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ABSTRACT The noise separation from seismic data is of significant importance in geophysics. In most
cases, the random noise always overlaps the seismic reflections over time, which makes it challenging to
suppress. To enhance seismic signal, we propose a robust noise suppression method based on high-order
synchrosqueezing transform (FSSTH) and robust principal component analysis (RPCA). Firstly, the noisy
seismic data is transformed into a sparse time-frequency matrix (TFM) using the FSSTH. Then, the RPCA
algorithm is employed to decompose the sparse TFM into a low-rank matrix and a sparse matrix that can
be used to depict the useful signal and noise, respectively. Finally, the denoised signal can be obtained by
back-transforming the low-rank matrix to the time domain via the inverse FSSTH.We utilize a synthetic data
and two field datasets to demonstrate the robustness and superiority of our method, and compare with the
conventional denoising algorithms such as f −x denconvolution and f −x singular spectrum analysis (SSA).
The obtained results indicate that the proposed method is capable of achieving an excellent tradeoff between
random noise suppression and seismic signal preservation.

INDEX TERMS High-order synchrosqueezing transform, robust principal component analysis, low rank
matrix, noise suppression.

I. INTRODUCTION
During the field data acquisition, seismic signal is always
accompanied by a great deal of noise. Random noise is one
of the most common types of the seismic noise, which is
often characterized by random oscillations and covers the
seismic reflections throughout the time [1]. This brings great
difficulties to the follow-up analysis and interpretation of
seismic records. Therefore, improvement of the signal-to-
noise ratio (SNR) is the primary task in the processing of
geophysical data [2]–[4].

In recent decades, a large number of methods have been
introduced for seismic random noise reduction. The widely
used algorithm is the prediction-based method such as f − x
deconvolution [5], t−x predictive filtering [6], non-stationary
predictive filtering [7], and forward-backward prediction
approach [8]. Such techniques take full advantage of the
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predicable property regarding seismic signal along spatial
direction to design prediction filter for identifying the use-
ful signal and the noise. Decomposition based algorithm
is another type commonly used noise suppression method,
which usually decomposes the noisy seismic data into a series
of components and then the signal and noise can be sepa-
rated based on their time and frequency difference. Empirical
mode decomposition (EMD) [9], [10] and its extensions, e.g.
ensemble empirical mode decomposition (EEMD) [11], com-
plete ensemble empirical mode decomposition (CEEMD)
[12], [13], have been successfully applied to seismic noise
reduction [14]. Variational mode decomposition (VMD) [15]
was first proposed by Dragomiretskiy and Zosso as an alter-
native to replacing EMD because of its robustness to sam-
pling and noise, and it has been used for noise removal
in [16]. Regularized non-stationary decomposition is another
decomposition algorithm on the basis of a solid mathemat-
ical model [17]. Sparse transform method is based on that
fact the seismic data can be compressed in a transformed
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domain, in which the useful signal is delineated by high-
amplitude coefficients while the noise is represented by low-
amplitude ones. Thus, a thresholding function can be applied
in the transformed domain in order to remove those low-
amplitude coefficients corresponding to noise, then the rest
of coefficients are transformed back to the time domain to
reconstruct the useful signal. Widely used sparse transforms
consist of Fourier transform, curvelet transform [18], [19],
S-transform [20], [21], seislet transform [22], [23], shear-
let transform [24], dreamlet transform [25], wavelet trans-
form [26], [27], synchrosqueezing transform [28], etc. Rand
based method including rank reduction and low-rank approx-
imation is also common approach in seismic data processing
community, which contains singular spectrum analysis [29],
multichannel singular spectrum analysis [30], damped sin-
gular spectrum analysis [31], multistep damped singular
spectrum analysis [32], and low-rank matrix approximation
[33], [34]. In the rank reduction strategy, the denoised signal
can be recovered by reducing the rank of the matrix obtained
from the noisy seismic data. In the second strategy, the noisy
seismic data is decomposed into a low-rank matrix and a
sparse matrix, in which the low-rank matrix is viewed as
the useful signal while the sparse matrix as the noise, thus,
one can obtain the filtered signal by implementing an inverse
transform on the low-rank matrix. In addition to the afore-
mentioned classic denoising algorithms, other methods also
include mean and median filters [35], time-frequency peak
filtering [36], and so on.

Recently, a new adaptive signal analysis algorithm called
high-order synchrosqueezing transform (FSSTH) was intro-
duced in [37]. FSSTH produces a highly focused time-
frequency map for a wide range of multicomponent signal
by calculating more accurate instantaneous frequency based
on higher order approximations both for the amplitude and
the phase, and FSSTH can reconstruct the modes making up
the input signal with a high precision [37]. Currently, FSSTH
has successfully been applied to machine fault diagnosis
[38], [39], seismic time-frequency analysis [40], and the anal-
ysis of a transient gravitational-wave signal [37]. However,
the applications in seismic noise suppression are seldom
reported.

In this paper, we propose a novel method for seismic
random noise suppression that incorporate the FSSTH and
the sparse low-rank estimation for seismic data. First of all,
the FSSTH of the noisy seismic data is computed to produce a
sparse time-frequency matrix. Then, a low-rank matrix and a
sparse one are estimated based on solving a convex relaxation
optimization problem by using robust principle component
analysis (RPCA), which is a classical low-rank matrix recov-
ery algorithm. Finally, we implement an inverse FSSTH on
the obtained low-rank matrix to reconstruct the denoised
signal in the time domain. The contributions of the paper
can be summarized as below: (1) we first integrate the supe-
rior sparse property of FSSTH and the low-rank estima-
tion algorithm to suppress seismic random noise, (2) our

method shows the excellent potential in seismic random noise
removal compared to the conventional denoising approaches.

This paper is structured as follows: in Section II, we present
the key principle of our method. Next, the experimental
results on both synthetic data and real field datasets are
shown in Section III. The discussion regarding the parameter
selection is given in Section IV. Finally, Section V concludes
this paper.

II. THEORY
A. HIGH-ORDER SYNCHROSQUEEZING TRANSFORM
The high-order synchrosqueezing transform (FSSTH) is a
new generalization of the short-time Fourier-based syn-
chrosqueezing transform (FSST), which was first proposed
by Thakur and Wu [41]. The key idea of such a technique
is to sharpen the time-frequency map by computing more
accurate instantaneous frequency by means of higher order
approximations in both amplitude and phase [37]. FSSTH
achieves an excellent concentration and reconstruction for a
wider range of AM-FM signal modes.

Considering an AM-FM signal s:

s (t) = A (t) ei2πψ(t). (1)

where ψ (t) and A (t) are the instantaneous phase and ampli-
tude, respectively.

The short-time Fourier transform (STFT) regarding the
signal s with a window function g can be represented as:

V g
s (t, ζ ) =

∫
s (τ )g∗ (τ − t) e−i2πζ(τ−t)dτ. (2)

where t is the time variable and ζ is the frequency variable,
g∗ is the complex conjugate with respect to g.
Now, let ωs (t, ζ ) denote the instantaneous frequency with

respect to t and ζ .

ωs (t, ζ ) = R
{
∂tV

g
s (t, ζ )

i2πV g
s (t, ζ )

}
, (3)

where R {•} means to extract the real part of a complex
number. ∂t means taking the derivative regarding t .
Thus, the conventional FSST is defined as below:

T g,γs (t, ω)

=
1

g∗ (0)

∫
{
ζ,
∣∣V gs (t,ζ )∣∣>γ } V

g
s (t, ζ ) δ (ω − ωs (t, ζ ))dζ.

(4)

where γ is the threshold, δ is the Dirac distribution.
FSST has a solid theoretical foundation. However,

the application of such a technique is still limited to a class
of signal characterized by ‘slowly varying’ instantaneous
frequency. This is because the weak frequency modulation
hypothesis regarding the modes is imposed in the algorithm.

To deal with this issue, Pham and Meignen (2017)
improved existing FSST algorithm by calculating more
accurate instantaneous frequency through high-order Taylor
expansion about the amplitude and the phase of a given signal.
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The Taylor expansion regarding the signal s in Eq. (1) for
τ close to t is expressed as:

s (τ ) = exp

(
M∑
n=0

[
log (A)

](n)
(t)+ i2πψ (n) (t)

n!
(τ − t)n

)
.

(5)

where X (n) (t) is the nth derivative of X with respect to t .
Substituting Eq. (5) into Eq. (2), we obtain

V g
s (t, ζ )

=

∫
s (τ + t)g∗ (τ ) e−i2πζτdτ

=

∫
exp

(
M∑
n=0

[
log (A)

](n)
(t)+ i2πψ (n) (t)

n!
τ i

)
g∗ (τ ) e−i2πζτdτ. (6)

And, Eq. (3) can be rewritten as:

ωs (t, ζ ) =

[
log (A)

]′
(t)

i2π
+ ψ

′

(t)

+

M∑
n=2

[
log (A)

](n)
(t)+i2πψ (n) (t)

i2π (n−1)!
V tn−1g
s (t, ζ)

V g
s (t, ζ)

(7)

Now, let us introduce a frequency modulation operator
q[n,M ]
ζ,s :

q[n,M ]
ζ,s =

[
log (A)

](n)
(t)+ i2πψ (n) (t)

i2π (n− 1)!
, (8)

Then, the M th-order local complex instantaneous fre-
quency ω[M ]

ζ,s can be expressed by:

ω
[M ]
ζ,s (t, ζ ) =



ωs (t, ζ )+
M∑
n=2

q[n,M ]
ζ,s (ξ, t)(

−xn,1 (t, ζ )
)

V g
s (t, ζ )
6= 0, ∂ζ xk,k−1 (t, ζ ) 6= 0 (k ≥ 2)
ωs (t, ζ )
otherwise

(9)

Finally, substituting ω[M ]
ζ,s (t, ζ ) for ωs (t, ζ ) in Eq. (4),

we obtain the FSSTH, namely:

T g,γM ,s (t, ω)

=
1

g∗ (0)

∫
{
ζ,
∣∣V gs (t,ζ )∣∣>γ } V

g
s (t, ζ ) δ

(
ω−ω

[M ]
ζ,s (t, ζ )

)
dζ.

(10)

Meanwhile, the mode of the input signal can be recon-
structed by:

sk (t) ≈
∫
{ω,|ω−ϕk (t)|<σ }

T g,γM ,s (t, ω)dω. (11)

where σ is the compensation factor and ϕk (t) is the estima-
tion of ψ

′

k (t).

B. ROBUST PRINCIPAL COMPONENT ANALYSIS
In this paper, we utilize the robust principal component anal-
ysis (RPCA) algorithm [42] to decompose the noisy seismic
data into a low-rank matrix and a sparse matrix, which can be
described as below:

d = L + S. (12)

where d denotes the seismic data corrupted by random noise,
and L and S are the low-rank matrix and the sparse matrix,
respectively.

The low-rank matrix L can be obtained by the following
constrained optimization problem.

min rank (L)+ µ‖S‖0, subject to d = L + S. (13)

where rank (L) denotes the rank of the low-rank matrix, ‖•‖0
is the l0 norm of a matrix, µ is a factor and µ > 0 in which it
is employed to balance the two components in Eq. (13).

It is worth noting that the aforementioned optimization
problem is NP-hard and non-convex [43]. In order to cope
with this issue, one can transform the Eq. (13) into a convex
relaxation optimization problem by using l1 norm and nuclear
norm, namely:

min ‖L‖∗ + µ‖S‖1, subject to d = L + S. (14)

where ‖•‖∗ and ‖•‖1 denote the nuclear norm and the l1 norm
of a matrix, respectively.

In fact, there are several algorithms to solve Eq. (14) [43].
In this paper, we adopt the exact augmented Lagrange multi-
plier algorithm:

F (L, S,Y , σ ) = ‖L‖∗ + µ‖S‖1 + 〈Y , d − L − S〉

+
σ

2
‖d − L − S‖2F . (15)

where Y is the Lagrange multiplier, σ is a penalty term that is
utilized to ensure the convergence of Eq. (15), ‖•‖F denotes
the Frobenius norm.

In the process of solving Eq. (15), the Y and S are firstly
fixed, then the L is calculated until the F is minimized.

Ln+1 = argmin
L
F (L, Sn+1,Yn, σn) . (16)

Next, the L and Y are fixed, and the S is obtained when the
F is minimized.

Sn+1 = argmin
S
F (Ln+1, S,Yn, σn) . (17)

where n and n + 1 denote the nth and (n + 1)th iterations,
respectively.

Finally, Y and σ are updated based on Eq. (18) and
Eq. (19):

Yn+1 = Yn + σ (d − Ln+1 − Sn+1) . (18)

σn+1 = εσn. (19)

where ε is a constant and ε > 1.
After multiple iterations, Eq. (15) is minimized, and then

the optimal low-rank matrix and sparse matrix are obtained,
which correspond to the useful signal and noise, respectively.
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Algorithm 1 The Proposed Algorithm
Input: noisy seismic data d
Output: denoised seismic data d̂
1: Predefinition: γ ,$ , µ, N and Y
2: Iterate on n = 1, · · · ,N
3: for each noisy seismic trace n do
4: Estimation of the TFR regarding the seismic trace n

via Eq. (10)
5: Separation of the amplitude and phase spectrums
6: Extract the low-rank matrix and sparse one via

Eq. (16) and Eq. (17)
7: Transform back the low-rank matrix into the time

domain via Eq. (11)
8: end for
9: Rearrange the denoised seismic trace n along the spatial

direction
10: return denoised seismic data d̂

FIGURE 1. The denoising framework for seismic data.

C. PROPOSED ALGORITHM
The seismic signal and noise will be sparse in the time-
frequency domain through the FSSTH. Then, we can imple-
ment the RPCA algorithm on time-frequency representation
of a noisy seismic trace to extract a low-rank matrix and a
sparse matrix that are corresponding to the useful signal and
noise, respectively. Finally, the denoised signal is recovered
by back-transforming the obtained low-rank matrix to the
time domain using the inverse FSSTH. The complete process
of the proposed algorithm is summarized in Algorithm 1.
Figure 1 illustrates the denoising framework. The specific
steps are summarized as below:

1) Compute the TFR of a noisy seismic trace based on the
FSSTH algorithm.

2) Separate the amplitude and phase spectrums of the
obtained TFR.

FIGURE 2. The synthetic data composed of a horizontal event, two steep
linear events and a hyperbolic one. (a) Original noise-free synthetic data.
(b) noisy synthetic data with a SNR of 2 dB.

3) Decompose the amplitude spectrum of TFR bymeans of
RPCA algorithm to extract the low-rankmatrix and the sparse
one.

4) View the low-rank matrix as the denoised amplitude
spectrum.

5) Transform the low-rank matrix back into the time
domain to obtain the denoised seismic trace by using the
inverse FSSTH.

6) Implement the steps (1)-(5) repeatedly until all seismic
traces are finished.

In the aforementioned algorithm, γ is the threshold, $
is the window parameter, µ is the regularization parameter,
N is the length of the seismic trace, and Y is the augmented
Lagrange parameter.

III. EXAMPLES
A. EVALUATION OF DENOISING PERFORMANCE
In this section, we use several examples including a synthetic
data and two real field datasets to verify the effectiveness of
our proposed method. In order to numerically evaluate the
denoising performance, the signal to noise ratio (SNR) and
mean squared error (MSE) are defined as follows:

SNR = 10log10

(
‖s‖2∥∥ŝ− s∥∥2

)
. (20)

MSE =
1
M

M∑
m=1

[
ŝ (m)− s (m)

]2
. (21)
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FIGURE 3. Denoised results using (a) f − x SSA, (b) f − x deconvolution, and (c) the proposed method. Difference sections between noisy
and denoised data for (d) f − x SSA, (e) f − x deconvolution, and (f) the proposed method.

FIGURE 4. Comparison of local similarity maps. (a) f − x SSA, (b) f − x deconvolution, and (c) the proposed method.

where s or s (m) is the noise-free signal, ŝ or ŝ (m) is the
denoised signal, andM is the length of a signal.

B. SYNTHETIC DATA
We first utilize a synthetic example to demonstrate the per-
formance of our method. Figure 2(a) shows the synthetic
data, which includes a horizontal event, two steep linear
events and a hyperbolic one. This data has 50 traces with the
sampling interval of 2ms, and the total time is 0.8 s. The noisy
synthetic data with a SNR of 2dB is presented in Figure 2(b),
which is severely contaminated by random noise. In this
synthetic example, our method has been implemented with
a regularization parameter of 0.0225. For f −x SSA, the rank
parameter is selected as five because of the presence of non-
linear events in the data. In the f − x deconvolution method,

the filter length is 15 and the required frequency range is from
1 to 120 Hz.

The denoised results based on the the f − x SSA, the f − x
deconvolution, and the proposed method are shown in Fig-
ures 3(a), (b), and (c), respectively, and the corresponding
noise sections are exhibited in Figures 3(d), (e), and (f),
respectively. It can be clearly seen that bothmethods, the f −x
SSA and f −x deconvolution, are able to suppress most of the
random noise, but the useful seismic reflections can also be
found in the removed noise sections in Figures 3(d) and (e),
which means such approaches indeed do harm to some useful
signals. Furthermore, there exists some significant residual
noise in the filtered result by f − x SSA (see Figure 3(a)).
In contrast, the proposed method not only suppresses noise
effectively, but also prevents the useful seismic information
leakage well, as shown in Figures 3(c) and (f). Figure 4 shows
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FIGURE 5. Clean trace 15 (a) and noisy one (b).

FIGURE 6. Sparse TFR of clean trace 15 (a) and noisy one (b) using FSSTH.

FIGURE 7. Decomposition result via the RPCA. (a) low-rank component
and (b) sparse component.

the comparison of local similaritymaps based on the denoised
data and the removed noise. It is very obvious that Figure 4(c)
has the lowest similarity, which indicates that the proposed
method has the least signal leakage.

Now, we take the trace 15 from the noise-free syn-
thetic data and the noisy version, which are plotted in
Figures 5(a) and (b), respectively, and perform the FSSTH
on them. Figures 6(a) and (b) show the time-frequency rep-
resentations of the above-mentioned two signals, respec-
tively. We utilize the RPCA algorithm to decompose the
time-frequency matrix of the noisy seismic signal into
the low-rank component and sparse component as shown
in Figures 7(a) and (b), respectively. Then, the estimated low-
rank and sparse components are transformed back into the
time domain via the inverse transform of FSSTH in order
to obtain the denoised seismic signal and noise, which are

FIGURE 8. (a) Recovered (red line) and original (dashed black line).
(b) estimated noise.

presented in Figures 8(a) and (b), respectively. As can be
clearly seen, there is no appreciable difference between the
recovered signal and the original one. Through the proposed
method, we have improved the SNR of synthetic data from
2 dB to 8.5 dB.

For further performance evaluation regarding the denois-
ing algorithms, we have calculated the amplitude spectrums
of noise-free data, noisy data, and filtered data using the
f − x SSA, f − x deconvolution, and the proposed method.
The results are shown in Figure 9. One clearly sees the
proposed algorithm is capable of removing random noise
effectively and retrieve the amplitude spectrum of the orig-
inal signal well. However, the other two methods cannot
completely attenuate random noise (see the blue boxes in
Figures 9(c) and (d)), and the f − x SSA damages some low-
frequency contents in the seismic signal to some extent (see
the red box in Figure 9(c)).

In addition, we also compute the SNR and MSE of the
results based on the three denoising methods in Figure 10 by
changing the input SNR. It is obvious that the proposed
algorithm always outperforms the other twomethods in terms
of SNR and MSE.

C. FIELD DATA
To verify the performance of the proposedmethod in real seis-
mic data, we use a 100-traces shot data shown in Figure 11,
wherein there are 400 time samples in each trace and the
sampling interval is 2 ms. In this shot gather example,
we set the regularization parameter to 0.025 in our method,
the rank parameter for f − x SSA is 18, and the desired
frequency band regarding the f − x deconvolution is from
1 to 120 Hz and the filter length is 10. The filtered results
using the f − x SSA, the f − x deconvolution, and the
proposed method are shown in Figures 12(a), (c), and (e),
respectively. The corresponding removed noise sections are
illustrated in Figures 12(b), (d), and (f), respectively. It can
be observed that although the f − x SSA and f − x decon-
volution remove amounts of random noise, there are still
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FIGURE 9. Amplitude spectrum of (a) original data, (b) noisy data, and
denoised data using the (c) f − x SSA, (d) f − x deconvolution, and (e) the
proposed method.

FIGURE 10. Output SNR (a) and MSE (b) comparison of the three
methods for various input SNR.

some seismic reflections left in the removed noise (see
Figures 12(b) and (d)). By contrast, the proposed method
performs clearly better, the random noise is effectively sup-
pressed and the seismic signals are well preserved.

FIGURE 11. Noisy real shot data.

FIGURE 12. Denoised results of shot data using (a) f − x SSA, (c) f − x
deconvolution, and (e) the proposed algorithm, respectively.
(b), (d), and (f) are the removed noise corresponding to the three
methods.

For better visualization and comparison, we have zoomed
in one area of interest ranging from 0.4 to 0.8 s, which
is shown in Figure 13. As shown on the figure, the
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FIGURE 13. Zoomed denoised results and removed noise using
(a) (b) f − x SSA, (c) (d) f − x deconvolution, and (e) (f) the proposed
algorithm, respectively.

FIGURE 14. Amplitude spectrums of the aforementioned methods.

proposed algorithm does better than the other two methods
in improving the SNR of original shot data and preserving
the amplitude of the seismic reflections.

Additionally, we also have computed the amplitude spec-
trums regarding the aforementioned methods in Figure 14.
It can be clearly seen that the proposedmethod can effectively
attenuate random noise and retrieve the amplitude spectrum
of the seismic signal well, but the f − x SSA and f − x

FIGURE 15. Noisy post-stack data.

FIGURE 16. Denoised results based on (a) f − x SSA, (c) f − x
deconvolution, and (e) the proposed algorithm, respectively.
(b), (d), and (f) are the corresponding removed noise regarding the three
methods.

deconvolution cannot properly preserve the useful seismic
reflections.

The second field data example is a post-stack data. It is
shown in Figure 15, which has 150 traces and 500 sam-
ples per trace with a sampling interval of 2 ms. For the
proposed method, the regularization parameter is chosen
as 0.025. In the f − x SSA method, we set the rank
parameter to 20. The desired frequency range is still from
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1 to 120 Hz, but the length of filter is selected as 12 for
the f − x deconvolution. The denoised results using the
f − x SSA, f − x deconvolution, and the proposed algo-
rithm are given in Figures 16(a), (c), and (e), respectively.
Figures 16(b), (d), and (f) are the resulting noise sections.
From these figures, we can observe that although a large
amount of random noise has successfully been suppressed,
some seismic reflection events also have already been
removed using the f − x SSA and f − x deconvolution
(see Figures 16(b) and (d)). By comparison, the proposed
method has greatly improved the SNR of original post-stack
data, the seismic reflections have become clearer and the
seismic structures of reflection events are well preserved (see
Figures 16(e) and (f)).

Similarly, for better visualization and comparison,
the zoomed-in versions regarding the results marked by a
rectangle are shown in Figure 17. It is obvious that the pro-
posed method does a better job in noise reduction and seismic
signal preservation compared with the f − x SSA and the
f−x deconvolution. In addition, the amplitude spectrums also
indicate the superior performance of the proposed method
(see Figure 18).

IV. DISCUSSION
In this paper, we have presented a robust method for denois-
ing seismic data, in which it first transforms the noisy
seismic trace into the sparse time-frequency domain using
the FSSTH, then, the low-rank matrix and sparse matrix
are extracted via the RPCA algorithm. Since the proposed
method is operated based on trace by trace, its performance
might not be affected by the geological complexity of seismic
data.

Based on the above-mentioned theory, we can obtain the
denoised signal from the low-rank matrix of time-frequency
representation of the input seismic data. Thus, it is crucial
to extract the low-rank matrix accurately. It is noteworthy
that there are two key parameters, the regularization param-
eter µ and the augmented Lagrange parameter Y , in the
RPCA algorithm that need to be selected properly. We test
the effect of the regularization parameter and the augmented
Lagrange parameter on the output SNR for the synthetic trace
in Figure 5(b), which are shown in Figures 19(a) and (b),
respectively. As can be observed from figures, the proposed
method is sensitive to the regularization parameter value,
however, it seems to be relatively insensitive to the augmented
Lagrange parameter value. Therefore, we should do several
trials to select the optimal regularization parameter value
in real case. In addition, it should be noted that a larger
value of the augmented Lagrange parameter will increase the
computational cost. Hence, considering the performance of
noise suppression and computational efficiency, we should
take a compromise solution.

The f − x SSA and f − x deconvolution are two classical
denoising algorithms for seismic data. For the first algo-
rithm, the target rank is an important parameter, which has a
direct influence on noise attenuation and signal preservation.

FIGURE 17. Zoomed results and corresponding noise using (a) (b) f − x
SSA, (c) (d) f − x deconvolution, and (e) (f) the proposed algorithm,
respectively.

FIGURE 18. Amplitude spectrums of the aforementioned methods.

The larger the rank parameter, the weaker the noise atten-
uation, and vice versa. For the second algorithm, the noise
suppression depends on two input parameters, namely the
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FIGURE 19. Output SNR versus different regularization parameter values
(a) and different augmented Lagrange parameter values (b), respectively.

length of operator and the processing frequency. In practice,
several trials should be done for different parameters so that
we can obtain the satisfactory result.

V. CONCLUSION
We have proposed a robust random noise suppression method
for seismic data in the time-frequency domain. In this paper,
we utilize the FSSTH to transform the noisy seismic data to
the sparse time-frequency domain. Then, the low-rank matrix
and sparse matrix are estimated by decomposing the time-
frequency map via the RPCA algorithm. Finally, the denoised
signal can be recovered by performing the inverse transform
of FSSTH on the obtained low-rank matrix. The experimen-
tal results on a synthetic data and two field data examples
demonstrate the superiority of our approach. By using the
proposed method, the SNR of the seismic data is greatly
improved and the useful signals are well preserved in contrast
to the f −x SSA and f −x deconvolution methods, which ren-
ders the technique highly promising for seismic processing.

ACKNOWLEDGMENT
The authors would like to thank associate editor Dr. Jinming
Wen and two anonymous reviewers for their constructive
comments that improve the manuscript greatly.

REFERENCES
[1] L. Yang, W. Chen, W. Liu, B. Zha, and L. Zhu, ‘‘Random noise attenuation

based on residual convolutional neural network in seismic datasets,’’ IEEE
Access, vol. 8, pp. 30271–30286, 2020.

[2] M. Zhang, Y. Liu, and Y. Chen, ‘‘Unsupervised seismic random noise
attenuation based on deep convolutional neural network,’’ IEEE Access,
vol. 7, pp. 179810–179822, 2019.

[3] Y. Zhang, H. Lin, Y. Li, and H. Ma, ‘‘A patch based denoising method
using deep convolutional neural network for seismic image,’’ IEEE Access,
vol. 7, pp. 156883–156894, 2019.

[4] Y. Sang, J. Sun, X. Meng, H. Jin, Y. Peng, and X. Zhang, ‘‘Seismic random
noise attenuation based on PCC classification in transform domain,’’ IEEE
Access, vol. 8, pp. 30368–30377, 2020.

[5] L. L. Canales, ‘‘Random noise reduction,’’ in Proc. 54th Annu. Int. Meet-
ing, SEG, Expanded Abstr., Jan. 1984, pp. 525–527.

[6] R. Abma and J. Claerbout, ‘‘Lateral prediction for noise attenuation by t-x
and f-x techniques,’’ Geophysics, vol. 60, no. 6, pp. 1887–1896, 1995.

[7] Y. Chen and J. Ma, ‘‘Random noise attenuation by f-x empirical
mode decomposition predictive filtering,’’ Geophysics, vol. 79, no. 3,
pp. V81–V91, 2014.

[8] Y. Wang, ‘‘Random noise attenuation using forward-backward linear pre-
diction,’’ J. Seismic Exploration, vol. 8, no. 2, pp. 133–142, 1999.

[9] N. E. Huang, Z. Shen, S. R. Long, M. C. Wu, H. H. Shih, Q. Zheng,
N.-C. Yen, C. C. Tung, and H. H. Liu, ‘‘The empirical mode decomposi-
tion and the Hilbert spectrum for nonlinear and non-stationary time series
analysis,’’ Proc. Roy. Soc. London A, Math., Phys. Eng. Sci., vol. 454,
no. 1971, pp. 903–995, Mar. 1998.

[10] W.-L. Hou, R.-S. Jia, H.-M. Sun, X.-L. Zhang, M.-D. Deng, and Y. Tian,
‘‘Random noise reduction in seismic data by using bidimensional empir-
ical mode decomposition and shearlet transform,’’ IEEE Access, vol. 7,
pp. 71374–71386, 2019.

[11] Z. Wu and N. E. Huang, ‘‘Ensemble empirical mode decomposition:
A noise-assisted data analysis method,’’ Adv. Adapt. Data Anal., vol. 1,
no. 1, pp. 1–41, Jan. 2009.

[12] M. E. Torres, M. A. Colominas, G. Schlotthauer, and P. Flandrin, ‘‘A com-
plete ensemble empirical mode decomposition with adaptive noise,’’
in Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP),
May 2011, pp. 4144–4147.

[13] M. Sun, Z. Li, Z. Li, Q. Li, Y. Liu, and J. Wang, ‘‘A noise attenua-
tion method for weak seismic signals based on compressed sensing and
CEEMD,’’ IEEE Access, vol. 8, pp. 71951–71964, 2020.

[14] W. Chen, Y. Chen, J. Xie, S. Zu, and Y. Zhang, ‘‘Multiples attenuation
using trace randomization and empirical mode decomposition,’’ in Proc.
86th Annu. Int. Meeting, SEG, Expanded Abstr., 2016, pp. 4498–4502.

[15] K. Dragomiretskiy and D. Zosso, ‘‘Variational mode decomposition,’’
IEEE Trans. Signal Process., vol. 62, no. 3, pp. 531–544, Feb. 2014.

[16] W. Liu and Z. Duan, ‘‘Seismic signal denoising using f − x variational
mode decomposition,’’ IEEE Geosci. Remote Sens. Lett., vol. 17, no. 8,
pp. 1313–1317, Aug. 2020.

[17] G. Wu, S. Fomel, and Y. Chen, ‘‘Data-driven time-frequency analysis of
seismic data using regularized nonstationary autoregression,’’ inProc. 86th
Annu. Int. Meeting, SEG, Expanded Abstr., 2016, pp. 1700–1705.

[18] E. Candès, L. Demanet, D. Donoho, and L. Ying, ‘‘Fast discrete curvelet
transforms,’’ Multiscale Model. Simul., vol. 5, no. 3, pp. 861–899,
Jan. 2006.

[19] F. J. Herrmann, U. Böniger, and D. J. Verschuur, ‘‘Non-linear primary-
multiple separation with directional curvelet frames,’’ Geophys. J. Int.,
vol. 170, no. 2, pp. 781–799, Aug. 2007.

[20] R. G. Stockwell, L. Mansinha, and R. P. Lowe, ‘‘Localization of the
complex spectrum: The S transform,’’ IEEE Trans. Signal Process., vol. 44,
no. 4, pp. 998–1001, Apr. 1996.

[21] C. R. Pinnegar andD.W. Eaton, ‘‘Application of the S transform to prestack
noise attenuation filtering,’’ J. Geophys. Res., Solid Earth, vol. 108, no. B9,
pp. 1–10, Sep. 2003.

[22] S. Fomel and Y. Liu, ‘‘Seislet transform and seislet frame,’’ Geophysics,
vol. 75, no. 3, pp. V25–V38, May 2010.

[23] Y. Chen and S. Fomel, ‘‘EMD-seislet transform,’’ in Proc. 85th Annu. Int.
Meeting, SEG, Expanded Abstr., 2015, pp. 4775–4778.

[24] D. Kong and Z. Peng, ‘‘Seismic random noise attenuation using shear-
let and total generalized variation,’’ J. Geophys. Eng., vol. 12, no. 6,
pp. 1024–1035, Dec. 2015.

[25] B. Wang, R.-S. Wu, X. Chen, and J. Li, ‘‘Simultaneous seismic data
interpolation and denoising with a new adaptive method based on dreamlet
transform,’’ Geophys. J. Int., vol. 201, no. 2, pp. 1180–1192, 2015.

[26] S. Sinha, P. S. Routh, P. D. Anno, and J. P. Castagna, ‘‘Spectral decom-
position of seismic data with continuous-wavelet transform,’’ Geophysics,
vol. 70, no. 6, pp. P19–P25, Nov. 2005.

VOLUME 8, 2020 183555



P. Bing et al.: Robust Random Noise Suppression Method for Seismic Data Using Sparse Low-Rank Estimation

[27] W. Liu and W. Chen, ‘‘Recent advancements in empirical wavelet trans-
form and its applications,’’ IEEE Access, vol. 7, pp. 103770–103780, 2019.

[28] I. Daubechies, J. Lu, andH.-T.Wu, ‘‘Synchrosqueezedwavelet transforms:
An empirical mode decomposition-like tool,’’ Appl. Comput. Harmon.
Anal., vol. 30, no. 2, pp. 243–261, Mar. 2011.

[29] R. Vautard, P. Yiou, and M. Ghil, ‘‘Singular-spectrum analysis: A toolkit
for short, noisy chaotic signals,’’ Phys. D, Nonlinear Phenomena, vol. 58,
nos. 1–4, pp. 95–126, Sep. 1992.

[30] V. Oropeza and M. Sacchi, ‘‘Simultaneous seismic data denoising and
reconstruction via multichannel singular spectrum analysis,’’ Geophysics,
vol. 76, no. 3, pp. V25–V32, May 2011.

[31] Y. Chen, D. Zhang, Z. Jin, X. Chen, S. Zu, W. Huang, and S. Gan, ‘‘Simul-
taneous denoising and reconstruction of 5-D seismic data via damped
rank-reduction method,’’ Geophys. J. Int., vol. 206, no. 3, pp. 1695–1717,
Sep. 2016.

[32] D. Zhang, Y. Chen, W. Huang, and S. Gan, ‘‘Multi-step reconstruc-
tion of 3D seismic data via an improved MSSA algorithm,’’ in Proc.
CPS/SEG Beijing Int. Geophys. Conf. Expo., SEG, Expanded Abstr., 2016,
pp. 745–749.

[33] M. A. Nazari Siahsar, S. Gholtashi, A. R. Kahoo, H. Marvi, and
A. Ahmadifard, ‘‘Sparse time-frequency representation for seismic noise
reduction using low-rank and sparse decomposition,’’ Geophysics, vol. 81,
no. 2, pp. V117–V124, Mar. 2016.

[34] R. Anvari, M. A. N. Siahsar, S. Gholtashi, A. R. Kahoo, and
M. Mohammadi, ‘‘Seismic random noise attenuation using
synchrosqueezed wavelet transform and low-rank signal matrix
approximation,’’ IEEE Trans. Geosci. Remote Sens., vol. 55, no. 11,
pp. 6574–6581, Nov. 2017.

[35] Y. Liu, C. Liu, and D. Wang, ‘‘A 1D time-varying median filter for
seismic random, spike-like noise elimination,’’ Geophysics, vol. 74, no. 1,
pp. V17–V24, Jan. 2009.

[36] A. Kahoo, ‘‘Random noise suppression from seismic data using time
frequency peak filtering,’’ in Proc. 71st Annu. Int. Conf. Exhib., EAGE,
Extended Abstr., 2014, p. cp-127.

[37] D. Pham and S. Meignen, ‘‘High-order synchrosqueezing transform for
multicomponent signals analysi—With an application to gravitationalwave
signal,’’ IEEE Trans. Signal Process., vol. 65, no. 12, pp. 3168–3178,
Jun. 2017.

[38] W. Liu, W. Chen, and Z. Zhang, ‘‘A novel fault diagnosis approach
for rolling bearing based on high-order synchrosqueezing transform and
detrended fluctuation analysis,’’ IEEE Access, vol. 8, pp. 12533–12541,
2020.

[39] X. Tu, Y. Hu, F. Li, S. Abbas, Z. Liu, and W. Bao, ‘‘Demodulated
high-order synchrosqueezing transform with application to machine fault
diagnosis,’’ IEEE Trans. Ind. Electron., vol. 66, no. 4, pp. 3071–3081,
Apr. 2019.

[40] W. Liu, S. Cao, Z. Wang, K. Jiang, Q. Zhang, and Y. Chen, ‘‘A novel
approach for seismic time-frequency analysis based on high-order syn-
chrosqueezing transform,’’ IEEE Geosci. Remote Sens. Lett., vol. 15, no. 8,
pp. 1159–1163, Aug. 2018.

[41] G. Thakur and H.-T. Wu, ‘‘Synchrosqueezing-based recovery of instanta-
neous frequency from nonuniform samples,’’ SIAM J. Math. Anal., vol. 43,
no. 5, pp. 2078–2095, Jan. 2011.

[42] X. Dong, T. Zhong, and Y. Li, ‘‘New suppression technology for low-
frequency noise in desert region: The improved robust principal component
analysis based on prediction of neural network,’’ IEEE Trans. Geosci.
Remote Sens., vol. 58, no. 7, pp. 4680–4690, Jul. 2020.

[43] Y. Liu, X. Gao, Q. Gao, L. Shao, and J. Han, ‘‘Adaptive robust principal
component analysis,’’ Neural Netw., vol. 119, pp. 85–92, Nov. 2019.

PINGPING BING received the Ph.D. degree
in geophysics from the China University of
Petroleum (Beijing), Beijing, China, in 2012. She
is currently a Lecturer with Changsha Medical
University. Her research interests include opti-
mization algorithm, signal analysis and model pre-
diction, and deep learning.

WEI LIU received the B.E. degree in explo-
ration geophysics from the China University of
Petroleum (East China), Qingdao, China, in 2006,
theM.S. degree in exploration geophysics from the
China University of Petroleum (Beijing), Beijing,
China, in 2009, and the Ph.D. degree in geologi-
cal resources and geological engineering from the
China University of Petroleum (Beijing), in 2016.
He is currently working as a Lecturer with the
Beijing University of Chemical Technology. His

research interests include signal analysis and processing, seismic data pro-
cessing and interpretation, and mechanical fault diagnosis.

ZHIHUA ZHANG received the B.E. degree in
safety science and engineering from the North
University of China, in 2018. He is currently pur-
suing the M.E. degree with the Beijing University
of Chemical Technology. His research interests
include signal analysis, deep learning, and intel-
ligent fault diagnosis.

183556 VOLUME 8, 2020


