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ABSTRACT In order to mine the local behavior and dynamic characteristic of batch process data
for effective process monitoring, a two-dimensional localized dynamic support vector data description
(TLDSVDD) method is proposed in this article. The main contributions of the proposed method include
three aspects. Firstly, considering that batch process variables may behave differently at each operation
stage, a two-dimensional localization strategy is designed to mine the local behaviors of process data from
the perspective of the variable dimension and the sample dimension. Secondly, for each local data segment,
the slow feature analysis is applied to build the local dynamic sub-models, which can monitor the static and
dynamic process changes simultaneously. Lastly, the model ensemble strategy based on Bayesian inference
is employed and two holistic monitoring statistics are developed to indicate the process running status. The
proposed method not only extracts the local process behaviors, but also determines whether the process fault
belongs to the dynamic or static change. Finally, one case study on the simulated industrial batch process is
carried out to exhibit the method performance.

INDEX TERMS Batch process monitoring, local information mining, slow feature analysis, support vector
data description.

I. INTRODUCTION
Batch processes are extensively applied in the modern indus-
try for the multi-variety, customized, and high value-added
products. Some typical industrial batch systems include batch
distillation, penicillin fermentation process, and semiconduc-
tor etch process [1]–[4]. Compared with traditional continu-
ous processes, batch processes are more complicated because
they are clearly with multi-stage/multi-phase operation,
nonlinear variable relationship, dynamic and non-Gaussian
data characteristic [5], [6]. The process complexity leads to
high difficulty to ensure the continuity and safety of the
process running. Therefore, process monitoring and fault
detection technologies are particularly important to batch
processes and have attractedwidespread attention from schol-
ars in the process control field [7], [8]. Due to the abundant
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data recorded by the advanced computer control systems,
data-driven process monitoring methods are becoming the
hot topic [9]–[12]. In past several decades, researchers have
put forward many typical methods include multiway prin-
cipal component analysis (MPCA) [13], multiway partial
least squares (MPLS) [14], and multiway canonical vari-
ate/correlation analysis (MCVA) [15], [16]. However, these
methods assume that the process data obey Gaussian dis-
tribution, which are not met strictly in the real applica-
tions. Recently, support vector data description (SVDD) has
emerged as an effective tool for processing nonlinear and
non-Gaussian data [17], [18]. As one typical one-class clas-
sification method, SVDD obtains the decision boundary with
the minimum volume hyper-sphere for containing most of
the training data. The samples outside of the hyper-sphere
are viewed as the anomaly points. The SVDD’s application
to batch process monitoring is firstly discussed by Ge et al.
[19], which firstly upfolds the multiway batch process data
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and then builds the SVDD monitoring model. The SVDD
with multiway data unfolding can be called multiway SVDD
(MSVDD). Further, Ge and Song [20] put forward to a
bagging SVDD method for batch process monitoring by
applying the ensemble learning theory. In order to improve
the monitoring accuracy, Wang et al. [21] proposed to con-
struct the dynamic hypersphere SVDD model by mixing test
samples and training samples. Zhang et al. [22] designed
a robust SVDD method by improving the calculation of
spherical radius. Subsequently, a lot of modified SVDD ver-
sions are presented by analyzing the specific batch process
characteristics [23], [24].

If the entire batch data are taken to build a holistic SVDD
monitoring model, the performance is usually unsatisfactory
since it is difficult to depict the whole batch process precisely.
Recently, localized SVDDmodeling [20], [25], [26] has been
one important topic in the SVDD-related process monitoring
field. The localized SVDD methods mine the local process
behavior and develop multiple local sub-models for elabo-
rate monitoring. The localized SVDD methods are summa-
rized into two classes: multi-phase methods and multi-block
methods.

Different from continuous processes with one steady
state, batch processes usually involve multiple operation
phases. Take the penicillin production as one example, it can
be divided into five phases according to the microorgan-
ism growth procedure [25]. For different operation phases,
the data relationships may be governed by different laws.
Therefore, multi-phase SVDD methods are developed to
monitor the batch process faults. The multi-phase SVDD
method has two steps: phase division and SVDD modeling.
The key point of multi-phase SVDD is the phase partition.
Ge and Song [20] indicated that the phase partition can be
implemented though the model mechanism or data clustering
tools. Wang et al. [26] designed a multi-phase SVDDmethod
by applying the multiscale fuzzy clustering and sequential
phase partitioning. Some researchers made deep studies on
the different clustering methods. Luo et al. [25] proposed a
multi-phasemonitoringmethod by using the Kmeans cluster-
ing to divide the operation phases. In Peng et al.’ work [27],
the phase division is carried out by Gaussian mixture model
(GMM). Tang and Li [28] defined a repeatability factor to
partition the steady and transition stages. Chang et al. [29]
utilized the affinity propagation (AP) clustering algorithm
to distinguish the stages of batch process. The other related
studies can be seen in literature [30], [31].

Multi-block analysis is another kind of localized SVDD
modeling strategy. As the process faults may only trigger
some local variables but not all the variables, one global
SVDD model may overwhelm the real data variability.
Considering that some faults only influence the correlated
variables, Lv and Yan [32] designed a sub-space monitoring
layer in the hierarchical SVDD model, which applies the
mutual information and K means to perform the variable
subspace division. Furthermore, Lv et al. [33] utilized the
contribution array based on independent component analysis

to obtain multiple variable subspaces, and then built the
SVDD monitoring model for batch process. Hui and Zhao
[34] adopted the mutual information to separate the related
and independent variables and built greedy SVDD model to
detect batch process faults. Wang et al. [35] divided variable
blocks by Kullback-Leibler divergence according to statis-
tical characteristics. Hierarchical clustering was applied to
build multi-block models in Huang and Yan’s work [36].

Although many multi-block and multi-phase SVDD meth-
ods have been discussed to deal with the local data behaviors
of batch process, many unsolved issues still exist. Firstly,
the present localized SVDD methods usually only focus on
the one dimension. Multi-block methods are designed only
for local variable analysis, while multi-phase methods are
just used to deal with local sample characteristic. However,
one-dimensional localization is not enough to describe the
local data behavior sufficiently. Secondly, thesemethods only
consider the local changes as the static fluctuations. However,
batch processes often have strong dynamic property. The
dynamic characteristic is the relationship between the histor-
ical data and future data. It reflects the information of process
variables along the time. How to mine the local dynamic
characteristic is also one important problem.

Based on the present studies and the investigated problems,
a two-dimensional localized dynamic support vector data
description (TLDSVDD) method is presented to improve the
basic SVDD based batch process monitoring method. In this
proposed method, process local behaviors are analyzed by
a two-dimensional localization strategy, which involves both
the variable and sample dimensions. Meanwhile, the dynamic
data characteristic is extracted with slow feature analysis
and two SVDD statistics including the static and dynamic
statistics are constructed respectively for each local model.
All the local models are integrated by the ensemble learning
scheme of Bayesian inference.

II. PRELIMINARIES
A. MULTIWAY DATA UPFOLDING
Different from the traditional continuous processes with two-
dimensional training data, batch processes usually have the
training data expressed by the three-dimensional matrix,
which is also called multiway data matrix. Given the batch
process with J process variables and K measurement points
for each batch, I batches are gathered to constitute the training
data X(I × J × K ). It is often difficult to train the moni-
toring model directly with multiway data matrix. Therefore,
the common way is to firstly unfold the multiway data into
two-dimensional matrix and then build themonitoringmodel.

There are different unfolding manners used in the present
studies [11], [15]. A popular one is the batch-variable unfold-
ing [15], which includes the batch unfolding and variable
unfolding. At the first step, this manner unfolds the matrix
along the batch direction and performs the z-score nor-
malization. Then at the second step, the normalized data
is re-arranged along the variable direction for monitoring
models development.
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FIGURE 1. Batch-Variable unfolding demonstration.

B. SUPPORT VECTOR DATA DESCRIPTION
SVDD is an effective method for data description and
processing. Its key is to find the smallest volume hyper-sphere
containing the described objects in high dimensional space.
The normal and abnormal samples are distinguished by
spherical decision boundary constructed by support vectors.

Given a dataset {xi, i = 1, 2 · · · l}, SVDD is to solve the
following optimization problem [17]

min
R,a,ξ

R2 + C
l
6
i=1
ξ i, (1)

s.t. ‖8(xi)−a‖2 ≤ R2 + ξ i , ξ i ≥0 , i = 1, 2 · · · l,

(2)

where a is the center,8(·) is the nonlinear mapping function,
R is the radius, ξ i is the slack value of each sample, C
is a penalty constant [17]. The Lagrange multiplier αi is
introduced to construct the Lagrange function, which leads
to the following constraints as

l∑
i=1

αi = 1, a =
l∑
i=1

αi8(xi), 0 ≤ αi ≤ C . (3)

The inner product computation of nonlinear function results
in the kernel expression asK (xi, xj) = 8(xi)·8(xj). Based on
the kernel trick, the SVDD objective function is transformed
as [17]

max L =
l∑
i=1

αiK (xi, xi)−
l∑
i=1

l∑
j=1

αiαjK (xi, xj), (4)

s.t. 0 ≤ αi ≤ C,
l∑
i=1

αi = 1. (5)

When αi > 0 is satisfied, the corresponding sample x∗i is
Support Vector (SV). The hyper-sphere radius is the distance
between the center a and any SV x∗i , as shown in the following
formula [17]

R =

√√√√√1− 2
l∑
i=1

αiK (x∗i , xi)+
l∑
i=1

l∑
j=1

αiαjK (xi, xj). (6)

To determine whether new sample xnew is inside the sphere,
the distance from new sample xnew to center amust be calcu-
lated. This distance Dist is defined as the anomaly detection

indicator expressed by [17]

Dist=

√√√√√1−2
l∑
i=1

αiK (xnew, xi)+
l∑
i=1

l∑
j=1

αiαjK (xi, xj). (7)

If the hyper-sphere radius is set as the confidence limit, the
statistical meaning is not clear. Therefore, we adopt the kernel
density estimation to determine the 99% confidence limit
Dlimit for the distance statistic Dist . If Dist > Dlimit , the new
sample xnew is considered as the fault sample.
The basic multiway SVDD (MSVDD) method builds a

batch process monitoring model by integrating multiway data
unfolding and SVDD modeling. It takes multiple batches of
data as a whole and establishes a single SVDD monitoring
model. This kind of overall modeling strategy maymiss some
faults which only affect the local data behaviors. Further-
more, SVDD is intrinsically one static modeling technique
and can not indicate the process dynamic changes. These
shortcomings of MSVDD lead to the limited monitoring
performance on the batch process faults.

III. A TWO-DIMENSIONAL LOCALIZED SVDD METHOD
WITH DYNAMIC CHARACTERTIC ANALYSIS
In this section, we firstly clarify the motivation for our
method and give its basic framework. Then, the techni-
cal details, including the two-dimensional localization tech-
nique, dynamic characteristic analysis based on slow feature
analysis, and the multiple sub-model ensemble strategy, are
explained one by one.

A. RESEARCH MOTIVATION AND MODEL FRAMEWORK
As mentioned in the introduction part, the basic SVDD
monitoring method for batch processes has the intrinsic
limitations because it does not carry out the deep local
information mining and omits the process dynamic analysis.
In order to develop a new SVDD algorithm to overcome the
above limitations, it incurs three related problems as follows.
(1) How do we perform deep local information mining?
The present works have developed some multi-block and
multi-phase methods. However, these methods are restricted
to one dimension, which are not enough to describe the local
behavior sufficiently. (2) How do we capture the dynamic
information in the local data segment? When fault occurs,
it may destroy the dynamic or/and static relationships. If
the data relationship change can be clearly investigated, it is
beneficial to ameliorate monitoring performance. (3) Once
multiple local models are developed, how do we integrate
them to form a global monitoring result? To inspect the local
data behavior is necessary to the model developers. However,
the production operators often require one global monitoring
chart. Therefore, the final monitoring charts should integrate
all the local models rather than demonstrate the numerous
local results.

Aiming at the above three problems, a two-dimensional
localized dynamic SVDD (TLDSVDD) method is designed
for batch process fault detection. The whole method
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FIGURE 2. Framework of the proposed TLD-SVDD method.

framework is depicted as Fig. 2. Firstly, the two-dimensional
localization procedure is performed on the training data.
In this step, hierarchical clustering based on the distance
correlation coefficient is applied in the variable dimension
for the variable block division, and then the phases of the
variable block are divided by spectral clustering based on
mutual information as the local information mining of the
sample dimension. Secondly, slow feature analysis method is
introduced to capture the process dynamic changes so that the
dynamic and static SVDD sub-models are developed respec-
tively. Finally, Bayesian inference is adopted to fuse multiple
local SVDDmodels for the global statistics. The global statis-
tics include the dynamic and static statistics, which indicate
the process changes from different perspectives.

B. TWO-DIMENSIONAL LOCALIZATION SCHEME WITH
MULTI-BLOCK AND MULTI-PHASE DIVISION
This section describes in detail the two-dimensional local-
ization analysis, including the two steps of local variable
analysis for multi-block division and local sample analysis
for multi-phase partition.

The first-dimension localization is performed on the vari-
ables. This step is to investigate the similarity between vari-
ables and divide all the variables into several sub-blocks for
monitoring. After this step, the variables with high corre-
lations are divided into a group according to the similarity,
and variable coupling in different sub-blocks is reduced. The
key point of this step is to determine some criterion to judge
the relationships between local variables. Pearson correlation
coefficient is a common method to measure the variable rela-
tionship, but it only describes the linear correlation between
two variables. Even if the Pearson correlation coefficient
is equal to zero, it only means that the two variables are
not linearly correlated. Different from Pearson correlation
coefficient, the distance correlation coefficient can measure
the nonlinear correlation between two random vectors [37].
Therefore, this article selects the distance correlation coef-
ficient as the criterion. However, the distance correlation
coefficient only provides the measure on the nonlinear corre-
lation degree, but can not indicate the correlation direction.
Considering that the cosine metric is one effective tool to

determine the variable correlation direction, a new similarity
measurement method is proposed for the sub-block division
by combining the distance correlation coefficient and cosine
similarity. The similarity between two variables zi and zj is
given by:

Sij = Drij × Cosij, (8)

where Drij is the distance correlation coefficient between
variables; Cosij is the cosine similarity between variables.
Distance correlation between the vector zi and zj is computed
by [37]

Drij =


covd (zi, zj)√

covd (zi)covd (zj)
, covd (zi)covd (zj) > 0

0 covd (zi)covd (zj) = 0,
(9)

where covd (zi, zj) represents the distance covariance between
the vector zi and zj. The distance covariance is calculated
by

cov2d (zi, zj) = Ŝ1 + Ŝ2 − 2Ŝ3, (10)

Ŝ1 =
1
n2

n∑
l=1

n∑
k=1

∥∥∥zli − zki ∥∥∥ ∥∥∥zlj − zkj ∥∥∥ , (11)

Ŝ2 =
1
n2

n∑
l=1

n∑
k=1

∥∥∥zli − zki ∥∥∥ · 1n2
n∑
l=1

n∑
k=1

∥∥∥zlj − zkj ∥∥∥,
(12)

Ŝ3 =
1
n3

n∑
l=1

n∑
k=1

n∑
m=1

∥∥∥zli − zmi ∥∥∥ ∥∥∥zkj − zmj ∥∥∥ . (13)

Drij ∈ [0, 1], and Drij = 0 only if zi and zj are independent
[37]. Cosine similarity of variables zi and zj is defined as

Cosij =
zi · zj
‖zi‖

∥∥zj∥∥ . (14)

After the similarity matrix S for all variables is obtained. The
division of variable blocks is realized as follows:

1) Compute the similarity for variable pairs by (8).
2) Take each variable as one individual cluster and

merge closest variables into the same cluster based on
similarity analysis.
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3) Calculate the similarity between the new cluster and
the current cluster and perform step 2) again until all
clusters are grouped together.

4) Determine the variable sub-blocks B according to the
cluster diagram and give the final clustering results.

Generally, the block number B can be obtained by observ-
ing the cluster diagram. For the complicated case, the optimal
block number B can be also determined by some quantitative
indices such as the Calinski Harabasz index [38].

The second-dimension localization is performed on the
samples, which is to divide all the monitored samples into
several phases. The real batch processes often involve mul-
tiple operating stages. In this work, the improved spectral
clustering is utilized to implement the multi-phase division.

The basis of spectral clustering is graph theory, where the
data clustering is transformed into the optimal partitioning
of undirected graphs [39]. The crux of undirected graphs
partitioning is the similarity matrix. The traditional spectral
clustering algorithm constructs an adjacent matrix with the
fully connected graph, and applies the Gaussian kernel func-
tion to define the similarity measure between sample xi and
sample xj.

W ij = exp(−

∥∥xi − xj∥∥2
2σ 2 ), (15)

where σ is a parameter of Gaussian kernel width. Intrinsi-
cally, the above similarity depends on the Euclidean distance
between samples. However, a simple Euclidean distance can-
not accurately describe the samples similarity for phase divi-
sion because it does not consider the variable correlation
degree. To build a comprehensive similarity evaluation for
batch process phase division, a mixed similarity based on the
mutual information and the Euclidean distance is defined as

W ij == β
∥∥xi − xj∥∥2 + (1− β)/MI ij, (16)

where the weight coefficient β ∈ [0, 1] is to balance the
distance and correlation,MI ij denotes the mutual information
between xi and xj, computed by [40]

MI ij = −
1
2
log(1− ρ2ij), (17)

where ρij is cross correlation coefficient of sample xi and
sample xj.
A degree matrix � is defined as

�ii =
∑
j

W ij. (18)

Further, the Laplace matrix L is given by

L = �−W . (19)

The eigenvalue decomposition on the Laplace matrix L leads
to the eigenvectors corresponding to the k maximum eigen-
values, and the K-means clustering algorithm is applied to
these eigenvectors. Based on this, the whole data set is par-
titioned into several phases. It should be noted that the focus
of this article is to design a two-dimensional localization
strategy, but not just to emphasize the improvement of one
localization analysis method.

C. DYNAMIC CHARACTERISTIC ANLYSIS USING SLOW
FEATURE ANALYSIS
Slow feature analysis (SFA) is a recently rising dynamic data
analysis technology, which extracts slowly changing features
from the temporal signals for further statistical analysis.
The present studies have demonstrated its effectiveness in
dynamic data analysis [11].

Given the input signal x(t) = [x1(t), · · · , xJ (t)]T from J
sensors with t ∈ [t0, t1], SFA is to find a transformation
function g(x(t)) = [g1(x(t)), g2(x(t)) · · · gJ (x(t))]T to make
the output signal sj(t) = gj(x(t)), j ∈ {1 , 2, · · · J} vary as
slowly as possible. An optimal objective function of SFA
is to minimize the temporal variation of the output signal,
as follows [41]:

min1(sj) = min
〈
ṡ2j
〉
, (20)

under the constraints 〈
sj
〉
= 0, (21)〈

s2j
〉
= 1, (22)

∀i 6= j
〈
si · sj

〉
= 0, (23)

where 1(·) is the temporal variation of the output signal,
ṡj is the first-order derivative of the output signal sj. Here,
ṡj(t) = sj(t)− sj(t − 1). The angle brackets express temporal
averaging, that is

〈f 〉 =
1

t1 − t0

∫ t1

t0
f (t)dt. (24)

The constraints would avoid a constant solution and make
solution less arbitrary. If gj(·) is a linear transform, sj(t) =
gj(x(t)) = vTi x(t) is expressed by a transform vector vi. The
objective function is then re-written as

min
〈
ṡ2j
〉
= min vTj

〈
ẋ(t)ẋ(t)T

〉
vj = min vTj Avj, (25)

s.t
〈
s2j
〉
= vTj

〈
x(t)x(t)T

〉
vj = vTj Bvj = 1, (26)

where A is a covariance matrix of ẋ(t), B is a covariance
matrix of x(t). The matrix V = [v1, · · · , vJ ] is obtained by
solving the generalized eigenvalue problem

AV = BV3, (27)

where3 is the eigenvalue matrix. Some dynamic information
is extracted by SFA in the phase matrix, that is

Sp = XpV . (28)

Here, the matrix Sp expresses static information of each
phase data for batch processes. The temporal slow feature Ṡp
represents the speed of signal variance which describes the
dynamic information of every phase data.

To apply the SVDD modeling on the static part Sp
and the dynamic part Ṡp can bring the static monitoring
statistic SDist and the dynamic monitoring statistic DDist ,
respectively.
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D. MULTIPLE LOCAL MODELS ENSEMBLE BY BAYESIAN
INFERENCE
By combining the two-dimensional localization processing
and SFA modeling, a series of sub-block monitoring models
are developed for each block of each phase. Therefore, at each
operation phase, we can obtain the corresponding sub-block
monitoring statistics {SD(b)

ist , DD
(b)
ist , 1 ≤ b ≤ B}. However,

a holistic monitoring indication is needed for judging the
system status of the whole process. In this article, we adopt
the Bayesian strategy to fuse the multiple sub-blocks.

For a given testing sample xt at the t-th sample instant,
the static and dynamic fault probability induced by the b-th
sub-model at the corresponding phase is defined as [42]

P(b)S (F |xt ) =
P(F)P(b)S (xt |F)

P(N )P(b)S (xt |N )+ P(F)P(b)S (xt |F)
, (29)

P(b)D (F |xt ) =
P(F)P(b)D (xt |F)

P(N )P(b)D (xt |N )+ P(F)P(b)D (xt |F)
, (30)

where P(F) and P(N ) are the prior probabilities of fault and
normal state, respectively. With the confidence level α =
0.01, P(N ) = 1 − α = 0.99 and P(F) = α = 0.01. The
occurring probabilities of the testing sample under the fault
and normal state are defined as [42], [43]

P(b)S (xb|F) = exp(−
SD(b)

limit

SD(b)
ist

), (31)

P(b)S (xb|N ) = exp(−
SD(b)

ist

SD(b)
limit

), (32)

P(b)D (xb|F) = exp(−
DD(b)

limit

DD(b)
ist

), (33)

P(b)D (xb|N ) = exp(−
DD(b)

ist

DD(b)
limit

), (34)

where SD(b)
limit ,DD

(b)
limit are the control limits corresponding to

SD(b)
ist , DD

(b)
ist , respectively.

To combine the monitoring statistic of all sub-blocks,
the final global statistics are calculated by

SBIC =
B∑
b=1

wbP
(b)
S (F |xt )

P(b)S (xt |F)
B∑
i=1

P(i)S (xt |F)
, (35)

DBIC =
B∑
b=1

wbP
(b)
D (F |xt )

P(b)D (xt |F)
B∑
i=1

P(i)D (xt |F)
, (36)

where wb is a weight coefficient used to highlight the fault
blocks, which is defined as

wb =
Conb
B∑
b=1

Conb

B, (37)

FIGURE 3. Implementation of the proposed TLD-SVDD method.

where Conb expresses the contribution degree, defined by

Conb =

{
1 D(b)

ist > D(b)
limit

0 D(b)
limit ≥ D

(b)
ist .

(38)

Monitoring threshold SBIClimit and DBIClimit are determined
by the kernel density estimation.

E. PROCESS MONITORING PROCEDURE
The whole process monitoring includes two stages: model-
ing stage and online detection stage. The flow chart of the
proposed TLD-SVDD method is shown in Fig. 3

1) MODELING STAGE
1) Gather the normal data from multiple batches as the

training dataset X and upfold it.
2) Carry out the two-dimensional localization processing,

which leads to the phase division and the variable block
partition results.

3) For each block at each operation phase, perform
the slow feature analysis to build the local dynamic
monitoring model.

4) Compute the static and dynamic monitoring statistics
{SD(b)

ist , DD
(b)
ist , 1 ≤ b ≤ B} for each block.

5) Determine global control limit according to the normal
data.

2) ONLINE STAGE
1) Obtain the real-time sample and preprocess it.
2) Divide the variable group according the variable-

dimension localization results.
3) Judge the operational phase of real-time sample for

each variable sub-block according to the sample-
dimension localization results.

4) Conduct SFA to extract static slow features and
temporal slow features.
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FIGURE 4. Schematic diagram of penicillin fermentation process.

5) Calculate the static and dynamic monitoring statistic
SD(b)

ist , DD(b)
ist , and combine them through Bayesian

inference to get global monitoring statistics SBIC and
DBIC .

By investigating the process monitoring procedure of the
proposed TLDSVDD method, the main advantages of the
proposed method lie in two aspects. On the one hand, a two-
dimensional localization strategy is designed tomine the local
behaviors of process data. On the other hand, for each local
data segment, the slow feature analysis is applied to build the
local dynamic sub-models, which can monitor the static and
dynamic process changes simultaneously. With these advan-
tages, TLDSVDD provides the greater potential to monitor
the batch process faults compared with the basic MSVDD,
multi-block SVDD, and multi-phase SVDD methods.

IV. CASE STUDIES
The proposed strategy based on TLDSVDD is tested with the
penicillin fermentation process. It is compared with MPCA,
MSVDD, MPSVDD, MBSVDD and MBMPSVDD. Here,
MSVDD is the basic multiway SVDD method. MPSVDD is
themulti-phase SVDDmethod by combiningmultiple phases
partition. MBSVDD is the multi-block SVDDmethod, which
integrates the variable block division and MSVDD. This
method only involves the localization analysis at the vari-
able dimension. MBMPSVDD is the improved version of
MBSVDD, which further considers the sample dimension
localization. However, it does not involve the dynamic data
analysis. Among these methods, our proposed TLDSVDD
method utilizes the local and dynamic data information
sufficiently.

A. THE PENICILLIN PRODUCTION SYSTEM
Penicillin is a well-known antibiotic in modern medicine.
Penicillin fermentation is a fed-batch fermentation process
with nonlinear, dynamic, and multi-phase characteristics. By
controlling the PH value and the temperature in the fermen-
tation reactor, the reaction can be carried out under optimal
conditions. A schematic diagram of penicillin fermentation
process is shown in Fig. 4. The penicillin simulation platform
Pensim 2.0 [44] generates 20 batches of normal production

TABLE 1. The monitored process variables.

TABLE 2. The tested Fault patterns.

data as modeling data and 10 batches of data as test data.
The reaction time of each batch is 400 h, and the samples
are recorded every 0.5 hour. 10 process variables, as shown
in Table 1, are selected as the monitored variables.

The fault patterns of penicillin fermentation are shown
in Table 2. Fault F1, F3, F5 are step change of process
variables, while fault F2, F4, F6 are ramp change of pro-
cess variables. In fact, all these faults belong to the process
condition changes. As the Pensim 2.0 only provides these
faults, no other kinds of faults are discussed in this article.
In the following monitoring charts, control limits are indi-
cated by dotted lines and the monitoring statistics are plotted
by solid lines. If the statistics of five consecutive sampling
moments exceed the control limit, a fault is judged and the
first sampling moment is thought to the fault detection time.
Two indices, including false alarming rate (FAR) and fault
detection rate (FDR), are used to evaluate different methods,
which are defined as follows.

FAR =
Nn→f

Nn
× 100%, (39)

FDR =
Nf→f

Nf
× 100%, (40)

where Nn, Nf are the numbers of normal and faulty samples,
respectively, Nn→f is the number of normal samples exceed-
ing the confidence limit, and Nf→f is the number of faulty
samples exceeding the confidence limit from the first detected
sample.

B. MONITORING MODEL DEVELOPMENT
First, the normal training dataset is preprocessed. The
three-dimensional matrix of training set X(20 × 10 × 800)
is unfolded along the batch direction into a two-dimensional
matrix X(20 × 8000). After it is normalized, X is unfolded
along the variable direction into X(16000× 10).
Next, the local information of variable dimension is

mined through multi-block division method. The improved
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FIGURE 5. Hierarchy dendrogram of process variables.

TABLE 3. Sample phase division results.

hierarchical clustering method is used to cluster all variables
into three sub-blocks. The result of multi-block division is
given in Fig. 5. The first sub-block contains the variables 2,
3, 6, 7. The second sub-block has the variables 1, 8. The third
sub-block is made up of variables 4, 5, 9, 10.

Then the local information at the data sample dimension is
mined by the phase division. The spectral clustering method
based on mutual information is applied to the phase division
of sub-data sets. The parameter β in the similarity matrix is
set as 0.5 by cross validation. The division results of opera-
tional phases are shown in Table 3, which are consistent with
the four physical stages of penicillin fermentation process.
A validity index S_Dbw [45], called scattering and density
between the clusters, is used to evaluate the results of clus-
tering algorithms. The optimal phase number for the selected
historical data is 4 by calculating the value of S_Dbw. We
also apply this index to compare different clustering meth-
ods including k-means, spectral clustering, and MI-spectral
clustering respectively. The smaller value indicates the well-
separated and compact cluster. The clustering evaluation
indices of phase division with k-means algorithm, spectral
clustering algorithm, and MI-spectral clustering algorithm
are 1.8340, 0.1708, 0.1310, respectively. By these results,
the improved spectral clustering method achieves better sep-
aration between the clusters and has lower average scattering
within a cluster.

C. FAULT DETECTION RESULTS
In this section, the proposed method and other five methods
are applied in fault detection. For all the SVDD models,
Gaussian kernel function is selected with the kernel width
σ = 6, and the penalty constant C is set as 0.08. In MPCA,
the number of principal components is selected according to
the principle that the contribution rate of principal component
variance is above 95%, and the confidence limit of 99%
is selected to determine the threshold value of monitoring
statistics.

FIGURE 6. Process monitoring results on normal data.

Firstly, the normal test set is monitored. The simulation
results of MPCA, MSVDD and TLDSVDD are compared
in Fig. 6. By this figure, most of monitoring statistics are
below the confidence limit, which means the batch process
runs under normal operating conditions. In Fig. 6(a), MPCA
has the false alarm rates (FARs) of 1.37% and 1.13% for
T 2 and SPE, respectively. The FAR of MSVDD method is
2.67%, while the FARs of TLDSVDD method are 1.88%
and 2.14% for the static and dynamic statistics, respec-
tively. Three other methods of MPSVDD, MBSVDD and
MBMPSVDD are also tested. Their FARs are 1.5%, 2%,
and 1.38%, respectively. All the methods can give the ideal
monitoring of the normal operations.

Fault F1 is an aeration rate fault with small step change.
The fault detection results for F1 are presented in Fig. 7.
MPCA method is a classic method for batch process fault
detection. Its monitoring results are shown in Fig. 7(a), where
the T 2 statistic detects the fault F1 at 122 h with the fault
detection rate (FDR) of 30%. However, MPCA SPE statistic
doesn’t detect the fault F1 effectively, and there are some
false alarms during the non-fault period. In Fig. 7(b), the FDR
of MSVDD method is 38%, which is a little higher than
MPCA method. Considering the multi-phase nature of the

VOLUME 8, 2020 181199



X. Wang et al.: Batch Process Monitoring Method Using TLDSVDD

FIGURE 7. Process monitoring results on fault F1.

batch process, the penicillin fermentation process is divided
into four phases for monitoring, and the monitoring results
of MPSVDD are shown Fig. 7(c). After phase division, each
phase has different change trends, and the control limit of
the local model is tighter than that of the global model.

These factors lead to the higher FDR of 75% in theMPSVDD
monitoring chart. When MBSVDD method is applied, the
variable groups is divided by the improved hierarchical clus-
tering, and then the SVDD sub-models are constructed for
each variable block. The fault detection results obtained by
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FIGURE 8. Process monitoring results on fault F4.

MBSVDD are demonstrated in Fig. 7(d), where FDR is
increased to 78%. The statistics in the first variable sub-block
and the third variable sub-block do not exceed the threshold,
showing that the variables contained in the two groups have
nothing to do with the fault F1. The fault is detected only

FIGURE 8. (Continued) Process monitoring results on fault F4.

in the second sub-block, which contains the aeration rate
and reactor temperature. The multi-block method can not
only improve the efficiency of fault detection, but also help
to identify the causes of faults. On the basis of MBSVDD
method, MBMPSVDD divides the sub-block into multiple
phases, and then the individual monitoring is performed
through the local SVDD model. A global monitoring statis-
tic BIC of MBMPSVDD method is shown in Fig. 7(e).
The FDR of MBMPSVDD method is further prompted to
85%. In the MBMPSVDD monitoring charts, monitoring
performance has been improved significantly due to the two-
dimensional localization analysis. Considering the dynamic
behavior with the transient states, the static fault detection
rate of TLDSVDD method reaches 86% in Fig. 7(f). The
SFA algorithm extracts the slowly changing components to
mine more dynamic information. The alarm signal is firstly
obtained at 101 h. This means that the proposed method
could capture the change of dynamic behavior earlier. It can
be observed that most of dynamic statistic DBIC values are
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TABLE 4. Comparison of fault detection rates of the six methods.

under the control limit, and only a few samples exceed the
threshold at the beginning of the failure. This explains that
the fault F1 only destroys the static data relationship and
does not influence the system dynamic behavior seriously.
To compare all these six methods, TLDSVDD has the earlier
fault detection with the highest detection rate for the fault
F1. Therefore, the TLDSVDD method is superior to the
other five methods because of the considerations of the local
information and dynamic information.

Fault F4 is the ramp fault with slow drift of agitator power.
Fig. 8(a) shows that the MPCA T 2 statistic detects the fault
at 249 h, and the FDR is 45.5%. The MPCA SPE statistic
doesn’t detect the fault F4 successfully. By contrast, the
MSVDDmonitoring statisticDist in Fig. 8(b) detects the fault
at 236.5 h with the FDR of 49.67%. The MSVDD method
detects faults earlier than the MPCA method. As is shown
in Fig. 8(c), the fault is detected at 227.5h by the MPSVDD
method and FDR is further increased to 53.17%. MBSVDD
method does a little better than MPSVDD. The monitor-
ing statistic of MBSVDD alarms the fault at 215 h with a
higher FDR of 57.17%. Through the partition of variable
blocks, the influence of local variables is highlighted and the
MBSVDD method can detect the fault faster. Fig. 8 (e) is the
result of the MBMPSVDD method, which gives the consec-
utive alarms from the 189 h. The FDR of MBMPSVDD is
63.83%, exceeding theMBSVDD andMPSVDDmethods. In
Fig. 8(f), the detection times of two TLDSVDD statistics are
189 h and 226 h, respectively. Especially, the SBIC gives an
earlier fault detection. Furthermore, the FDRs of two statistics
are 65.33% and 35.8%, respectively. As can be seen from
the above comparison, the proposed TLDSVDD method can
detect the fault F4 earlier, and its FDR is higher than other
methods.

To clearly compare the monitoring performance of the six
methods, more fault detection cases are listed in Table 4.
As the basic methods, MPCA and MSVDD give the poor
monitoring. Their average FDRs are below 80%. With the
local data characteristic analysis, MBSVDD and MPSVDD
achieve the clear improvement of average FDR. The average
FDRs of these two methods exceed 80%. As the combina-
tion of MBSVDD and MPSVDD, MBMPSVDD obtains the
average FDR of 88.22%. The proposed TLDSVDD not only
makes use of all local variable and sample information, but
also highlights the dynamic data changes. The average FDR
by TLDSVDD SBIC statistic is 90.89%, which is the highest
among the six methods. Generally, TLDSVDD can describe

process information more sufficiently and achieves best fault
detection performance.

In the monitoring results of TLDSVDD, two monitoring
statistics SBIC and DBIC are applied. For the small step fault
F1, it only breaks the static relationship. Therefore, SBIC
gives the clear alarms but DBIC indicates no changes. As to
the ramp faults F2, F4, and F6, they affect both relation-
ships but the static relationship is destroyed more seriously.
Therefore, the SBIC does better than DBIC in terms of fault
detection. But for the faults F3 and F5with the significant step
changes, they destroy the static and the dynamic relationships
simultaneously so that both SBIC and DBIC give the clear
fault detection.

V. CONCLUSION
In this article, a two-dimensional localized dynamic SVDD
monitoring strategy is proposed for batch processes. This
method can deal with both the local information mining and
dynamic data analysis effectively. A two-dimensional local-
ization strategy is designed to improve the SVDD modeling
by combining the variable sub-block division and the phase
partition. SFA is applied to extract the static and dynamic fea-
tures as the input of the SVDD monitoring model. Compared
with the basic SVDD with original variables as the input, the
SFA features can provide more plentiful information about
process changes. Application to the penicillin fermentation
process shows that the proposed method can detect faults
sensitively and provide the meaning monitoring results for
further fault source diagnosis. However, some related prob-
lems are also noteworthy. On the one hand, the local model
is developed by the linear SFA method, which omits the
possible nonlinearity in the local models. On the other, this
paper assumes that all the batches are with the same time
length, which may be not satisfied in the real applications.
Therefore, the nonlinear local modeling and uneven batch
process monitoring are two valuable problem deserving the
deep studies in the future.
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