish whether a failure occurred in either the EDS
or TS components that could contribute to a train interlock
failure. The high-level DBD node model configurations for
the EDS and TS based on the three EMU cars are shown in
Figs. 6 and 7.

FIGURE 6. EMU high-level DBD for EDS node model configuration.

FIGURE 7. High-level DBD for TS node model configuration.

In Test Scenario 1, neither the EDS nor TS reported any
failures during an operation time of t = 500 h. Given the
evidence (no failures), the time-to-failure for the binary child
node (i.e., the evaluation of Eva) was established to be greater
than the operational time t; thus, it was considered to be
active. With Eva active, it is expected that the EDCU and
drive mechanism were also functional. Furthermore, in light
of this evidence, the limit switch and power supply were
considered to be ‘On’. All the EDSs in the three-car EMU
had the same conditions. Similarly, considering the absence
of symptomatic evidence, the binary child nodes of TM_Eva
and Cont_Eva were considered active. Additionally, the tem-
perature sensor and reliability states were considered to be
‘On’, meaning that the TS on DMC1 was considered to be

functional. The model was run for 50 iterations, and the
resulting probability risk graphs are shown in blue for the
EDS and TS in Figs. 8 and 9, respectively. It can be seen
that in the case of normal operation, represented by Test
Scenario 1, after operating for 500 h, the EDS and TS are ‘On’
with overall posterior probabilities of 84.33% and 73.406%,
respectively. Therefore, there was no failure from the DBD
to send as a token to the SPN, and the SPN sequence failure
analysis thus provided no notification.

B. TEST SCENARIO 2 (NEW EVIDENCE: EDS - FAULTY
LIMIT SWITCH AND POWER SUPPLY, TS - FAULTY
TEMPERATURE SENSORS)
In Scenario 2, the EDS limit switch and power supply of car
DMC1 were considered faulty during an operation time of
t = 500 h, as were the temperature sensors for the TS on
both DMC1 and DMC2. Given this new evidence, the limit
switch was updated to the ‘Fail’ state, including the power
supply node for car DMC1. The prior information for the
primary nodes and binary nodes remained the same as in
Test Scenario 1 in Section V.A, including the posterior PDF.
Considering the new evidence, the TS temperature sensors in
both DMC1 and DMC2 were updated to the ‘Fail’ state. The
model was run for 50 iterations, and the resulting probability
risk graphs are shown in green for the EDS and TS in Figs.
8 and 9, respectively. The resulting posterior failure density
function for both the EDS and TS during the operation time
of t = 500 h was evaluated as 100% ‘Fail’. Therefore,
the failure of either or both the EDS and TS resulted in a train
interlock failure, which initiated the SPN process for failure
notification.

C. FAILURE NOTIFICATION USING THE SPN FROM TEST
SCENARIO 2
With both subsystems failing in Test Scenario 2, the failure
notification sequence was initiated based on the resultant pos-
terior PDF considered a token in the EDS and TS. An abstract
of the SPN model was constructed (Fig. 10) with two tokens
in places P1 and P2 after an operation time of t = 500 h with
EDS and TS failures. As previously indicated, the failure of
either or both the EDS and TSwill always lead to a train inter-
lock failure. The firing rates (failure rates) of the transitions
for the EDS and TS were evaluated using historical failure
data for λEDS and door λTS with the values of 0.00006 and
0.00003, respectively. The immediate failure transition λ3
was considered to be 0.01.

To identify the events and compute the probability of
occurrence of the sequence of transitions leading to a traction
door interlock failure, the reachability tree of the SPN model
was constructed (Fig. 11) to include four markings: M1,M2,
M3, and M4. Given the failure scenarios for both the EDS
and TS, the initial marking M1 on the reachability tree
could be modeled by firing all possible transitions enabled
in all markings reachable from M1. The list of markings
for the SPN shown in Fig. 11 is presented in Table 3,
in which the markings that show a value of 1 in place P3
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FIGURE 8. Expansion of external door subsystem (EDS) for 3-car EMU showing test Scenario 1 (normal operation, blue) and Scenario 2 (evidence of
faulty state, green) based on Fig. 6.
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FIGURE 9. Expansion of traction subsystem (TS) for 3-car EMU showing test Scenario 1 (normal operation, blue) and Scenario 2 (evidence of
faulty state, green) based on Fig. 7.

represent the train interlock failure indicated by either or both
EDS and TS failures. The marking for the train interlock

failure is indicated byM3, and the sequence of events leading
to this failure can be determined by transitions (i.e., minimum
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FIGURE 10. SPN model of the EDS and TS train interlock failures.

FIGURE 11. Reachability tree of the SPN model shown in Fig. 10.

cut sets) T1, T2, or both. In the case of a train interlock failure
related to the EDS, transition T1 fires, and after maintenance
repair is conducted, the immediate transition T3 will equally
fire to reset to normal working conditions. Thus, the transition
sequence of the train interlock failure due to EDS failure was
determined by T1T3.
Similarly, the transition sequence of train interlock failure

due to TS failure was established as T2T3.
Now, suppose that based on Test Scenario 2, the temper-

ature sensor of the TS failed during the operation time at
t = 500 h, causing a train interlock failure. The transitional
probabilities can be computed by identifying the sequence
of events E =

{
EMiMk , . . . ., EMhMj

}
i 6= k 6= h 6= j

for transition T2T3 as E =
{
EM2M3, EM3M4

}
. Similarly, the

transitional probabilities for a failed EDS during the operation
time is E =

{
EM1M3, EM3M4

}
. The next step is to compute

the approximate time interval between the time at which the
subject transition in the sequence can fire, and the time it was
fired. The approximated duration of the stay in state j was
computed by first normalizing all transition firing rates by
summing all firing rates, then dividing each by this sum to
obtain the weight wj, as shown in Table 4. Then, the approx-
imate time in which the transition could fire was computed
by τJ : τJ = wj × T , where T = 500 as shown in Table 4.
Next, the transitional probabilities of train interlock failure
occurring due to a failure of the EDS, TS, or both were

TABLE 3. List of markings for the SPN model shown in Fig. 6.

TABLE 4. Approximated duration of stay and firing transition time.

TABLE 5. Probabilities of transferring from marking i to marking j .

computed using (6)–(11), as follows:

d11 = QM1M3 (τ ) =

∫ τ1

0
λEDSe−(λEDS )xdx = 2.65189E − 04

(22)

d12 = QM2M3 (τ ) =

∫ τ2

0
λTSe−(λTS )xdx = 3.31496E − 05

(23)

d13 = QM3M4 (τ ) =

∫ τ3

0
λ3e−(λ3)xdx = 1.21558E + 03

(24)

where the superscriptk in dki indicates the index of transition
events and the subscript i indicates the number of events in
E , which was previously defined as E =

{
EM1M3, EM3M4

}
and

{
EM2M3, EM3M4

}
for an EDS and TS failure, respectively.

This indicates that E has two events in either an EDS and TS
failure; thus, i = 1, 2. Therefore, the sequence probabilities
f nij that began in marking i and developed into an interlock
failure in marking j after n transitions in a given sequence are
listed in Table 5.

The probability that the train interlock failure notifica-
tion process could fail in 500 h was estimated using (20)
as
∑2

n=1 f
n
= 0.36266. In light of the new evidence pro-

vided in Test Scenario 2, the probability of successfully
detecting a train interlock failure caused by EDS and/or TS
components during an operation time of 500 h was estimated
to be 0.63734 ≈ 64%.

This result demonstrates that the hybrid DBD-SPN
dynamic probability-based model provides an effective and
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rapid failure analysis and diagnosis model that can isolate
and subsequently notify operators of the cause of a failure in
a complex system such as that present in RS. The efficacy
and precision of the model could be further improved by
adding more components and performance nodes that con-
tribute to subsystem failures in the Bayesian discretization
model. However, a large number of nodes can adversely affect
the processing speed and necessitate more iterations of the
model. Therefore, a criticality analysis should be robustly
implemented to identify the most critical components and
functional parameters.

Additionally, the SPN notification accuracy could be
improved by adding more firing transitions to minimize false
alarms during the failure notification sequence. The more
transitions added to the sequence, the lower the probability
of sequence failure Fij and the higher the probability of noti-
fication process success Rij. However, the use of additional
transitions leads to disadvantages such as increased cost and
computation time to determine the transitional probabilities
of the failure sequences.

VI. CONCLUSION
The novel DBD-SPN hybrid dynamic probability-based
model for failure analysis and diagnosis for rolling stock
systems was introduced in this study. It was shown that, based
on the enhanced dynamic adaptive updating feature of DBD
and the reachability tree characteristics derived from the SPN,
complex engineering failures can be detected, isolated, and
resolved in light of system evidence, such as symptoms, and
that the sequences of the failures—including the minimum
cut sets—can be identified.

Therefore, the proposed hybrid dynamic probability-based
modeling technique provides a dynamic and comprehensive
approach to isolating intermittent failure conditions such as
common cause failure and sequence of failure events without
physically simulating the failure scenarios of the physical
complex engineering system via evidence-based forward and
backward propagation. In this manner, the DBD-SPN tech-
nique establishes the true state of the subsystem conditions
while minimizing false alarms through rigorous sequential
notification and acknowledgment processes. The difference
between the proposed hybrid dynamic probability-based and
traditional fault-finding methods lies in its ability to perform
real-time fault detection, notification as well as simultane-
ously allow for isolationwithout physically disassembling the
system. Additionally, the unique characteristics required for
identifying the sequential occurrence of failures via notifi-
cation and adaptive evidence updating makes the proposed
DBD-SPN modeling technique robust and versatile for mul-
tiple failure diagnosis and detection in most industrial appli-
cations that are characterized by discrete and continuous data.

Just as is the case with all engineering failure analy-
sis approaches, the accuracy of the proposed DBD-SPN
approach reasonably relies on the quality and quantity of
data and information fed into it, which may sometimes pose
a limitation for novel systems that do not have historical

data. However, as such information become available over
time, the accuracy of earlier analysis can be continuously
refined. While the results obtained from the case study
provided some convincing findings as to the efficacy of
the DBD-SPN model, considerable effort remains neces-
sary to obtain quality component, subsystem, environmental,
human and functional data describing a complex system such
as the RS system to which the proposed hybrid dynamic
probability-based modeling technique was applied. Owing
to the historical magnitude of human contribution to faults
and errors within most safety-critical engineering operations,
future studies are planned towards incorporating human relia-
bility analysis concepts into the current model under specific
human performance factor conditions that are related to repair
and maintenance operations.
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