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ABSTRACT Wind speed forecasts can boost the quality of wind energy generation by increasing the
efficiency and enhancing the economic viability of this variable renewable resource. This work proposes
a hybrid model for wind energy capacity for electrical power generation at coastal sites by utilizing wind-
related variables’ characteristics. The datasets of three coastal locations of Kuwait validate the proposed
method. The hybrid model is a merger of Artificial Neural Network (ANN) and Particle Swarm Optimization
(PSO) and predicts one-month-ahead wind speed for wind power density calculation. The neural network
starts its performance evaluation with a variable number of hidden-layer neurons to finally identify the
optimal ANN topology. Comparisons of statistical indices with both expected and observed test results
indicate that the ANN-PSO based hybrid model with the low root-mean-square-error and mean-square-
error values outperforms ANN-based trivial models. The prediction model developed in this work is highly
accurate with a Mean Absolute Percentage Error (MAPE) of approximately (3-6%) for all the sites.

INDEX TERMS Electrical energy, wind energy, power density, artificial neural network, particle swarm

optimization.

NOMENCLATURE
ANN Artificial Neural Network

PSO Particle Swarm Optimization

MAPE Mean Absolute Percentage Error

WASP  Wind Atlas Analysis and Application Program
LSTM Long-short term memory

SVM Support Vector Machines

BPNN  Backpropagation neural network

MLH  Maximum likelihood method

WPD  Wind power density

RMSE Root-mean-square error

Vi wind speed at time instant i
c Weibull scale parameter

k Shape factor

f) Weibull distribution function

Phest Particle’s best fitness in PSO space
Ghest Global best fitness in PSO space
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I. INTRODUCTION

Renewable energy sources have received considerable sci-
entific attention due to the rapid depletion in fossil fuel
resources. Global energy demand has accelerated due to
industrialization; this is the primary cause of the deple-
tion of the oil and gas reserves [1]-[4]. Energy genera-
tion currently uses a range of renewable energy sources,
including solar PV systems, wind-based energy systems,
tidal energy extraction schemes, biomass-based generation,
to name a few [4]. Wind and solar photovoltaic (PV) energy
are among the most promising options for generating elec-
tricity. In particular, wind energy has attracted significant
attention from researchers as it can be harvested year-round
at any time. In contrast to other renewable sources, the other
anticipated advantages of wind energy include its abundant
availability and one of the most economical options among
renewable energy sources. These factors have made wind
energy a rapidly growing source in developing countries
like Kuwait [5]. Kuwait is known as a country that pro-
duces high amounts of oil. The extensive use of fossil fuels
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FIGURE 1. The total installed capacity of wind energy of the world from
2010 to 2019 [11].
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FIGURE 2. Growing number of gigawatt markets in the world from
2010 to 2019.

and manufacturing activities has exacerbated environmen-
tal and elevated health issues in Kuwait’s residential areas.
Therefore, to improve control over polluting emissions, fossil
fuel dependence of power generations needs to be reduced.
The wind energy potential of a location can be determined
using wind-related variables such as wind speed at a certain
height, direction, and continuity [3], [4]. Researchers have
used multiple methods to analyze these wind characteristics.
Application programs such as Wind Atlas Analysis and Wind
Atlas Analysis and Application Program (WASP) frequently
use Rayleigh and Weibull methods [3]. Many time scales,
including monthly, quarterly, and annual time scales, are
considered to evaluate wind speed data characteristics.
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FIGURE 4. Top countries by added wind capacity in 2018.

Since the beginning of the third millennium, the total
cumulative electricity capacity generated from wind energy
observes a rapid increase, reaching 650.8 GW by the end
of 2019. In 2019, 59,667 MW were installed, significantly
higher than 50,252 MW of 2018 [6]. All completed wind
turbines at the end of 2019 will cover 6 % of the world’s elec-
tricity market. More than half of the new wind power instal-
lation has been added outside Europe and North America’s
traditional markets since 2010, mainly due to the continued
boom in China and India [7]. China installed 145 GW of wind
turbine-based generation at the end of 2015 [8]. By 2015,
China had installed nearly half of the world’s additional
wind capacity. With 27.5 GW, corresponding 9.1 GW of new
installations, both China and the United States have shown
strong years, in both cases of the highest market volume of
the previous five years [6]. Commercial wind power is being
implemented in more than half of the world’s nations [4].
The upcoming wind development market is expected to be
driven by emerging markets such as Latin America and
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FIGURE 5. The total installed added capacity.

South-East Asia. Further policy funding and reforms in these
areas would make for more substantial business develop-
ment. Global production of renewable energy continues to
expand with the growing cost-effectiveness of renewables
technologies [9].

As of 2020, the current Coronavirus crisis is predicted
to impact wind power market growth globally. Like most
other sectors in 2020, the wind sector is being hampered by
disrupted foreign supply chains and by national lockdown
legislation. Many governments have started to draw up plans
and stimulus programs to restore their businesses after the
corona crisis [9].

The wind energy potential for power generation was eval-
uated at Binalood, Iran by Mostafaeipour ef al. in [10], and it
was investigated that the site offered a vast potential for a size-
able grid-connected system. Alamdari et al. [10] has investi-
gated the characteristics of Iran at 68 locations. Their study
analyzed annual, seasonal, and diurnal variations in wind
speed. It revealed the importance of the economic evaluation
from an investment perspective of renewable energy projects
and their technical assessments. An evaluation based on
economic and technical considerations of renewable energy
sources for different applications has been performed at
multiple locations of the world [12]-[14]. Analysis of the
cost incurred in wind energy resources in different regions
has been presented in past literature [15]-[21]. An eco-
nomic evaluation of a few Turkey locations is presented
by Vardar and Cetin [21] and Celik [22]. Rehman ef al. [23]
provide a cost analysis of 20 locations of Saudi Arabia.
An analysis of small wind power electric generations is done
by Nouni et al. [24]. However, most past studies have never
been implemented in real practical applications.

A. RELATED WORK
There are already several wind-power prediction meth-
ods available in the literature. The physical model-based
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method develops thermodynamic and kinetic equations
which describe the evolution of the atmosphere in lay-
ers. Wind speed and wind power are predicted, taking into
account the limits and constraints. This method’s prediction
model is highly dynamic and very sensitive to initial erro-
neous information [25]-[27].

Machine learning models are used with bio intelligence
to estimate the wind forecast problem [28]—[32]. These tech-
niques include a fuzzy logic algorithm [33]-[36], a long-short
term memory (LSTM) networks [37]-[40]. In [41], authors
have developed a new prediction method using a regularized
pseudo-inverse neural network. In [42], a two-layer machine
learning system is created, which can progressively improve
accuracy. In [43], a novel hybrid architecture designed to esti-
mate extreme learning machines with composite regression
and feature selection was introduced. Some more complex
models combine different predictive methods and are dis-
cussed in [44]-[49].

Recent initial conditions and a high-resolution model are
not always performance improvers. A probabilistic forecast
was studied, and more detailed information on the associated
uncertainty was provided [50]. The interval description has
been checked for wind speed [51] and wind power [52],
[53]. Hybridization of the numerical weather forecast and the
wind speed prediction algorithm [54]-[57] was implemented.
A system model with varying initial parameters produces the
data diversity. The model’s final output is handled with a
wise, non-linear approach that allows the use of the system’s
diversity.

The machine learning approach has been increasingly
employed to derive internal patterns from data published
in Nature in 2019 [58]. The machine learning model and
the physical model have specific (data-driven) paradigms.
The former has strong extrapolation capability. That is more
robust, with the prospect of new legislation. Combining the
two methods would improve the parameters and replace the
master-learning process with the physical sub-model [59].

Neural networks have become increasingly popular for
forecasting wind speeds due to their non-linear nature and
evolving network structure. Models can be used to resolve the
question of an unknown intrinsic mechanism and to establish
a non-linear relationship between the vectors of input and
output. However, the algorithm’s robustness requires tuning
of parameters and large training data. Also, a more extensive
computation is needed for model training and estimation of
parameters.

This paper investigates three different coastal locations of
Kuwait that are considered for the wind data accumulation:
its speed, direction, and frequency distribution. The inves-
tigation of potential wind energy is based on a thorough
assessment of the statistics of the wind characteristics of
frequency distribution and average wind speed. For estima-
tion of wind energy potential at higher altitudes, Weibull
distribution function is an acceptable tool employed to fit
the wind speed frequency along with its time series [60],
[61]. Since vertical deviations in wind velocities are pivotal
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in the assessment of wind energy potential, the power-law
expression is employed to evaluate the wind parameters from
heights of 10 m to 70 m. Weibull’s parameters are finally
determined using the Windographer software, which analyzes
the data to estimate the Wind Power Density (WPD) [62],
[63]. The effect of seasonal variations on the wind power
potential at the suggested locations is thoroughly analyzed
through all four seasons’ seasonal data. The prediction of
the wind power density on short-term bases, one-day-ahead
forecast models based on an artificial neural network (ANN)
Support Vector Machines (SVM), and a hybrid model that
combines ANN and PSO is developed and implemented.
It involves three input variables, including the wind speed,
generation hours and relative humidity, and one variable-
energy output of the wind farms. The modeling was per-
formed in MATLAB®/Simulink environment. The model’s
efficacy was validated by comparing the results with the
values measured at the wind farms. Based on the data analysis
and these prediction models’ results, the ANN-PSO model
was found to be much more accurate than the other two
models.

Il. FRAMEWORK OF METHODOLOGY

A. QUANTITATIVE DATA ANALYSIS

The data set was analyzed from three different Kuwait
locations, including Al Wafrah, Abadaly, and Al Asimah,
composed of regular sampled meteorological variables linked
to winding. Such variables include wind velocity, wind direc-
tion, maximum wind speed, and maximum wind rate. The
data’s complexities were analyzed by a detailed statistical and
quantitative study of the data. These studies have given the
maximum, minimum, mean, median, and standard deviation
values. The data examination also highlights the numbers
of second-standard deviations, third-standard deviations, and
forth-standard deviation outliers, which can be eliminated
from the training data to ensure the useful estimation of wind
potential.

B. PARAMETRIC ANALYSIS AND CALCULATIONS

The density of wind power at a specific location is considered
a reliable measure of the potential generation of wind power
relative to wind speed or direction. The average annual wind
speed of all sites was calculated individually at a standard
height of 10 meters. The Weibull distribution function was
used to determine the power density and Weibull parameters
of each location. Typically, the Weibull distribution function
is used to adjust the probability distribution of the measured
wind speed at a specific location over a given period. The
probability density function of the Weibull wind speed ‘v’ is
defined as f(v) at a specific time interval, and is calculated as:

o= () o

[P}

In this equation, ‘c’ is the Weibull scale parameter, ‘k’
is the shape factor, and(V /c) is the dimensionless Weibull
parameter. The maximum likelihood method (MLH) was
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applied to estimate the shape and scale parameters as:
n k n —1

Z vi In(v;) Z In(v;)
i= _ =1 2)
> !

;:1 12
c= ( Zv) 3)

In this equation, ‘V;’ is the wind speed in the time stage
A > is the number of non-zero wind data points.

~
|

i’, and ‘n
By extrapolation of data at10 meters using the Power-Law,
the wind data at heights of 20, 30, 40, and 70 meters was
obtained. Finally, the data obtained from all three locations
were analyzed to examine the effect of seasonal variations on
wind power density.

C. VERTICAL EXTRAPOLATION USING POWER LAW

A power law is defined as a functional relationship of two
quantities in which deviation in one quantity produces a
relative proportional change in the other quantity. Moreover,
the initial size and state of these quantities are not relevant;
one quantity varies with each other’s power. The wind data
measurements used in this study have been performed at a
standard height of 10 m. A 1/7 power law analyzed the effect
of wind speed on WPD at different heights [62]. This law
was used to extrapolate the wind speed at different heights.
The mathematical notation of the power-law is written as:

V2)
Vo=V; < Zl) @

In this equation, Vi represents the real wind speed at
height ‘Z;’. V3’ is the calculated wind speed at the desired
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FIGURE 8. Wind speed Distribution Analysis (Al wafrah).

(extrapolated) height Z,. Here, ‘e’ is an exponent alpha that
relates to the surface’s roughness; a typical value of 0.142 is
generally used for normal and well-exposed locations.

By implementing this extrapolation technique, the wind
speed at different heights from 10 m to 70 m, with a difference
of 5 meters, was calculated.

D. WEIBULL DISTRIBUTION
Weibull distribution is a function based on two wind param-
eters to calculate wind speed. It can be expressed mathemati-
cally in (1). As a cumulative distribution function, the Weibull
function can be described as:

For=1-e (- (£))

As already described,V’ and ‘c’ are calculated through Win-
dographer software and both have the same units of m/s.
By implementing the double logarithmic transformation on
equation (5), it can be reproduced as follows:

&)

In{—In(1 — F(v))} = kIn(v) — k In(c) 6)

Eq. (6) is equivalent to y = ax + b. If In(v) is plotted against
In{—In[1 — F(v)]}, then a straight-line result has gradient k
and a y —intercept of —kxIn(c). WPD is expressed in W /m?.
While calculating the wind power density, the wind speed
frequency distribution, the wind power depends on the air
density, and the cube-root of the wind speed. Therefore,
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FIGURE 9. Wind direction and mean speed rose chart (Al Wafrah).

the WPD is normally regarded as a superior pointer of the
wind parameter in comparison to wind speed. By using the
wind speed as a primary variable, the average wind power
density can be calculated as:

N
1
WPD = Z — (pv?)
P 2N

In this equation, I and N indicate the wind speed and the
total number of data samples used for the period of five years,
respectively. It should be noted that N of a particular month is
the accumulation of the data of that specific month over five
years.

N

IIl. PROPOSED HYBRID ARTIFICIAL NEURAL NETWORK
PREDICTION MODEL FOR WIND POWER DENSITY

The conventional backpropagation neural network (BPNN)
uses the weight update rule of gradient and a decent technique
to determine the system’s weights under investigation by min-
imizing the error criterion. However, this technique primarily
gets stuck in a local minimum. On the other hand, Particle
swarm optimization (PSO) is arobust search and optimization
technique. PSO can effectively overcome the problem of local
minima of BPNN. In PSO algorithm, each particle searches
its space to find the best local fitness, called Ppegi. Every
particle cannot achieve globally best fitness, called Gypest-
Every single particle track and memorize its current best
fitness in the swarm [64]. In this proposed hybrid model,
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FIGURE 12. Wind direction and mean speed rose chart (Abadaly).

the solution vector of PSO consists of weights and biases of
ANN model. For best training of ANN, weights and biases
are predicted by PSO algorithms.

In this hybrid model, PSO improves the architecture of the
Artificial Neural Network (ANN) as its training is based on
trial and error [64]. In the PSO algorithm, each particle is
accelerated in each time step toward Ppeg; and Gpege by using
random weights. In this PSO-ANN hybrid model, fitness
function depends on input, hidden layer size, bias and output.
The position and velocity of a particle characterize its search
space. Equation (9) and (10) show how a particle adjusts its
position and velocity.

X = x4+ vf (8)
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where, X¥ and V¥ position and velocity of k" particle at i
iteration. W is the inertiaweight of particles. ¢; and c; are
acceleration coefficients having a value of 2 and ry, rp are
normalized random numbers. Figure 6 depicts the algorithm
of the modified PSO-BP model. As PSO-BP methodology
is well-known for its accuracy and performance, the fitness
evaluation was formulated to obtain the minimum value of
the MAPE. MAPE fitness function is formulated as:

Vik+1 =W % ij+cl * 7] (G]liest _}(ik)_l_c2 * rz(Plgeﬂ_

N
VA —V;
. 100 ,;( ; i)
Fitness = N - (10)
N
>
V=" (1)

Weights and biases are chosen as the PSO selection param-
eters, while the length of the selection parameter vector, con-
taining the weights and biases, depends on hidden numbers
of layers.

A feed-forward ANN with a BP training algorithm was
used to develop a one-month-ahead prediction model for
wind speed, which will calculate power density. Before pre-
senting data to the model, it was normalized in the range of O
to 1 because the variables used in this research had different
units. Twelve years of data (from 2008 to 2020) was used in
the experimentation. The dataset was divided into two sets:
The data from 2008 to 2018 was implemented for the training
of the neural network-based models, whereas the data from
2019 to 2020 was used for testing and validation of the model
results. The selection of the most appropriate number of hid-
den layer neurons is vitally important since the ANN-based
models’ prediction accuracy widely depends upon neural
network architecture. For selecting the ideal ANN topology,
the network was tested for its performance with a varying
number of hidden layer neurons. After conducting these tests
comprehensively, it has been observed that the ANN with
one hidden layer containing eight hidden layer neurons pro-
duces the best results. Logarithmic sigmoidal function and
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used as the performance evaluation measure. 2150
g
= 100
IV. RESULTS AND DISCUSSION
A. WIND POWER DENSITY 50
This study has investigated the characteristics of wind-related

variables at three locations in Kuwait to explore wind energy
potential for electrical power generation. The trained net-
work’s accuracy was tested against the available wind speed
output data for a period of one year. The accuracy was
assessed by using the root-mean-square error (RMSE) and
MAPE as a performance index. RMSE is calculated using the
following relation.

RMSE = (12)

LN
= Z(Ii - Vi?
NS

The overall average MAPE obtained from tested results
of all locations of the PSO-BP model was measured as
about (3-6%). Table 1 indicates the locations, elevations, and
wind parameters of the sites. The analysis and evaluation
were performed using the meteorological data of the wind
energy characteristics and determining the location of the
highest wind energy.

One of the critical parameters that influence the
wind-generated electricity is the WPD. According to
Alamdari et al. [10], WPD is defined as the energy in the
region per unit rotor area and time, and it is a function
of the distribution of wind and its velocity in the region.
Table 1 shows the formulated wind power density at different
heights for the three locations. It can be observed from
Table 1 that, If the wind speed is regarded as the target
variable, its correlation analysis with the other wind variables
is summarized in Table 2 . The results demonstrate that
the wind direction exerts the highest impact on wind speed
because of the maximum positive correlation value of 0.8745.
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Similarly, the maximum wind speed and maximum wind
direction also have a positive correlation with the wind speed.

The essential statistical and quantitative details of all
the wind-related meteorological variables are presented in
Tables 3.

Figure 7 illustrates the time series plot of wind speed over
the span of 2008 to May 2012 for the location of Al Wafrah,
while Figure 8 presents a histogram of samples occurring in
particular wind speed ranges for the location of Al Wafrah.
Figures 7 and 8 both indicate that most of the daily winds
mean speed samples occur in the wind speed range from
1 m/sec to 6 m/sec. The wind speed pattern observed in
Figure 7 suggests that there are no uncertain variations in the
wind speed throughout the year; however, it is slightly higher
during June and July. Wind speed and the direction analysis
in this zone of time demonstrate the northwest direction of the
principal wind in Al Wafrah at an average velocity of 4-6 m/s,
Figure 9. The plots present 4542 samples at a sampling rate of
one sample per day, all the samples are collected at a standard
height of 10 meters. The arguments presented above can also
be extended for the other two locations of this study, with
the wind data of the location of Abdaly is represented in
Figures 10-12 and wind data at the location of Al Asimah
is represented in Figures 13-15.

B. WIND SPEED PREDICTION
This section describes results and their one-month-ahead
prediction at all three locations by implementing the SVM,
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TABLE 1. Wind power density at different heights for the three locations.

Station Name WPD at 10 m height WPD at 20 m height WPD at 30 m height WPD at 40 m height WPD at 70 m height
Wafra 50.45 74.34 98.36 156.87 238.12
Abdaly 11.28 34.22 45.98 94.23 145.23
Al Asimah 28.38 44.23 67.56 103.70 174.19

TABLE 2. Correlation analysis of wind-related variables.

S. No. Wind variables Correlation
1 Wind direction 0.8745
2 Maximum wind speed 0.7143
3 Maximum wind direction 0.7112
4 Wind power density 0.8923

TABLE 3. Locations of the three sites and average wind parameters.

Station Name Latitude Longitude  Average wind speed (m/s) Average wind direction (Deg) Average wind max. speed (m/s)
Wafra 2993635 47°34° 36" 2.96 230.70 4.58
Abdaly 30°03° 57 47°41° 27 2.88 230.67 447
Al Asimah 2903342 47°98 127 3.07 220.90 453
0 6
330 30 Actual wind speed
600 sk Predicted wind data |
300 400 60 it
200 (] 10-8 m/s 23t
C8-6ms E
270 90 [CJ6-4mss 2
[ 4-2 s , | I ( I | !
m— S W T
240 120 .
FIGURE 17. One month-ahead prediction results based on ANN model at
Wafra.
210 150
180

FIGURE 15. Wind direction and mean speed rose chart (Al Asimah).
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FIGURE 16. One month-ahead prediction results based on SVM model at
Wafra.

ANN, and hybrid ANN-PSO based models. ANN, SVM,
and hybrid ANN-PSO-based results of Wafra are represented
in Figures 16, 17, and 18, respectively. A comparison of
SVM, ANN, and ANN-PSO-based wind speed predictions
at all locations is provided in Table 4 power potential, and
electricity demand remains at their peaks during the summer
season in Kuwait. At the Wafra location, the SVM-based
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FIGURE 18. One month-ahead prediction results based on ANN-PSO
model at Wafra.

model was predicted with a MAPE of 21.12%; ANN model
reached a value 0f16.78% of MAPE, while ANN-PSO pro-
duced a MAPE of 3.78%.

At the Al Asimah and Abdaly locations, the SVM-based
model predicted the MAPE values of 21.37% and 17.51%,
respectively. In contrast, ANN-based model reached a MAPE
0f17.45% and 16.57% at the Al Asimah and Abadaly loca-
tions, respectively. However, the accuracy is again found to
be better in ANN-PSO model, producing MAPE values of
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TABLE 4. A comparison of ANN and ANN-PSObased wind speed prediction.

Location SVM Model ANN Model ANN-PSO Model
MAPE (%) RMSE MAPE (%) RMSE MAPE (%) RMSE
Wafra 21.12% 0.72 16.78% 0.61 3.78% 0.17
Al Asimah 21.37% 0.73 17.45% 0.73 5.36% 0.18
Abdaly 17.51% 0.57 16.57% 0.68 5.61% 0.19
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FIGURE 19. One month-ahead prediction results based on SVM model at
Abadaly.
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FIGURE 20. One month-ahead prediction results based on ANN model at
Abadaly.
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FIGURE 21. One month-ahead prediction results based on ANN-PSO

model at Abadaly.
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FIGURE 22. One month-ahead prediction results based on SVM model at
Al Asimah.

5.36% and 5.61% at the Al Asimah and Abadaly locations,
respectively (Figures 19-24). Power potential and electricity
demand remain at their peaks during the summer season in
Kuwait.
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FIGURE 23. One month-ahead prediction results based on ANN model at

Al Asimah.
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FIGURE 24. One month-ahead prediction results based on ANN-PSO
model at Al Asimah.

Based on the results of the wind power density at different
heights at all locations, it appears that at the height of 70 m
at the Wafra location, the maximum WPD is a demonstration
of the location strength for maximum power generation. The
ANN-PSO model, on the other hand, can be applied effec-
tively to forecast wind speed a month ahead. The average
wind velocity at these sites remained between 3 m/s and
6 m/s over the period of one year. The mean wind power
density is determined using Weibull distribution, ranged from
70 W/m? to 179 W/m? at a standard height of 10 meters.

It was observed that at the height of 70 m from the ground,
the wind power density remained between 160 W/m?, and
power potential and electricity demand remain at their peaks
during the summer season in Kuwait was 293 W/m?, which
demonstrates an average increase of 82%.

The ANN parameters are tuned by using gradient descent,
while the proposed approach uses PSO to modify the network
parameters. Local minimum levels influence the convergence
of neural network training. On the other hand, the proposed
PSO approach ensures that the global optimum for tuning
parameters is achieved. Quadratic programming (QP) trains
SVMs, and training time is found to be faster in SVM com-
pared to ANN and the proposed ANN-PSO technique. With
ANN and ANN-PSO, the computational time obtained in this
work is almost the same, with a small reduction of time taken
by the PSO network. On the other hand, SVM is found to be
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reducing the computational time by almost 8 % in the study
of wind predictions.

V. CONCLUSION

In this study, the one-month-ahead forecast of wind density is
done by exploiting the data of wind speed, its direction, and
its frequency distribution at the coastal locations. The data
at three different Kuwait locations were utilized to determine
the annual WPD by evaluating the Weibull parameters of the
wind distribution function. The wind speed was predicted at
all the locations by implementing the SVM, ANN, and hybrid
ANN-PSO models for one-month-ahead prediction. Annual
average wind speed at the standard height of 10 m was found
in the range of 3.7 to 5.5 m/s. It was concluded that at the
height of 70 m from ground, the wind power density increases
by an average of 82%. The proposed ANN-PSO-based hybrid
prediction model is applied to predict the wind power density
one month ahead. The results of the prediction model indi-
cated reasonably high prediction accuracy. These prediction
results can help the power system managers determine the
capacity of this renewable source in advance to integrate into
the power grid by reducing the thermal generation. The pre-
diction model results demonstrated relatively high precision
in prediction at all locations.
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