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ABSTRACT A smart grid (SG) is an emerging technology that provides electricity in a cost-efficient and
eco-friendly way. SG combined with distributed energy resources (DERs) plays a crucial role in extending
the existing grid’s capacity while mitigating carbon emissions. The potential sources of DERs include solar,
wind, and tidal energy. Usually, these DERs are located far away from the grid and not necessarily tied to
the grid system. However, the energy trading capabilities of a grid-tied DERs are getting attention, both
from academia and industry. This bonding of grid-tied DERs helps to decrease the loss of surplus energy,
build an energy storage capacity, and other operational charges. Energy-consuming flexible home tasks can
be optimized coordinately with the operations of DERs to minimize the economic cost and CO2 emissions.
In this work, our problem is multi-objective and we aim to reduce both electricity price and CO2 emission.
We proposed a multi-objective self-adaptive multi-population based Jaya algorithm (PMO-SAMP-Jaya) to
schedule the operations of flexible home tasks. Different pricing schemes have been applied to uncover
the correlation between CO2 emission, economic cost, and pricing schemes. We assume a smart building,
including 30 smart homes with PV and energy storage system (ESS) as DERs. Promising results have shown
the effectiveness of our proposed scheme.

INDEX TERMS Smart grid, distributed energy resources (DERs), demand side management, environmental
scheduling, renewable energy, meta-heuristic optimization.

I. INTRODUCTION
Energy cost and pollution mitigation are two major concerns
of global warming and fossil fuel reduction [1]. Presently,
electricity generation systems are mostly based on power
plants that use coal, natural gas, oil, etc., as a primary source
and run in intermediate positions. These plants produce
electricity and then dispatched to the consumers through
transmission and distribution networks. Several economic,
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environmental, political, social, and technical factors prompt
the modern grid. A centralized generation system refers to a
large-scale power generation at centralized facilities. These
systems are normally positioned far away from the end-
consumers and connected with the high voltage transmission
lines. Due to high distance, the overall energy losses in a
centralized generation system are about 65% or more [2].
However, DERs are considered as an alternative to central-
ized generation systems because they have economic advan-
tages to avoid long-distance transmission of power. Further,
DERs also has environmental advantages of generating fewer
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FIGURE 1. Components of SG infrastructure.

carbon emissions [3]. A DER system having renewable
energy sources can be conceived as a special case of SG if
it participates in demand-side management.

Researchers have addressed the recommendation of
upgrading the existing grid network with the SG to meet
the future energy demand. SG offers a substantial develop-
ment in the power delivery systems incorporating advanced
sensing and communication technologies at transmission and
consumer ends. SG is regarded as self-healing, resilient to
electrical faults, and a consumer-friendly system; equipped
with advanced metering and communication technologies
such as advanced metering infrastructure (AMI), home area
network (HAN), and wide area network (WAN). Information
flows in bidirectional mode simultaneously with the interop-
erability among the homes with the grid. This entire system
comes-up with the probability to optimize the users’ elec-
tricity consumption, and improve the operations of the entire
system through a peak power reduction [4]–[6], smooth-
ing the demand curve. It is unrealistic to ask the users to
schedule their electricity usage optimally without providing
them incentives. Therefore, a load management technique is
required with a little awareness of users for setting-up and
managing the load and let them estimate the costs and profits
with different schedules. In building up the DSM algorithm
three steps are largely considered such as data possession,
load building, and finally the load scheduling. In the first
steps, as the name suggested the power demand information
is accumulated via the HAN or local network and estab-
lished the load demand profiles. After that, load forecasting
information is obtained from existing and historical trends.
After getting data, the demand outline is generated, and the
load demand is forecasted. In the last step, smart appliances
automatically modify their time schedules to decrease the
energy demand in peak-times based on pricing signals.

Homes utilize 40% energy of the world [7], so, home
energy management system (HEMS) plays an active role
in decreasing both: air pollution and energy price globally.
Due to the rapid advances in communication technologies,
smart homes are considered promising solutions, which fur-
ther strengthens the idea. A smart home contains the home
HEMS, AMI, and HAN system. AMI measures and collects
the data from utility or service providers through an advanced
communication medium, such as broadband over power
line, power line communication, or fixed radio-frequency as
shown in Figure 1. HEMS is an essential part of the smart
home connected at the consumption side. It receives a pricing
signal from smart meter also communicates with home appli-
ances via HAN [8]. HEMS schedules the appliances at an
optimal time slot in response to the pricing signal to decrease
the consumption cost. Energy consumption can be further
decreased by 30% by modifying the customer’s living style
via demand-side management [9]. Different dynamic pricing
schemes for the domestic customer have been presented in
[10] to decrease the power demand at peak times by modi-
fying the users’ electricity consumption pattern such as day-
ahead pricing (DAP), critical peak pricing (CPP), time-of-use
(ToU), inclining block rate (IBR) and real-time pricing (RTP).

Although, several studies are present in the literature, how-
ever, there are still certain challenges. Most of the literature
cited above shows that most of the studies deal with one
problem at a time i.e., optimization of CO2 emission or
users’ bill. Some of the work devoted to handle both the
objectives is based on mathematical techniques, providing
exact solutions at the cost of high computational complexity.
For instance, mixed-integer linear programming (MILP) [11]
is applied for optimizing the operations of home tasks and
DERs operation, to minimize users’ bill and CO2 emissions.
Heuristic techniques can find a near-optimal solution with
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lower computational complexity [12]. Heuristics algorithms
have been successfully applied for solving optimization prob-
lems, however, their performance highly depends on param-
eter tuning. In our research, we have applied PMO-SAMP
Jaya [13] which is an enhanced version of the Jaya-algorithm
[14] with no algorithm-specific parameters. To gain financial
and environmental objectives both flexible home appliances
and DERs operate in coordination with multiple smart homes
sharing a common microgrid. However, the pricing scheme
and CO2 intensity profile are not always directly correlated,
and sometimes both are conflicted with each other.

There are mainly two methods to solve multi-objective
optimization problems, and these are the priori and posteriori
methods. In a priori method, a multi-objective optimization
problem is converted into a single objective problem by
giving suitable weight to every objective. This eventually
leads to a single optimum solution. In a priori method,
the predilections of the decision-maker are asked and themost
suitable solution according to the given predilections is found.
A posteriori method gives multiple trade-off solutions for a
multi-objective optimization problem in a single simulation
run. The designer can choose one solution from the multiple
Pareto-optimal solutions based on the requirement of the
objectives.

In our research, we address a multi-objective optimization
problem (i.e., decreasing the everyday electricity cost and
CO2 emissions simultaneously). To measure the potency of
our algorithm, we considered a smart building consisting
of 30 homes with an installed PV system and ESS. The major
contributions of this study are summarized here:
• We presented a PMO-SAMP Jaya algorithmwith an aim
to minimize cost and CO2 emissions simultaneously.

• Analyzed the impact of pricing schemes on environmen-
tal scheduling (i.e., CO2 minimization). Three separate
pricing schemes are applied to assess the correlation of
pricing schemes on CO2 emissions.

• For validation of our scheme, we have considered a
smart building with 30 households having its own
domestic micro-grid.

• Reduce the peak to average ratio (PAR) and decrease
the peak power consumption by applying peak demand
change.

The remainder of the paper is coordinated as fol-
lows: Section II reviews state-of-the-artwork of existing
approaches and methodology. Problem description is pre-
sented in section III and problem formulation is addressed
in section IV. Section V discusses the proposed method.
Simulations and discussions are given in section VI and
finally, section VII includes the concluding observations of
our work.

II. RELATED WORK
HEMs perform a significant role in mitigating the CO2 and
consumer electric bill. References [15], [16] proposed a
HEMS model to handle the operation of home appliances
to reduce the electricity bill. Various energy management

techniques with the integration of DERs have been examined
in quite recent times. To meet the energy requirements of
a building, a model predictive control (MPC) technique is
proposed by Dagdougui et al. in [17]. The author aims in this
study is to manage the energy of smart homes with various
DERs and the energy storage capacity. A grid-tied micro-
grids system is proposed in [18]. The author utilizes theMILP
technique to schedule the operation of the grid-tied micro-
grids system. The gain is maximized by keeping diversifying
and scheduling the electricity generation, storage, and energy
trading to the conventional grid. A genetic algorithm (GA) is
proposed in [19] to find the optimal schedule for minimizing
the consumer’s bill for both microgrids and domestic applica-
tions. A multi-agent system proposed in [20] schedules every
microgrid exclusively to meet its total demand. Kriett and
Salani [21] proposed a general MILP scheme intending to
minimize the running charges of both thermal and electrical
power in a domestic microgrid.

The approach in [22] finds the optimal consumption pat-
tern for home usage to restrict the peak power demand. Appli-
ances are categorized as time-triggered and event-triggered
by considering their physical models such as a washing
machine and refrigerators. A pricing scheme RTP with DSM
is presented to find the optimal power consumption schedule
households [23], considering fixed, flexible and interruptible
appliances. Stochastic and robust optimization techniques
are adopted for the scheduling of home tasks. Furthermore,
the authors alsomeasured the performance of both techniques
with each other. In [24], the authors proposed a heuristic
algorithm for the resource constraint-scheduling problem.
The authors designed and implemented an energy-efficient
smart home having a remotely controlled facility. The appli-
ances are scheduled on priority-basis considering overall cost
and power consumption limits at any time slot. Derin and
Ferrante [25] model considers appliances operating time,
counting electric vehicle batteries, washing machine, and a
dishwasher as the home appliance. The exhaustive search
takes relatively less time for these three appliances in a time
slot of 7 hours. Table 1 summarises the state-of-the-artwork
with their strengths and limitations.

Adika and Wang [26] technique creates a cluster of home
appliances, depending on their usage time by tracking the
accumulated loads with similar time-schedules for other time
slots having specific power limits. Sianak et al. proposed a
fuzzy decision-making approach [27] by applying the RTP
scheme to best control the usage of appliances. The fuzzy
approach is employed to support societies for evaluating
their energy consumption and making judgments about their
energy flow pattern. This approach can rank the appliances
in a house area. To flatten the voltage curve, an interrupt-
ible load is scheduled and reshaped by using binary particle
swarm optimization in [36], [37]. The voltage profile and
the requirements of the users are considered in interruptible
load reduction. Thismethodologyworks better for user power
demands in achieving a flatter voltage profile along with the
distribution feeder.
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TABLE 1. State-of-the-art works.

In [28], the authors utilize the adaptive, distributed, and
auto-regulated capacity of artificial immune network algo-
rithms for peak load shaving. The performance of the algo-
rithm is tested in four different scenarios, including one with
realistic-data from the electric distribution company. The
algorithm shows excellent performance in all the scenarios,
keeping the load somewhat higher than the pre-defined con-
sumption limit. The cognitive radio-based communication
network is proposed in [29] to schedule the greenhouse
energy and handles several home appliances, electricity gen-
eration, and storage systems. The game theory technique
is applied to schedule the electricity storage system. Con-
sumer’s bill reduction and comfort maximization, both are
considered in the objective function. The proposed algo-
rithm achieves the desired objectives without compromising
consumers’ privacy. In [30], the authors proposed a two-
stage robust optimization model to minimize the energy cost.
In [30], the authors proposed a robust optimization technique
to minimize the energy price. The model considers multiple
smart homes with PV and battery storage units at each users’
house. PV generated energy is utilized to fulfill the users’
power demand and charge the battery storage unit. However,
the model fails as the number of users increases. The authors
in [31] applied an artificial neural network to reduce the
electricity consumption charges, by maximizing the utiliza-
tion of PV generated energy, and energy storage units in
peak hours.

A game theory approach presented in [32] includes storage
elements, particularly in the environments with energy supply
limitations. The proposed model flattens the load profile by
reducing the peak-to-average ratio. A case study is demon-
strated to measure the feasibility of the proposed scheme; a
variety of household demand prototypes are estimated within
a microgrid to increase the payoff of both; the single con-
sumers and the whole system. [33] proposed a linear pro-
gramming based load scheduling algorithm andMPCmethod
to minimize the operating expense of a microgrid system
and optimize the loads by considering renewable energy
sources (RES) and time-of-use tariff. The proposed algorithm
modifies the load pattern and enhances the performance of
the microgrid system by decreasing the running expense to
6.06%. The authors of [34], [38] used a PSO to schedule the
load at an optimal time slot to lessen the power expense while
respecting the end-user comfort. Results showed 13.97%
achievements in power consumption. In [35], the authors
proposed a multi-objective optimization problem to reduce
the electricity bills and improve the peak to average ratio. The
authors also considered the comfort of end-users. DSMmodel
based on a stochastic approach to deal with contingencies
[39] combined with RES and DR programs. This study aims
to reduce the operating costs of the distribution grid.

Although, several studies have been presented in the lit-
erature, however, most of the studies deal with one problem
at a time i.e., optimization of CO2 emission or users’ bill.
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FIGURE 2. System model.

Some of the work devoted to handle both the objectives,
based on MILP [40] which has high computational complex-
ity. Motivated form literature, we have proposed a PMO-
SAMP-Jaya algorithm for achieving our objective efficiently
and effectively. Jaya algorithm has an advantage over other
heuristic algorithms that it has no algorithm-specific param-
eter, therefore it doesn’t require any parameter tuning.

III. PROBLEM DESCRIPTION
In this work, we consider a smart building equipped with PV
and ESS as local DERs (see in Figure 2). The smart building
consists of 30 smart houses, whereas all the houses share a
common DERs. Smart building is also tied to the traditional
power grid to fulfill the energy demand when demand can’t
be fulfilled by DERs. The ESS is utilized to store the excess
energy generated by PV, however, all the excess energy can’t
be stored in ESS. In this case, selling the excess energy
back to the utility is the only choice, regardless of price. So,
we considered a mechanism for selling the surplus energy
back to the utility. All smart homes have their own energy
consumption pattern and power demand curve. The total
power demand depends on the tasks of residential appliances
including fixed and flexible appliances.

Table 2 shows the different types of appliances adopted
from [40]. Power demand depends on the time period of
operation of these appliances. In this work, we considered
the day-ahead RTP (DA-RTP) scheme and peak demand
charge (PDC) and DC pricing schemes to charge the con-
sumers’ bill. Carbon dioxide (CO2) emissions are also

forecasted one day ahead. We intend to reduce the total
economic cost and CO − 2 emissions. We have developed
a SMAP Jaya algorithm to achieve our objectives. Moreover,
we investigated our model on three pricing schemes, i.e. DA-
RTP, critical peak pricing (CPP) with PDC, and CPP with
DC (DC). CPP with PDC is adapted from [41], whereas CPP
with DC is adapted from [42]. The overall problem can be
explained as below:

A. GIVEN ARE
(a) DA-RTP pricing signal, (b) forecasted PV power gen-
eration, (c) time slots divided into equal intervals, (d) ESS
storage capacity, CO2 emission intensity, efficiency of tech-
nologies, (e) PDC for over-threshold amount, (f) DC based on
maximum power demand, (g) storage capacities, (h) request
time and end time or electrical task and (i) time duration of a
task.

B. TO DETERMINE
(a) Energy plan, (b) Request time of the task, (c) storage plan
and (b) energy selling plan.

Our objective is to determine the optimal power consump-
tion schedule, selling the excess energy back to the utility
and DERs operations with minimum economic cost and envi-
ronmental impacts. Reduce the power demand from the grid
when the price is high or there is a higher CO2 emission.

IV. MATHEMATICAL FORMULATION
We formulate our problem as a multi-objective opti-
mization problem to address economic and environmental
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TABLE 2. Electricity consumption task [40].

sustainability. Power consumption tasks are scheduled based
on electricity price, CO2 intensity and request & end time
of the tasks. The objective is to minimize users’ power
consumption cost, CO2 emissions and avoid the peaks. The
constraints on capacities and maximum power generation are
given below.

A. PV/SOLAR ENERGY
The building is furnished with a rooftop PV system. The
proposed smart home management system tries to get the
maximum advantage of the PV system to lessen the overall
cost of the household customer and to reduce CO2 emissions.
The output power of PV unit is denoted by St [43]:

St = ηPVARPVRt (1− 0.005(TEM − 25) (1)

where, solar panel’s efficiency is represented by ηPV and
ARPV is the area of solar panel. Sun irradiation is denoted
as Rt and TEM is the air temperature.

B. CAPACITY CONSTRAINT
The output from both solar and electrical storage should not
exceed by their designed capacities. St and Et is represented
the output from both solar and electrical storage units respec-
tively.

1) SOLAR

St ≤ CS
∀t (2)

2) ELECTRICAL STORAGE

Et ≤ CE
∀t (3)

C. ENERGY STORAGE CONSTRAINTS
Energy stored Et at time period t is equal to the energy stored
at time t − 1 plus the charging and minus the discharging.
During the charging process at time δ, only ηδAt is used in

charging. While during the discharging time, if δBt energy is
required to deliver then δBt/η of energy is needed to supply.

Et = Et−1 + ηδAt − δBt/η ∀t (4)

η represents the loss factor during the discharging and
charging process and δ represents time period.
At the end of every day, no electrical storage is permitted,

so the storage must revert to its original state.

E0 = ET = E I (5)

The rates of charging and discharging of the electricity stor-
age should not surpass its own capacity:

Bt ≤ HE
∀t (6)

At ≤ PE ∀t (7)

D. ENERGY BALANCES
The electricity requirement is accomplished by the power
produced by the PV system plus the energy obtained from
the ESS and main grid, minus the power supplied to the ESS.

∑
j

∑
i

Qji−1∑
θ=0

XiθTji,t−θ = St + Bt − At + Gt ∀t (8)

E. REQUEST AND END TIME
Tjit is the binary variable which shows the task i of home
j executed at a time t . Therefore, tasks of every home are
executed between the request time and the end time minus
the tasks proceeding period.∑

t

Tjit = 1 ∀j, i LSji ≤ t ≤ L
F
ji − Qji (9)

F. PEAK DEMAND CHARGE
The grid’s electricity peak demand is decreased to curtail the
requirement of the high demand from a microgrid,. For every
period, when the electricity demand from the grid,Gt is under
the accepted threshold m then the regular prices are applied.
However, ifGt passesm, the consumption above the threshold
γt is included and additional rate will be charged (see Eq. 10).
Since, both the objective function and γt (Eq. (10)) are to be
minimized, if Gt − m is positive then γt should be equal to
Gt − m. If Gt − m is negative then γt should be equal to 0.

γt ≥ Gt − m ∀t (10)

G. DC
The highest demand of power from the grid in each day is
explained as follows:

Gmax ≥ Gt ∀t (11)

H. OBJECTIVE FUNCTION
The proposed energy management system attempts to max-
imize the advantage of solar energy to reduce the overall
cost of the domestic customer. The ESS is employed to store
electricity when there is an excess generation. It is essential
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TABLE 3. Technical parameters and costs of the DERs [44].

for utilizing the PV output more effectively. When ESS is
sufficient, we sell back to the grid. Our objective function is to
minimize the power consumption price and CO2 emissions.
Following the DA-RTP scheme, this involves the functional
and maintenance cost of the PV system, the electrical storage
and the electricity purchased from the main grid. µE and r
are the maintenance cost of ESS and PV respectively. bt is
the electricity price at time t .

Obj1=
∑
t

[δ(rSt/ηPV + bt (Gt − Gt sell,Grd )+ µEBt )] (12)

Under the PDC, the everyday price is computed as in
Eq. 13. Underneath the threshold, the electricity price follows
the RTP price schemewhile the additional charges are applied
if the demand goes above the allowed threshold. p is the
difference between peak and base electricity demand price
from the grid.

Obj1=
∑
t

[δ(rSt/ηPV + bt (Gt − Gt sell,Grd )+ µEBt + pγt )]

(13)

If the DC is used for the everyday price, the penalty on
maximum demand from the grid is also included in the objec-
tive function. q is the charge of maximum power demand
from the grid.

Obj1 =
∑
t

[δ(rSt/ηPV + bt (Gt − Gt sell,Grd )+ µEBt )]

+ qGmax (14)

Our other objective also considers to reduce the CO2
emission from the traditional electricity grid. ξGt is the CO2
intensity of grid electricity at time t.

Obj2 =
∑
t

δξGt Gt (15)

The above both objective functions are modeled as a multi-
objective optimization problem as;

Min (w1 ∗ Obj1 + w2 ∗ Obj2) (16)

A weighted sum method is used for solving the multi-
objective optimization. Weighted sum method converts the
multi-objective function into single objective function and
then solves the problem. We first normalized both the objec-
tive function values to the same range to avoid the function
with the largest range to dominate the evolution. w1 and
w2 are the weights assigned to the objective functions Obj1
and Obj2 respectively. Both of the weights have the same
value equal to 0.5.

FIGURE 3. DA-RTP tarrif and CO2 emissions profiles for UK
(August 17th, 2013).

V. PROPOSED METHOD
In our work, we have considered a smart building with
30 homes equipped with a rooftop PV unit and ESS. Each
home has a similar power consumption pattern and the smart
building is also connected to the main power grid. Smart
meter, AMI, EMS, and HAN are considered to be present in
each home. The overall architecture of our proposed system
is depicted in Figure 2. Smart meter receives pricing signals
and CO2 intensities from the utility which are then passed
to the HEMS. The in-home display (IHD) unit displays
the current price, power demand, and appliance parameters.
The user can interact with the HEMS via this unit. HEMS
receives appliances parameters, their request and end times,
energy demand, PV parameters, and the information from
the smart meter (pricing signal and CO2 intensity). Based
on this information, HEMS schedules the tasks accordingly
and communicates the schedule with appliances via the HAN.
Furthermore, a mechanism for trading surplus energy is also
considered. There is an agreement between the user and
utility on the minimum amount of energy to sell and below
the threshold, energy trading is not allowed. The user can sell
back the surplus energy produced by PV as per agreement
with the utility. Capacities of PV and ESS are assumed to
be provided and other technical parameters are adopted from
[44] (See Table 3). Total time is divided into 48 slots, each
of half an hour for scheduling of the tasks. We considered
12 different tasks/ appliances in our works adopted from
[40] (Table 2). The appliances are scheduled according to
their operational time frame, earliest request, and end time.
We considered three scenarios:CO2 minimization, cost mini-
mization, and the trade-off scheme. Trade-off schemes handle
both the objectives simultaneously. For optimal scheduling,
we applied three different pricing schemes: DA-RTP, PDC,
and DC.

A. PMO-SAMP JAYA ALGORITHM
Weproposed a PMO-SAMP Jaya optimization algorithm [13]
for solving the problem, which is an improved version of
Jaya algorithm. The algorithm is widely applied algorithm
for solving the constraint and unconstrained engineering
optimization problems. Jaya algorithm [14] was originally
proposed by R. Rao in 2016, having no algorithm-specific
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FIGURE 4. Flowchart of the SAMP-Jaya algorithm.

parameter to be tuned. The algorithm has only common con-
trol parameters; population size and the number of iterations.
PMO-Jaya algorithm upgrades the search mechanism of Jaya
algorithm and controls the exploration and exploitation rates
of the search process.

Jaya algorithm works by moving towards the best solution
and avoid the worst solution for any given problem. It uses
an adaptive scheme for dividing the population into sub-
populations which control the exploration and exploitation
rates of the search process based on the problem landscape.
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FIGURE 5. Results of proposed scheme for CO2 minimization.

Flowchart of SAMP-Jaya algorithm is shown in Figure 4. Lets
f (x) be an objective function, which we want to optimize
(minimize or maximize). In any ith iteration, there are m
design variables and n size of population. Let Xa,b,i be the
value of ath variable for bth candidate at the ith iteration, then
the value will be updated as given by the given equation,

X ′a,b,i=Xa,b,i+r1(Xa,best,i−|Xa,b,i|)−r2(Xa,worst,i − |Xa,b,i|)

(17)

where Xa,b,i is the value of ath best parameter for best
candidate solution and (Xa,worst,i) is the worst solution in
a population. X ′a,b,i is the updated solution and r1 and r2
are the randomly generated numbers in the range of [0, 1].
r1(Xa,best,i − |Xa,b,i|) tries to move to the best whereas
r2(Xa,worst,i− |Xa,b,i|) tries to avoid the worst solution. If the
new solution is better, then the population is updated. New
and old; both candidates are compared and the best solution
is forwarded to the next iteration. The same process continues
for the whole population. In this way, the algorithm tries to
move to the best solutions and avoids the worst. PMO-SAMP
algorithm divides the population into subgroups; however,
unlike island-model, the PMO-SAMP algorithm decides the
number of groups adaptively according to the problem land-
scape. PMO-SAMP algorithm considers the quality of the
solution to divide the population into groups. The number
of groups is distributed over the whole search space instead
of a particular region, so expected to produce an optimal
solution. The number of sub-populations is modified adap-
tively, according to the strength of change in the solution.
This strategy improves the searching process for tracing the
best solution and improves the diversification of the searching
process. Also, newly generated candidates replace duplicate
solutions to maintain diversity and enhance the exploration
mode.

In our work, the length of the solution (or design vari-
ables) is equal to the number of appliances considered in our
work. The number of iteration and population size is kept at
100. Design variables include appliances’ parameters such as

power rating (PRA), start time (StA) and finish time (FtA),
total operational time (OTA), pricing signal (EPS ) and CO2
emissions data (CES ). Our algorithm tries to optimize the
objective function as given by equation 16 subject to certain
constraints discussed in IV section. The step by step working
of PMO-SAMP-Jaya algorithm is shown below.

1) Initialize the design variables (PRA, StA, FtA, OTA,
EPS , CES ), Size of population and termination criteria.

2) Calculate the initial solution based fitness function
(Equation 16).

3) Group the population intom numbers of groups accord-
ing to the solution’s quality (Identify best and worst
solutions)

4) Modify the solution in each group as given by Equa-
tion 17.

5) If new solution is better, replace the existing solution
with new solution.

6) Else keep the existing solution.
7) Merge the groups together into population. Compare

the Old − best and current − best from the entire
population.

8) Stop and iteration is stopping criteria hasmet and report
the best solution.

In step 6, Old − best and current − best are best solu-
tion from entire population in previous and current iteration.
if current value is better, then the m is increased by 1 to
enhance the exploration mode, otherwise m is decreased by
one, as algorithm need exploitation mode.

VI. SIMULATIONS AND DISCUSSION
This section discusses the simulation and results generated by
our proposed model. The developed model is implemented
in MATLAB 2016b on PC with an Intel(R)Core(TM )i5 −
3230M CPU, 3.40 GHz CPU with 8GB of RAM and
Microsoft Windows 10 installed on it.
In our experiments, we applied three pricing schemes as

discussed earlier in section IV. DA-RTP is adopted from [41],
whereas the the data for CO2 emissions is publicly available
at [45] (Figure 3). For PDC, we conducted simulation for
three threshold value. We considered three different scenar-
ios: cost minimization, CO2 minimization, and the trade-off
scheme (both, CO2 and cost are minimized).

In the scenario of CO2 minimization, the multi-objective
becomes the single objective, with zero weight assigned to
the electricity cost, hence scheduling is only based on min-
imizing carbon footprints of the electricity. In the case of
CO2 minimization, the HEMS tries to minimize the CO2
emissions by modifying the usage pattern regardless of the
pricing scheme. Therefore, the results for CO2 minimization
schemes are shown only once. Figure 5 shows that tasks are
scheduled within their scheduling window to minimize the
carbon emissions. In this case, flexible tasks are scheduled to
maximize the utilization of RES, except in the early morning
and in the evening where the tasks are inflexible. Rest of
the power demand is fulfilled by buying electricity from the
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FIGURE 6. Results of proposed algorithm under DA-RTP.

FIGURE 7. Results of proposed algorithm under DC.

main grid. ESS is charged from PV generated power and
discharged at four different time stamps.

Figure 6 shows the results of the proposed algorithm under
DA-RTP scheme. 6a shows the results of cost minimization
scheme. HEMS schedule the tasks to minimize the electricity
cost without caring about carbon footprints, while gaining
maximum benefits from PV. As illustrated in Figure 6a, most
of the tasks are scheduled between 4:00 and 7:00 because
electricity price is low during these time slots. The other
two peaks can be seen at 15:00 and 19:00. HEMS scheduled
the tasks where electricity price is relatively low, or fewer
benefits can be achieved by selling the surplus energy back
to the grid. Energy generated from is PV is utilized in an
efficient way to minimize cost and gain more benefits from
PV by selling back the surplus energy to the grid where prices
are high. Results for trade-off scheme (cost andCO2 both) are
illustrated by Figure 6b. Tasks are scheduled in such a way to
minimizes both cost and CO2 footprints. Peaks can be seen

at 14:00 and 23:00 which shows the trade-off of the scheme.
And the other peak can be seen between 3:00 to 7:30 in order
to minimize both, cost and CO2 emissions.

Figure 8 depicts the results of the proposed method under
PDC pricing. Figure 8 (a, c & e) indicates the results of our
proposed method when only electricity cost is considered
as an objective, with no weight given to CO2 footprints.
Results show that the total power demand is scattered over the
day under peak demand threshold, showing more flattened
curve except where the tasks are inflexible. As thresholds are
applied, the total electricity demand over the agreed threshold
can be reduced. HEMS tries to schedule the load in such a
way to minimize the cost and reduced the maximum demand
to avoid the peak demand penalty. The results for the trade-
off scheme are shown in Figure 8 (b, d & f). As illustrated
by the results, loads are moved between 18:00 to 22:00 com-
pared to Figure 6b showing the trade-off between two
objectives.
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FIGURE 8. Results of proposed algorithm under PDC.

Results for DC scheme are presented in Figure 7a and 7b.
In case of considering the only bill minimization as an
objective, the scheduler scheduled the load where the prices
are lower and maximizes the utilization of PV generated

power. When considering CO2 as an objective, the electricity
demand profile is reshaped according to CO2 emissions.
In trade-off scheme, the load is reshaped according to the
trade-off between the two objectives. In all the scenarios,
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TABLE 4. Total cost and total power demand from grid (* PDC = Peak demand charge).

FIGURE 9. Total electricity cost under Cost minimization and trade-off
scheme.

the ESS is charged from PV generated power and discharged
when the electricity price or carbon emissions are higher.
However, the ESS is not frequently charged, but only a 3 to
4 times a day. Due to the efficiency and maintenance cost
constraints, ESS is not utilized if the maintenance cost or cost
of energy loss is high during the charging or discharging.

Total cost for each pricing scheme under cost minimiza-
tion and trade scheme is shown in Figure 9 and sum-
marised in Table 4. Table 4 shows the comparison between
our proposed algorithm and MILP. MILP is proposed in
[40] where authors used combined heat and power and
boiler as a DERs while we used PV energy. Cost mini-
mization scheme incurs a total cost of 28.02£ under DA-
RTP with a total power demand of 502.8KWs, while
the trade-off scheme under DA-RTP shows 31£ with
496.3KWs. PDC shows the total cost of 30.2£ with
560.3KWs total power demand from the grid while the same
scheme incurs 31£ with 496.3KWs. DA-RTP shows better
results as compared to other schemes, whereas PDC with
k = 30KW has good results as compared to the K = 60KW
and K = 15KW constraints.

VII. CONCLUSION
We proposed multi-objective self-adaptive multi-population
based Jaya algorithm to optimally schedule the energy con-
sumption in a smart building. Both, electrical tasks and the
operations of DERs are handled efficiently. The building has
a rooftop PV installed and electricity tariff. Besides, CO2
intensity profiles are considered to be available for optimal
shifting of the tasks and DERs. Our Scheme optimally man-
ages the electrical tasks and DERs to achieve the desired
trade-off, while also considers energy trading tomaximize the
users’ profit. Scheduling heavily depends on power demand
pattern, which may be affected by weather, electricity price,
CO2 intensity profiles and pricing scheme. PDC and DC
pricing scheme limits the maximum power demand from the
grid by applying the penalty, which distributes the load more
smoothly andminimizes the peak to average ratio. The results
depict that the proposed algorithm schedules the load in an
efficient way to minimize CO2 emissions and cost while
maximizing PV generated power. Synchronization of DERs
with the traditional grid is the biggest challenge which is not
considered in this work. This can be considered as a potential
future work.
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