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ABSTRACT The motivation behind our work is to review and analyze the most relevant studies on
deep reinforcement learning-based object manipulation. Various studies are examined through a survey
of existing literature and investigation of various aspects, namely, the intended applications, techniques
applied, challenges faced by researchers and recommendations for minimizing obstacles. This review refers
to all relevant articles on deep reinforcement learning-based object manipulation and solutions. The object
grasping issue is a major manipulation challenge. Object grasping requires detection systems, methods and
tools to facilitate efficient and fast agent training. Several studies have proposed that object grasping and its
subtypes are the main elements in dealing with the environment and agent. Unlike other review articles,
this review article provides different observations on deep reinforcement learning-based manipulation.
The results of this comprehensive review of deep reinforcement learning in the manipulation field may
be valuable for researchers and practitioners because they can expedite the establishment of important
guidelines.

INDEX TERMS Deep reinforcement learning, object manipulation, robotic grasping.

I. INTRODUCTION
Grasping is an action of gripping and moving an object from
one place to another. The three basic elements that must be
considered during a grasping task are localization, object and
environment; all of them require visual accuracy, robust sens-
ing and fine control with consideration of slippage detection.
Perception of the environment is one of the challenges that
many researchers have addressed, and sensing is crucial to
this task. The physical properties of robots and objects can
be measured with sensors and transformed into signals that
can be utilized by robot controllers. Sensors are essential
for detecting actions in an environment and the way that a
robot should move so that the behavior of the robot can be
learnt as a result. By using sensors, a robotic system can
be flexibly implemented in different workplaces to perform
various tasks. The purpose of using sensors (e.g. vision and
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touch) is to help during the interaction between the robot’s
hand and an object within the robot’s workspace. Global and
local information can be acquired from sensors [1]. Global
information is provided by vision sensors and used to deter-
mine the location of objects in the environment. The robot
controller can exploit global information to avoid unwanted
obstacles or move the end effector to its target successfully.
Meanwhile, local information refers to the way the robot
interacts with objects in the environment, and it is provided
by touch sensors. Local information can be used by the robot
controller to manipulate contacting objects or explore and
extract the surface properties of objects [2]–[4].

Deep learning is used to train large artificial neural net-
works. Over the last decade, deep learning has elicited the
attention of many researchers and led to advanced research on
the application of robotics. Moreover, various deep learning
algorithms have been developed and implemented in object
manipulation/grasping. Hundreds of millions of parameters
can be included in deep neural networks (DNNs) [5], [6].
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FIGURE 1. Common framework of deep-RL methods [17].

Deep learning continuously provides significant technolog-
ical facilities for innovative applications and techniques.
Specifically, extensive effort has been devoted to examine
the use of deep learning (e.g. convolution neural networks
(CNNs) [7]–[11] and deep belief neural networks (DBNNs)
[12]–[14]) in developing sensor interpretation and control
algorithms on the basis of actual data for particular challenges
faced during grasping. Reinforcement learning (RL) plays
an important role in robotics, particularly in object grasping.
RL requires an agent to interact with the environment, and it is
a way of learning the best policy via the trial-and-error strat-
egy [15]. RL is an area of machine learning that focuses on
how software agents should take actions in an environment,
and it maximizes the notion of cumulative reward. Human-
scale daily manipulation tasks require a reasoning component
to make inferences on the basis of available knowledge [16].
Combining deep learning with RL creates a new approach
called deep reinforcement learning (deep-RL). In standard
deep-RL, the agent and the environment are the basis of learn-
ing. A general framework that extends beyond the agent and
the environment and can exist in most deep-RL algorithms is
illustrated in Fig.1.

In deep-RL, learning algorithms play a crucial role in
improving the efficiency of robotic tasks, particularly grasp-
ing. Learning algorithms belong in one of three categories
(value-based RL, policy-based RL and model-based RL),
as illustrated in Fig. 2. Deep-RL approaches have been
used in robotic manipulation [18], [19]; different applica-
tions, such as obtaining the best cooperation in manipulating
objects [20] and learning the manipulation of deformable
objects[21]; and manipulation tasks, such as reaching, grasp-
ing and placing [15], [22]–[25]. Moreover, deep-RL has
produced promising results for soft robotic manipulators in

comparison with hard robot manipulators [26], [27]. The
recent technology wherein soft robotics are integrated with
deep learning techniques has become pivotal in manipulation
tasks. The rapid advancement in grasping capacity driven by
vision-based complicated systems has motivated researchers
to utilize models that artificially involve the use of intelligent
robots. As a result, different techniques have been developed
and used in the detection of robotic grasp [28] and deli-
cate control for grasping objects in consideration of various
sizes, shapes and structures [29]. These techniques have been
improved by integrating DL and deep-RL algorithms into the
robust structure of robotic grasping systems

Numerous reviews have been conducted in the robotic
field. Several of them have examined deep learning methods
involved in reaching and grasping tasks [30], [31]. RL was
the focus in [32]. With the purpose of obtaining details on
the cognitive capability for object surroundings during reach-
ing and grasping, a thorough review was presented in [16],
where recent and future works were also provided. How-
ever, this review did not cover deep-RL approaches. With
regard to sensing, a review of visual and force/tactile control
was conducted in [1] via a survey. Given the increasing
demand for accurate and robust grasping, the tactile sensor
has become a popular topic in robotics, and numerous stud-
ies have attempted to develop robotic sense of touch [3] or
implement tactile sensing on robotic hands [33], [34]. With
regard to the grasping mechanism design, several mecha-
nisms were developed based on geckos and spiders by using
dry adhesive materials [35], and others were created with
elastic inflatable actuators [36]. Furthermore, soft robotic
grippers were reviewed in [36]–[38]; these grippers were
designed with advanced materials and soft components, such
as silicone elastomers, active polymers and gels and shape
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FIGURE 2. Learning algorithms-based reinforcement learning.

memory materials. These researchers focused on achieving
light, simple and universal grippers by using the inherent
functionality of materials. The most recent reviews on the
application of deep-RL in robot manipulation are summa-
rized in Table 1, which includes the year, title and description
of the review papers.

Previous reviews have summarized different topics that
are associated with robotics, as indicated in Table 1. The
two most closely related topics to robotic manipulation were
discussed in [50] and [52]. Ref. [50] highlighted the recent RL
algorithms used in robot manipulation, but the range of topics
was small due to the lack of papers pertaining to manipulation
systems. Ref. [52] presented a review of studies that used
machine learning for manipulation as a formalization of the
robot manipulation learning problem. It attempted to build
a bridge between such a computational algorithm concept
and its application in the real world, which is not the focus
in deep-RL associated with robotic grasping. In contrast to
existing reviews that summarize the current status of robotics,
the present review presents a comprehensive study of deep-
RL-based object grasping and discusses the different aspects
involved in robotics tasks by using the concept of deep-
RL. We highlight the diversity of grasping learning prob-
lems that these approaches were implemented on and present
future research directions and challenges. To the best of our
knowledge, this is the first review that intensively studies
the progress and new directions of deep RL-based robotic
grasping. We expect this review to serve as an insightful
reference for researchers in the robotic community.

This article begins by introducing the study and describ-
ing related review papers. Section II explains the review
protocol. Section III describes grasping in clutter. Sim-to-
real transfer is presented in Section IV, and learning from
demonstration (LfD) and well-labelled data are highlighted
in Sections V and VI, respectively. The next two sections
present vision-based robotic grasping and other applications

of deep-RL. The limitations of this work and future research
directions are explained in Section IX. The last section con-
cludes this work

II. REVIEW PROTOCOL
Review searches were conducted on four digital databases,
namely:
• Web of Science (WoS): WoS is an indexing database
that covers several academic disciplines.

• ScienceDirect (SciDir): SciDir provides access to sci-
ence and technical journal articles.

• IEEE Xplore (IEEEXplore): IEEEXplore is a techni-
cal literature library in technology and engineering.

• arXiv: arXiv is a free distribution service and an
open-access archive that covers several academic
disciplines.

The selection of article was based on the index that
formulates and facilitates both the simple and complex
searches query, and specifically tracking several journals and
conference articles on deep reinforcement learning based
manipulation.

A. SELECTION OF STUDY
The procedure of the study selection involves intensive search
of related articles that depends on two main iterations
• The titles and abstracts of the articles were scanned to
exclude the duplication and unrelated articles.

• The full texts of the screened articles that included from
the first iteration step were carefully read and the articles
were organized in taxonomy.

B. SEARCH
Articles searching process was launched on 10th April
2020. The search query was specifically done on the WoS,
SciDir, IEEEXplore, and arXiv databases using their search
boxes running on full text with publication years between
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TABLE 1. Review papers on closely related works.

2016 till 2020. For all mentioned databases, search was
established by using the following keywords: ((‘‘Robotic
grasping’’ OR ‘‘Robotic manipulation’’ OR ‘‘Grasp∗’’
OR ‘‘Object manipulation’’ OR ‘‘Object Grasping’’ OR
‘‘Push’’) AND (‘‘Deep Reinforcement Learning’’ OR
‘‘Deep Learning’’ OR ‘‘Reinforcement Learning’’)). The
preferences of advanced search in all the search engines
excluded books’ chapters and other documents, to which only
selected and relevant journals and conference articles written
in English language were considered.

Therefore, in this review we will describe the current
research topics found in the most recent literature, high-
lighting the most significant challenges. By searching in
well-known digital database sources, such as WoS, SciDir,

IEEEXplore, and arXiv where most of robotics journals are
indexed, allows us to retrieve and review several hundreds
of publications in the recent five years easily. We have
restricted references to the most recent publications, mostly
from 2016 to 2020. We aim to provide a solid knowledge of
the recent research with an impression of the latest challenges
that can be useful to other researchers in the future.

C. ELIGIBILITY CRITERIA
All the articles that met the criteria in Fig. 3 were included in
the review. Mapping the space of the research on deep rein-
forcement learning based manipulation to a descriptive tax-
onomy comprising of four categories which are development
scenario based on features analyzed, visualization, review
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FIGURE 3. Selection of study, search query and inclusion criteria.

and survey, and evaluation and comparative study as an initial
target was carried out. This categorization was derived from
an intensive survey on the sources of literature. After the
duplicated articles were removed, as shown in Fig. 3, all
articles which did not meet the specified eligibility criteria
were excluded. The exclusion criteria are defined as: (1) the
non-English language articles. (2) The articles that discuss the

grasping in general and do not focus on the deep reinforce-
ment learning based manipulation.

III. GRASPING IN A CLUTTERED ENVIRONMENT
During grasping in a cluttered environment, a robot must
be able to understand and recognize its surroundings and
objects alike and perform a sequence of actions on the objects.
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Although several studies have focused on object grasping or
grasp pose detection in cluttered scenes, grasping an invisible
object amongst other objects is challenging because robot
arms need to explore the target position of that object. Most
studies synergized nonprehensile primitive actions (e.g. push-
to-grasp and shift-to-grasp) as a technique to facilitate object
grasping in cluttered scenes. A robot with exploration capa-
bility based on nonprehensile primitive actions is the most
common solution to create a free space around the target for
performing grasping or placing tasks. This part focuses on
grasping in a cluttered environment as one of the challeng-
ing robotic tasks due to the obstacles that prevent possible
grasps. Grasping through a cluttered environment has been
the focus of many researchers. According to our survey in
this field, most existing studies synergized prehensile and
nonprehensile primitive actions for complementarity. Here,
nonprehensile (e.g. pushing) primitive action is one of the
most common actions used with grasping to ease object
grasping in clutter. Several studies utilized the suction grasp
technique as an effective methodwithout the need for synergy
between prehensile and nonprehensile primitive actions. Oth-
ers implemented a shifting action to create space for the grip-
per to put its fingers for grasping the target object. Grasping
in cluttered scenes is performed based on four mechanisms of
grasping, as illustrated in Fig. 4. To this end, grasping objects
in clutter can be made easy once we introduce two actions
that complement each other, which is also considered one of
the most common solutions.

FIGURE 4. Mechanism of grasping in clutter.

A. GRASPING
Recently, deep-RL has been used in various robotic applica-
tions [40], such as placement [55], grasping objects mixed
with towels [56], grasping deformable objects [57] and grasp-
ing in cluttered scenes [58], [59]. The grasping task in
clutter has been intensively examined in numerous stud-
ies [60]–[63]. Deep-RL has led to advanced technologies
by using visual and tactile features, particularly in robotic
grasping [64]. It has also provided solutions for difficult tasks
in clutter that are difficult to be automatically executed and
repeated by using end-to-end training [65] based on trial and
error [66], [67]. However, deep-RL-based robotic grasping,

despite its merits, remains a challenge not only in building
an interpretative model framework but also in terms of the
complexity of the required resources. Robotic grasping has
been categorized by extant studies into two categories. The
first category covers analytic methods [68], which exam-
ine performance on the basis of modelling contact forces
and the capability to resist external wrenches [69], [70] or
constrain object movability during grasping [71]. The sec-
ond category covers data-driven methods [41], which mainly
depend on machine learning for developing models that
map sensor readings to human labels [72] or physical tri-
als [7]. This category explores the prospects of training
model-agnostic deep grasping policies that detect grasps by
exploiting learned visual features without explicitly using
object-specific knowledge (i.e. shape, pose and dynamics).
Pinto and Gupta [73] explored the use of pretrained mod-
els to improve the performance of deep policies during the
execution of auxiliary tasks (e.g. poking). Most data-driven
grasping algorithms at present can perform grasping detec-
tion in 6- degrees of freedom (6-DoF) with either closed-loop
feedback, which only utilizes top–down grasps in simple
tabletop settings [74], [75], or open-loop feedback [76], [77].

Many studies have concentrated on grasping or grasp pose
detection, such as segmenting the target object [78], [79],
combining red-green-blue color image with its correspond-
ing depth image (i.e. RGB-D) based-multimodal data [80],
template-based approach with convex hull [81], [82], use
of a bounding box [83], [84] and detection of an object in
a cluttered scene by using two-stream CNNs [85]. Grasp-
ing an unknown object in a cluttered scene has also been
performed using CNN based on point cloud with a single
depth camera [86], depth sensor [87] or 3D sensor [78], [88]
under difficult environments due to the occlusion between the
camera and objects. In [78], the grasping task was performed
by learning a policy and fine-tuning grasp quality CNN
(GQ-CNN) viaDex-Net. In addition, trainingQ-learningwith
pre-trained models (VGG) [89] that are fully convolutional
neural networks (FCNs) has been implemented to perform
grasping by capturing an RGB-D image frommultiple views.
Generative grasping CNN (GG-CNN) was presented in [90]
to perform grasping in a cluttered environment.

Recent works used a single depth image, which is fed into
a four-branch CNN (shared encoder–decoder), to perform
grasping in clutter [91]. They utilized circumvent continuous
motor control with direct mapping from pixels to Carte-
sian space inferred from the same depth image by using
generative attention learning (GenerAL). Active vision has
also been exploited to highlight the issue of object percep-
tion [92]–[94], which is a key subtask in targeted grasp-
ing. However, it is not commonly applied to grasping and
manipulation problems in clutter [95], [96]. Instead of learn-
ing to pick and place objects by using planar manipulation
(e.g. a single demonstrated goal state), Berscheid et al. [97]
trained a robot to pick and place objects by using self-
supervised learning without an object model. They combined
robot learning of primitives estimated by FCNs and one-shot
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imitation learning. Furthermore, actor–critic deep-RL for
visual grasping in clutter performs poorly in the grasping
task, particularly the grasping of various types of objects
from raw images with a sparse reward. Learning based on
actor–critic deep-RL for visual grasping in clutter has been
improved by using state representation learning (SRL) based
on the disentanglement of a raw input image [98]. In clut-
ter, focusing on the object axis configuration significantly
increases the efficiency of grasping, but grasping from either
the centroid of the object or along the major object axis
is challenging due to complex-shaped objects. A real-time
grasp pose estimation strategy was proposed in [99] for novel
robotic pick-and-place applications. The approach estimates
the object’s contour in the point cloud and predicts the grasp
pose and object skeleton on the image plane.

Most existing data-driven approaches attempt to perform
grasping by using top–down planar grasping, which is inade-
quate for executing grasping in clutter. These approaches are
insufficient for many real-application scenarios and greatly
reduce grasp success. Several research groups considered this
issue recently. For example, Qin et al. [100] addressed this
issue in a challenging setting. They assumed that a group
of household objects from unknown classes are irregularly
scattered on a table. They proposed a framework for directly
learning to retract 6-DoF grasps from the point cloud of
the entire scene in one pass. In particular, they obtained a
per-point scoring and a pose regression method for 6-DoF
grasps. Real et al. [101] proposed a single view for perform-
ing grasping that closely works as the direct regression of
point clouds. However, the back side of the object is unseen,
leading to missed information. Grasping the back side would
be difficult in this situation. Combining generative models
with a new method of evaluating contact points appears
to be the most effective way to increase the success rate.
In [102], a method based on partial point cloud observa-
tions was implemented to plan 6-DoF grasps for the target
object in a cluttered environment. The researchers mainly
used an instance segmentation method to detect the target
object. To generate a set of grasp points for the object, they
adopted a cascaded approach by reasoning about grasps at
an object level and then checking the cluttered environment
for collisions. Zeng et al. [89] proposed a framework that
segments and labels multiple views of a scene by using an
FCN network. The approach leverages multi-view RGB-D
data and self-supervised data-driven learning. Q-learning has
also been trained based on FCN-DenseNet. However, these
approaches based on template matching cannot perfectly deal
with self-occlusion and mutual-occlusion between objects,
which are common because of the inappropriate camera pose.

B. SUCTION AND MULTIFUNCTIONAL GRASPING
This section highlights the suction and multifunctional grip-
per as one of the mechanisms used to perform grasping in
clutter. Suction grasping in clutter is a common and effec-
tive method with a high grasp success rate. For example,
Zeng et al. [89] proposed a learning framework using FCNs

that can efficiently model policies with affordances and
improve run-times. Their framework uses multifunctional
grasping (e.g. suction and grasping), which can improve
the efficiency of grasping performance in clutter. However,
their framework was designed based on RGB-D images with
limited views, and they evaluated their framework with a
limited type of objects. In another work, Real et al. [101]
proposed a single view to perform grasping by using multi-
functional grasping, which closely works as the direct regres-
sion of point clouds. Suction grasping can perfectly perform
grasping in clutter with a higher success rate than multi-
functional grasping. Shao et al. [103] performed grasping
via suction grasping. Their proposed framework combines
ResNet with the U-net structure, a special framework of
CNN, to predict the picking region without recognition and
pose estimation. Their framework was trained end-to-end
with self-supervised learning. Although they presented a
self-supervised approach to robotic bin picking that allows
the robot to learn proper picking points in a cluttered bin,
the authors only reported success in a simulated environment.
Moreover, suction grasping is more effective in performing
assembling tasks (e.g. kits) [67]. They leveraged data-driven
shape previously learned from multiple kits during training.
Their framework can easily be generalized to new objects and
kits.

C. PREHENSILE AND NONPREHENSILE ACTIONS
Performing nonprehensile actions was one of the main prob-
lems in robotic manipulation in the past. The planning of
nonprehensile motions, which emerged early by using clas-
sical solutions (including modelling dynamics of pushing
with force friction [104], [105]), has developed rapidly.
Many methods involved in the modelling field do not hold
in practice [106], [107]. For instance, several factors (e.g.
non-uniform friction distributions of object surfaces and vari-
ability of friction) can be prone to errors in predictions of
friction-modelling pushing solutions in real settings.

To address the increasing demand for performing complex
grasping tasks in clutter, Finn et al. [108] developed an action-
conditioned video prediction system (Fig. 5) that can predict
the distribution of pixel motions by using previous frames.
The robot could generate nonprehensile actions (e.g. pushing
objects) to push objects to desired locations, which helps
the robot discover unseen objects during training. Although

FIGURE 5. Set of normalised convolution filters that give rise to an
independent Gaussian distribution over future images [108].
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they utilized information from prior frames with model pre-
dictions without using the centroid point of the object, their
approach requires large amounts of data to perform well
in real-world situations. This is because they implemented
unsupervised learning in their approach to physically inter-
act through video prediction by dynamic neural advection
(DNA). The authors collected a dataset of 59,000 pushing
motions and applied it to different objects [109], as illustrated
in Fig. 6. Although this method shows effective generaliza-
tion to novel objects, it is constrained in terms of complex
tasks and the time scales at which these tasks should be exe-
cuted. In addition, this method cannot be applied to long-term
planning and is only effective for short motions [110], [111].
To overcome this limitation, the authors updated their work
in another paper by using a learning-based approach of
hand–eye coordination for robotic grasping from monocular
images [112]. They hope to achieve effective real-time con-
trol, which can be used to successfully grasp novel objects,
and correct mistakes by continuous servoing. With regard to
methodology, they trained a large CNN (Fig. 7) to predict the
probability of grasps by using only monocular camera images
and camera calibration or the current robot pose. However,
these solutions cannot be generalized to new environments
without being trained in the same environment, and they
lack the capability to retain information on objects that are
occluded during the predicted motion.

FIGURE 6. Video prediction model predicts stochastic pixel flow
transformation from the current frame to the next frame [109].

FIGURE 7. Convolutional dynamic neural advection (CDNA) that
computes the expected value of motion distribution for every pixel [112].

In another work, Ebert et al. [113] used the DNA model,
multilayer convolutional LSTM structure and skip connec-
tion neural advection model (SNA) (Fig. 8), which can be

FIGURE 8. Spatial transformer predictors (STP) [113].

generalized to new environments without training in the same
environment.

In terms of interleaving planning and execution in real time
and closed-loop settings, Bejjani et al. [114] implemented
a receding horizon planner (RHP) for pushing manipulation
in clutter, as shown in Fig. 9. They addressed the problem
of finding a suitable function-based heuristic for efficient
planning and estimating the cost-to-go from the horizon to the
goal. Their framework exploits the deep Q-learning (DQN)
algorithm, which is trained using a dynamic neural net-
work (DNN) to predict the actions to be executed. They also
formulated an RL policy as RHP to select a random action
with a probability of policy queries RHP for an action. How-
ever, the value function was learned over predefined features,
which limits the framework’s applicability to certain objects
for a single particular shape. They overcame these limitations
in their next work [115] by combining image-based learning
systems with look-ahead planning. Other studies assumed
object geometry [116] [117], and Cartesian coordinates were
relied on to represent the state. Meanwhile, Song et al. [118]
utilized object geometries to increase the efficiency of manip-
ulation motions. Their approach addresses the problemwhere
the goal is expressed in terms of numerous objects and all
final poses. The algorithm computes solutions where the
robot plows through a large collection of objects to separate
and move different groups of objects apart. This manually
designed function was replaced with a learned value function,
similar to what has recently been done for the manipulation of
movable obstacles (MAMO) problems. However, large-scale
rearrangement planning (RP) problems remain unaddressed.

FIGURE 9. Receding horizon planner (RHP) for pushing manipulation in
clutter [114].

Combining nonprehensile and prehensile manipulation
policies plays a crucial role in grasping objects in clutter,
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but this area of research has not been intensively explored.
Zeng et al. [119] presented a framework of grasping objects
in cluttered scenes based on synergies pushing and grasp-
ing primitive actions. Their framework was built based on
visual pushing–grasping (VPG), and Q-learning was trained
with the DenseNet pre-training model, which is a fully con-
nected network (DenseNet-FCN). However, the VPG frame-
work was implemented to perform target-agnostic tasks and
needed re-projection before inputting the prediction net-
work. In another work, deep Q-critic was also trained on
DenseNet-FCN to annotate the objects of interest and detect
the existence of the target [120] by using a semantic segmen-
tation module. Although the authors attempted to grasp an
unseen object amongst other objects by pushing either the
target or surrounding objects to create a free space around the
target, no consideration was given to the materials of either
the target or surrounding objects. Furthermore, the utiliza-
tion of pushing primitive action as a method to singulate a
target object from its surroundings in clutter was presented
in [121]. The developed framework exploits the DQN algo-
rithm to generate a new approach called split-DQN, which
learns optimal push policies by trial and error. However, the
framework is limited to objects with a certain shape, size and
texture that are used in training and testing. Hundt et al. [122]
described the schedule for positive task (SPOT) reward and
the SPOT-Q RL algorithm, which efficiently learn multi-
step block manipulation tasks in simulation and real-world
environments. However, their framework focuses on how
to stack objects on each other with combining push and
grasp actions. In [123], shifting objects was determined to be
another mechanism for facilitating object grasping in clutter
by placing a finger on the top of the target object in such away
that the grasp probability increases. In this work, CNN with
Q-learning was trained using argmax Q(s; a). By contrast,
shifting objects by using a gripper may be reversely affected
by the friction between the object and ground due to the type
of material of the workspace and the object. Thus, shift action
can be useful on certain grounds, but it can be ineffective on
other grounds. This matter can be a future work direction for
researchers.

RL-based, training-optimal push policies were presented
in [124] for given depth observations of a scene. These
policies facilitate grasping objects in cluttered scenes where
the target can be invisible by using a deep neural network
algorithm with Q-learning. However, the authors employed
an instance push policy, in which a sole push policy is
learned via Q-learning for the visible target in clutter. This
approach can be improved further by using a more complex
action repertoire, such as pushing in numerous directions and
heights and picking up and removing objects. Residual policy
learning (RPL) is a simple method that can improve non-
differentiable policies by using model-free deep-RL to learn
a parametric policy for vision-based manipulation. In [125],
the RPL concept was implemented to perform the task of
pushing, picking and placing objects in a cluttered scene
by using deep deterministic policy gradients (DDPG) and

an actor-critic algorithm, which works well in domains of
continuous states and actions. In DDPG, the actor is updated
following the deterministic policy gradient. However, the ini-
tial policy is an expert or feedback controller rather than a
generative model.

D. SUMMARY
Table 2 summarizes related studies on grasping objects in
clutter and presents useful information, including deep-RL
methods, actions performed, frameworks and codes.

Grasping of objects, which are aligned to the edge or corner
of the totebox, or stacked in a pile, remains a challenging
task for a robot. In [126], using deep RL for combining
grasping with pushing action has been presented to alleviate
that issue with exploiting double experience replay. Another
work has proposed framework based on a model-free Deep
Reinforcement learning [127] to train control policies for
exploiting visual information and proprioceptive states of the
robot, in order to autonomously discover the robustness of
pregrasp manipulation. Practically, the robot arm was trained
to execute a sequential action, starting by pushing the object
towards a support surface, and then establishing a pivot to
lift up one side of the object, so that it could create a clear-
ance between the object and the table as possible grasp-
ing solutions. In addition, a depth difference image-based
bin-picking (DBP) algorithm has been proposed in [128],
which does not need a neural network, because DBP has
the ability of prediction the grasp pose from the object and
its surroundings, which are obtained through depth filtering
and clustering. In this approach, the object region was esti-
mated by the density-based spatial clustering of applications
with noise (DBSCAN) algorithm, and a depth difference
image (DDI) that represents the depth difference between
adjacent areas is defined. Different frameworks have been
presented in achieving grasping object in clutter such as
active affordance exploration framework which leverages the
privileges of affordance map and the active exploration [129],
integrating perception, action selection, and manipulation
policies to address a version of the Mechanical Search prob-
lem [130], actor model with neural network that combines
Gaussian mixture and normalizing flows [131], joint learning
of instance and semantic segmentation for robotic pick-and-
place with heavy occlusions in clutter [132], and predicting
the quality and the pose of grasp using U-Grasping fully
convolutional neural network(UG-Net) based on pixel-wise
using depth image [133].

Moreover, Guo et al. [134] learned push skills based
on combining You Only Look Once (YOLO) as detection
algorithm with deep deterministic policy gradient (DDPG)
algorithms. Han et al. [135] trained Q-Learning to learn
suction grasp in clutter based on two CNN a fast region
estimation network (FRE-Net) to predict which region con-
tains pickable objects, and a suction grasp point affordance
network (SGPA-Net) to determine which point in that region
is pickable. Whereas, the issues of robotic manipulation
for multiple object in clutter has been addressed in [136],
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TABLE 2. Summary of works and their useful links.
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TABLE 2. (Continued.) Summary of works and their useful links.

where they have Synergies between pushing and grasp-
ing using DQN algorithm with Mask R-CNN. In terms of
learning the nonprehensile rearrangement task in clutter,
many feasible frameworks have been presented. For exam-
ple, Yuan et al. [137] learned nonprehensile rearrangement
strategy based on Deep Q-network algorithm by exploit-
ing heuristic exploration strategy for reducing the amount
of collisions. Whereas, Monte-Carlo Tree Search explo-
ration strategy, which relies on visual inputs coming from
an RGB camera, has been presented to learn nonprehensile
rearrangement task [118], [138]. Furthermore, Determining
where to replace objects inside a cluttered and confined
space while rearranging objects to retrieve a target object
has been presented in [139]. In contrast to others related
work where planning for the placement of removed objects
inside a workspace has not received much attention. Rather,
removed objects are often placed outside the workspace.
In another work, iterative local search (ILS) using heuristics
and an e-greedy has been implemented for non-prehensile
rearrangement [140], whereby the authors claimed that ILS
is equipped with strong heuristics and an e-greedy rollout
policy has succeeded at solving various tasks for table-top
rearrangement, including a sorting task. In contrast to MCTS,
the ILS algorithm is designed to construct a long pushing

trajectory that eventually reduces the distance to a goal
state.

Teaching agents how to synergize prehensile and
nonprehensile actions remains to be a challenge in robotic
manipulation, in which various studies have attempted to
overcome the limitations of grasping objects in cluttered
scenes. Different mechanisms, such as push-to-grasp, shift-
to-grasp and suction grasp, have been used. However, per-
formance efficiency still needs to be improved because all of
the aforementioned works dealt with specific range and types
of objects. In addition, no consideration has been given to
the materials of the objects to be grasped (either fragile or
deformable). A limitation also exists in terms of the behav-
iors of synergy types between prehensile and nonprehensile
actions that can be executed. Although several researchers
trained the nonprehensile policy solely, others attempted to
train prehensile and nonprehensile policies by using parallel
neural networks. In addition, increasing the complexity of
training resources is one of the challenges that needs to be
faced during training, and these frameworks require large
amounts of data to be able to synergize the two actions. This
condition may reversely affect the performance of agents in
terms of training time. From the current author’s percep-
tion, for this particular task, all works on object grasping
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in cluttered environments attempted to discover and learn
synergies between prehensile and nonprehensile actions from
experience through model-free deep-RL. On the other hand,
model-based learning could produce promising results and
can be effectively learned rapidly and efficiently. Another
suggestion for improvement is to implement deep networks
for Q-function estimation, such as double Q-learning [141],
and dueling networks [142] that have the potential to improve
performance efficiency.

IV. SIMULATION-TO-REAL-WORLD TRANSFER
Transfer learning from simulation to reality plays a crucial
role in robotic applications because this technique requires
the consideration of some information about real robots, such
as amount of fine tuning, during transfer. Many recent studies
have presented promising results in this field. Performing
simulation first and then transferring such learning into a real
robot is the most effective means to thoroughly understand
the training environment, and it might be achieved through
a training robot. A learning robot, during simulation, maxi-
mizes advantages by collecting sufficient real-world data for
robotic learning, but this process can be costly. Furthermore,
learning the skills to be adapted to the features of objects
being grasped is one of the challenges that robots should
overcome. These features might be irrelevant for generaliza-
tion skills; hence, a robot always selects a small number of
relevant features to adapt easily to a specific skill. The robot
should be trainedwith a generalization capability for different
object configurations to generate manipulation skills with
a wide range of application scenarios. However, generating
these scenarios requires numerous training samples, which
can be difficult for learning-based algorithms to implement in
real robotic systems. Ref. [143] focused on how the learning
policy can be deployed in other tasks. By referring to the
transfer leaning policy for real robots, Viereck et al. [144]
trained a neural network to measure object distances in sim-
ulation by using a depth sensor (Fig. 10). They aimed to
reduce the reality gap on the basis of depth information.
The authors in [145], transferred simple learning visuomotor
policies of grasping blocks from simulation to a real robot by
using progressive networks [146], and Christiano et al. [147]
trained a fetch robot (Fig. 11) to compensate for several
dynamic features, such as friction and physical discrepan-
cies, which might be absent during simulation-based policy

FIGURE 10. Overview of the approach that is divided into three stages,
namely, generating training data through simulation, predicting
distance-associated nearest grasps via a CNN model and moving the
gripper to a predicted grasp position by using a controller [144].

FIGURE 11. Overview of the method applied to a fetch robot in the
source simulator (bottom) and target physical world (top) [147].

learning. In [148], the authors also learned object detec-
tion in a complex scenario during simulation training by
using visual variations. Then, they transferred the learned
policy to a real robot. In all of these aforementioned studies
on transfer learning, simulation data were manually gener-
ated, and the training policies were replicated for real robot
implementation.

Another direction has emerged between randomization and
supervised learning. James et al. [111] aimed to increase
the success of transfer learning; they augmented the train-
ing during simulation to learn more about grasp predictions
of different object shapes. In addition, the Simulated and
Physical Articulated Extendable (SPARE) object dataset was
generated for use in evaluating different methods in terms of
predicting the number and length of links of an articulated
object by using a deep neural network (CNN-LSTM), as
illustrated in Fig. 12.

FIGURE 12. Variations in cube, basket and camera positions during
training and testing tasks. NN architecture map sequences of the four
previous images and joint angles for motor velocities and gripper actions,
aside from two extra outputs of the 3D positions of the object and
gripper [111].

In another work, task synergy push and grasp policies
were trained in simulation by using the modular deep-RL
method; the policies were then transferred and applied to
real robotic tasks [149]. The asymmetric actor-critic method
was presented by using high (partial observation) and low
(environment state) dimensions [150], which considerably
decreased the number of trainable parameters and increased
the critic accuracy during transfer learning. However, the full
environment state needs physical parameters to be adaptable
to complex dynamic conditions that match a real robot, and
obtaining physics parameters is not trivial. Several studies
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utilized the domain randomization concept for the appli-
cation of transfer learning, such as transferring policies
of deformable objects trained using DDPG with different
tasks (e.g. folding a small towel [151]) and transferring
in-hand manipulation policies trained using proximal pol-
icy optimization (PPO) with the asymmetric actor-critic
approach [152]. A learning policy can also be generated
via viewpoint-invariant visual servoing using a recurrent
CNN (LSTM) by implementing the Monte Carlo method to
predict the Q-value of the action [153]. These policies were
transferred to real-word robotic applications.

Meanwhile, Chebotar et al. [154] studied the optimal
distributions of simulation properties by using real-world
trajectories to update the simulation parameter distribution
during agent training in simulating the task of opening a cab-
inet drawer and swing-peg-in-hole tasks (Fig. 13). However,
the policy was directly learned on randomization rather than
domain randomization to learn a randomized-to-canonical
adaption function. James et al. [155] addressed this prob-
lem as their contribution. They implemented Q-function tar-
gets via optimization (QT-Opt), which is an off-policy and
continuous action generalization of Q-learning, as shown
in Fig. 14. In addition, many studies have focused on
transfer learning, such as using modular network architec-
tures [156], [157] and randomizing visual appearance and
robot dynamics [150], [158].

FIGURE 13. Pipeline of simulation optimisation [154].

In accordance with nonprehensile manipulation and rear-
rangement, such as pushing or shifting, nonprehensile actions
have been used in robotics alongside grasping actions because
they play an important role in increasing the success rate of
grasping when dealing with cluttered and stacked objects.
However, using nonprehensile actions requires knowledge
on frictional forces; otherwise, robots will have difficulty
performing. For example, instead of end-to-end training,
the transfer via modularity concept was used in [159] to
separate the learned pushing and grasping policies from the
raw inputs and outputs. The push policies were trained in

FIGURE 14. Learning to translate randomised simulation images to a
chosen canonical simulation version to be fed into the agent [155].

simulation, and the learning was subsequently transferred
to a real robot. However, this approach requires augmented
reality tags (AR-tags), which are developed in the constrained
context of detecting and pushing an object with a robot arm
against a uniform green-screen backdrop [160]. A learning
push policy to drive mobile robots outdoors was presented
in [161]. This policy considers complicated perceptual con-
ditions because it needs different intermediate representa-
tions and modules. Moreover, nonprehensile rearrangement
involves controlling the robot problem during the interaction
with objects for reconfiguring the objects into a predefined
target position. Ref. [162] proposed the use of whole arm
manipulation to learn how to hold and transport human bodies
in rescue and patient care scenarios. The authors used PPO,
an actor-critic RL method, to train the policy and directly
transfer it to the real-world robotic application. Notably,
the system has to forgo access to raw sensor data to avoid
the gap between simulation and reality. The authors addressed
this issue in their next work [163]. They trained policies end to
end by using the deep Q-learning algorithmwith CNN, which
maps raw pixels as a state-action value then transfers the
policy to a real robotic application with supervised examples.
Recently, a single universal policy π (a|s, z) was trained by
off-policy Q-learning, and the same learned policy was used
during testing without any further optimization [164]. How-
ever, this approach may not be robust, as explained in [165].

In [166], Arnekvist et al. highlighted the problem of trans-
ferring knowledge within a family of similarMarkov decision
processes (MDPs). To solve this problem, they proposed
variational policy embedding to learn an adaptable master
policy for a family of similar MDPs. Thus, the master policy
can adapt to the new family’s members rather than finding
one robust policy. The policy can also be transferred without
a pre-trained dataset. Meanwhile, a cup placing policy was
trained using CNN based on Monte Carlo tree search [167].
The purpose was to optimize the augmentation strategy for
sim-to-real transfer and enable domain-independent policy
learning.
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The issue of bridging the reality gap was addressed
in [168], which studied how randomized simulated envi-
ronments and domain adaptation methods could be used to
train a grasping system for grasping novel objects from raw
monocular RGB images (Fig. 15).

FIGURE 15. Overview of the pixel-level domain adaptation model [168].

In the work by Pedersen et al. [169] unknown objects were
grasped by training a deep neural network grasping agent
on simulated data. Furthermore, domain randomization has
been implemented to transfer learned policy from simulation
to reality [170], [171]. A method of sim-to-real transfer has
been presented in [172], where an end-to-end tactile grasping
policy trained in simulation transfers directly to the real world
with high fidelity. The work aims to overcome such chal-
lenges of the tactile sensing, which could enabled BH-282
Barrett hand through its reinforcement-learned incremental
finger closing procedure based on tactile sensory feedback.
As methodology, the work used a multi-fingered adaptive
tactile (MAT) grasping utilizing deepRL,whereMATmodels
the environment as anMDPdefined by (S, ρ◦,A,R,T , γ,H ).

V. ROBOTS LEARNING FROM DEMONSTRATION
In the robotics field, learning from demonstration (LfD)
is a model where a robot learns new skills by imitat-
ing an expert. LfD plays a remarkable role in develop-
ing robotics and automation to overcome the limitation of
performing complex tasks. In imitating the learning con-
text, the robot acquires the expert’s behavioral samples and
attempts to execute the task by replicating the expert’s
actions. In RL, the robot intends to maximize the pre-
dicted reward by interacting with the environment. Several
studies have concentrated on using prior knowledge from
demonstration to initialize a policy [173], [174], and oth-
ers have attempted to infer the reward function via inverse
RL [175], [176]. A few studies focus on improving policies
through learning steps [177]–[180]. All of them use human
demonstrations to aid in the exploration of learning block-
stacking tasks. These methods encounter difficulty in exe-
cuting assembly tasks that require the collection of multiple
demonstrations. Although learning a reward function could
partially alleviate this problem, such as the classification of
target states stated in [65], an RL-based real-world robotic
application has to appoint the target task by means of a man-
ually programmed reward function. It needs to use the same
pipeline of perception that the end-to-end method promises
to avoid or add extra sensors to check if the task has been
successfully executed. Several studies have demonstrated

the problem of robots in performing a task in the pres-
ence of stationary [181]–[183] or moving obstacles, which
are regarded as a special consideration during demonstra-
tions [184]. On the contrary, applying motion planning and
task programming is considered a solution for avoiding the
complexity of manual programming, and it can be provided
by the LfD approach [185].

In addition, high-precision assembly tasks have been the
focus of various studies on performing insertion tasks, such as
obtaining high-dimensional observations (e.g. joint position,
velocity, force, and geometry) [186]–[189]. However, obtain-
ing this information is difficult because it entails complex
experiments and supervised learning. Meanwhile, external
trajectory planning is one of the techniques to demonstrate
assembly tasks [187], [188], but it can be prone to errors
in terms of perception. In [190], Schoettler et al. presented
effectiveness of using LfD with RL compared with using
residual RL with the aim of performing an insertion task with
minimal prior knowledge, and they did so under noisy condi-
tions. Furthermore, Zhu et al. [191] implemented end-to-end
RL to learn visuomotor policies without the need for demon-
strator actions. However, demonstrations could be involved
if raw demonstrator actions are unknown or generated by
a different demonstrator. As the states of the environment
change, LfD encounters difficulty adapting continuously to
the environment’s state. Ref. [184] solved this problem by
extracting patterns that are important to a given task and
can be generalized to different tasks. Obstacle avoidance was
considered during demonstrations and used later for model
learning. Training a policy to perform book shelving and
cloth draping tasks was performed in [65] by using RL with
active queries. However, this framework requires additional
assumptions for obtaining labels from users, and the authors
worked on limited tasks where linear interpolation could be
obtained for a state between initial and targeted ones, as men-
tioned in [192]. Meanwhile, learning of residual tasks has
been performed bymanually specifying a policy [125], [193].
In [194], collision avoidance in a dynamic environment was
presented as a main contribution. The authors used only a
few demonstrations, but they were still appropriate for a wide
range of obstacles.

Robot learning from demonstration (RLfD) has been
progressively implemented on specific tasks with limited
environmental conditions, including reduced time and cost,
particularly in manufacturing workspaces where the robot
needs to avoid stationary obstacles and collision with objects
that are shifted and moved by humans by controlling the
policy. Therefore, building a control policy from demonstra-
tion is required for a robot to avoid collision with mov-
able objects during task execution. Using raw demonstration
is also important in hastening the process where learning
samples are immediately acquired for the robot so that the
robot can perform the action precisely. However, this type
of robotic learning is appropriate only for cases with direct
contact and a passive controller [195], [196]. Thus, it is not
suitable for dealing with multiple DoFs (e.g. robotic arm with
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multiple DoFs and dual-arm robots). With regard to imitating
the learning of robotic manipulation, a generalized capability
that allows robots to continuously gain new tasks and exploit
pre-existing experience from previous learned tasks is nec-
essary. Piao et al. [197] aimed to learn multi-modal imita-
tion demonstrations with different intentions by optimizing
a sparse coding lifelong intention dictionary, which enables
robots to autonomously imitate various complex behaviors.
Their approachwas used to develop a lifelong imitation learn-
ing framework for inverse reinforcement learning (IRL) to
deal withmulti-intention imitation learning problems. Specif-
ically, their approach comprises three components: a policy
search cost function that incorporates the motion plan trajec-
tory, an efficient initialization of the policy search algorithm
with a traditional tracking controller and an NN representa-
tion that takes a motion plan as an input and can be trained
with RL to track it.

Bed-making task is considered to be difficult home task
that can be a challengeable for senior citizens because of
reaching motions. Executing bed-making autonomously is a
technically challengeable task in terms of perceptive item in
an unstructured environment, dealing with sort of deformable
objects, sequential decision making, and obstacle avoidance.
In [198], they have presented a supervised deep transfer
learning approach to locate pick points using depth images
for invariance to color and texture, to perform bed-making
task. In their approach, they gathered human demonstrations
for grasping the sheet and failure detection, by utilizing
pre-trained YOLO features in order to facilitate the learn-
ing of deep neural network policies. Other works on the
execution of folding cloths can be found in [199]–[203].
Instead of improving the synthetic objects to be indistinguish-
able from real objects, Abolghasemi and Bölöni [204] have
trained the vision system to accept synthetic objects as real.
They have extended the capabilities of end-to-end LfD archi-
tectures to object manipulation in clutter using Variational
Autoencoder- Generative Adversarial Network (VAE-GAN).
Song et al. [205] proposed the use human demonstration and
action-view representations to improve learning efficiency.
In the work, demonstration is learned from a new low-cost
hardware interface that collects grasping demonstrations in
clutter, and presenting an end-to-end 6DoF closed loop grasp-
ing model with reinforcement learning that transfers to real
robots.

VI. WELL-LABELLED DATA
Labelled data comprise a set of samples that have been
marked up or annotated with one or more labels. Labelling
takes a group of unlabeled data and assigns each sample a
meaningful label that is informative. However, data labelling,
which has been focused on by many studies, is not a trivial
task because it needs an adequate group of samples and
an ample amount of time to accomplish such a task with
informative labels associated with the target task. Two prob-
lems with such a methodology are labelling grasping object
locations manually in multiple ways and human labelling,

which is biased by semantics. Although several attempts have
been made to train agents by trial and error, the samples
of labelled data used in such experiments were few, thus
making the robot vulnerable to over-fitting errors. Pinto and
Gupta [7] collected datasets with a data size of 50 K covering
700 hours, and they generated a large amount of training data
that was almost more than one-third the amount of existing
data. They trained CNN to predict the grasp orientation by
using image patch and self-supervised data in exploiting a
cluttered environment rather than a sparse scene. In contrast,
Levine et al. [112] utilized hand–eye coordination instead
of open-loop predictions to continuously observe the gripper
and select an appropriate motor command for performing a
successful grasp. The advantages of their approach include
lack of need for calibration between the agent and camera
and training using 800 K grasp attempts on a wider range
of objects compared with that in [206] and [7]. In addi-
tion, their method requires much time (over two months) to
train 14 robots.

Reducing the data collection time is one of the chal-
lenges in generating robust robotic grasps and has been the
focus of different studies, which initially began with Dex-Net
1.0 [207]. For example,Mahler et al. [208] worked on amajor
extension to generate Dex-Net 2.0 by using synthetic point
clouds with robust grasps. They trained a GQ-CNN model
by using the cross-entropy method (CEM) of RL to generate
point clouds and grasp attempts for predicting robustness.
They extended their work to generate a new version of their
data called Dex-Net 3.0 [209] that uses synthetic data of
depth images for training on bin-picking tasks. However, they
adopted synthetic data, which are limited due to the reality
gap as mentioned in [210]. Dex-Net 4.0 [211] is a state-
of-the-art grasp planner that plans robust grasps for various
objects. The method combines the simulation of thousands
of 3D object models, analytical wrench mechanics, struc-
tured domain randomization and synthetic point clouds to
train a deep learning optimization system. The learned policy
rapidly processes high-resolution depth images to compute
robust robot pick points in various groups of objects for a
stationary industrial manipulator. For the implementation of
a highly flexible dataset on decluttering surfaces (e.g. homes
and machine shops), Staub et al. [212] modified Dex-Net
4.0 to generate the Dex-Net MM grasp planner for coping
with the parameters of the mobile manipulator because this
task can be executed using a mobile manipulator rather than a
stationary industrial manipulator; hence, mobile robots were
equipped with low-precision sensors and actuators alike. In a
surface decluttering experiment where objects were randomly
selected from 40 common machine shop objects, the robot
was able to recognize, grasp and place the objects into appro-
priate class bins in 117 out of 135 trials.

One of the difficulties in implementing RL to complex
robotic control tasks is the need for a considerable amount
of experience in identifying an effective policy for the task
at hand. Model based RL is capable of achieving good
sample efficiency but needs the ability to learn a dynamics
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model that is good enough to learn an effective policy. The
authors in [213] developed a model-based RL algorithm
that combines prior information from preceding tasks with
online dynamics model adaptation. Neural networks were
used to create and adapt online models that can be used
for model-based RL and to learn a control policy that uses
iterative linear quadratic regulation. They also used pre-
dictive control modelling based on differential dynamics.
With respect to data collection, data were collected from
different sources to provide a sufficiently diverse dataset.
The total training set for the physical robot experiments
had data collected at 20 Hz in 6.6 hours [214]. In contrast
to Gaussian processes, NNs have constant inference time
and tractable training in the Big Data regime and have the
potential to represent numerous complex functions, includ-
ing non-smooth dynamics that are often present in robotics.
NNs therefore rely on deterministic models, thereby suf-
fering from overfitting in the early learning stages [215].
Meanwhile, by integrating long-horizon reasoning through
RL into a generalizable vision-based framework trained on
self-supervised real-world data, [19] attempted to resolve
the data limitation caused by the reality gap. Refers. This
was not considered by [112] and [7], as they proposed self-
supervised grasping systems. Kalashnikov et al. [19] sug-
gested, and named QTOpt, an off-policy training approach
focused on a continuous-action generalization of Q-learning.
They found that a more robust and scalable alternative would
be to train only a Q-function and implicitly induce a policy
by optimizing this Q-function via stochastic optimization.
RL implementations in the real world therefore require sig-
nificant effort to design and assess the role of reward. While
model-free RL approaches have the ability to generalize
to new objects [19]and learn tasks such as grasping and
pushing through self-supervision [7], [119] pure model-free
approaches generally lack the ability to rationalize tem-
porarily extended plans explicitly, making them unsuitable
for the problem of learning long-horizon tasks with limited
supervision [216].

Data-driven grasp-analysis or grasp planning algorithms
for parallel jaw grippers, such as Dex-Net [78], [207], [208],
[211], generative grasping convolutional neural network
(GG-CNN) [217], Grasp Pose Detection (GPD) [218],
viewpoint selection for grasp detection [219] or Fully Con-
volutional Grasp Quality Convolutional Neural Network
(FC-GQ-CNN) [220], typically take sensor input (e.g., an
object mesh, a depth-camera image), perform some pre-
processing (e.g., image in painting), and produce either a
grasp or grasp quality score for a pre-sampled grasp candi-
date [206]. Themajority of these algorithms are based on con-
volutional neural networks (CNNs) and may be learned from
human annotations [80], simulated training data [144], [221],
human or self-supervised labels from grasps attempted on
a physical system [7], [19], [112], or a combination of the
above [168]. Recent work has also explored introducing addi-
tional degrees of freedom for grasps in cluttered environ-
ments [33], [34], [102], [222], [223], noting that top-down

grasps leave out a wide range of feasible high quality grasps
on many objects [224]. As for transparent object, there are
someworks to detect the transparent objects for grasping such
Polarized CNN framework, which demonstrates on instance
segmentation withMask R-CNN [225], [226], a grasp quality
CNN that takes RGB input [227], and leveraging of deep
learning with synthetic training data objects from a single
RGB-D image [228].

Selecting appropriate point Grasping of an individual
object has been also studied for many years, and there
many feasible frameworks have been presented. However,
for executing daily life tasks, there is still a challenge to be
overcome because the environmental scene in our ordinary
life is usually messy, where objects are often significantly
influent in term of front and back occlusion, besides stack up
and down. In [229], they have mainly focused on grasping
plan and selection in a cluttered scene. In another work,
segmentation-based framework have been proposed in [230]
using Synthetic Data and Mask R-CNN, where object is seg-
mented into primitive shape classes using monocular depth
input, with the object to grasp extracted and converted into
primitive shape point clouds. In addition, non-Markov pick-
ing policies have been presented in [231], which incorporate
memory of past failures to modify subsequent actions in
robot bin picking. Recently, an end-to-end approach has been
proposed in [232], to directly predict the poses, categories
and scores (qualities) of all the grasps. They have generated
dataset of 23.7k grasps for 79 objects and a multi-object
dataset of 20k point clouds with annotations and masks. Fur-
thermore, to overcome the disadvantages of photo-realistic
environment simulation, in [233], large-scale dataset has been
proposed, which is called Real Embodied Dataset (RED), and
it includes full-viewpoint real samples on the upper hemi-
sphere with a modal annotation and enables a simulator that
has real visual feedback.

VII. VISION-BASED ROBOTIC GRASP
Executing a complex task from pixel inputs only is considered
remarkable and has been focused on by many studies. For
example, visual servoing has been widely implemented in
many applications associated with robotic tasks [153], [234].
In today’s fast-paced world, an increasing number of
researchers have examined deep learning to execute com-
plex behaviors from pixels. This area shows promises
in performing complex tasks that are difficult to com-
plete [19], [65], [111], [151], [152], [235], [236] especially
in goal-conditioned settings [237], [238]. Reach-to-grasp
manipulation is performed using DLR, which is made up
of many feasible frameworks that help researchers alleviate
the challenges in robotic manipulation. Katyal et al. [239]
proposed a framework using a deep neural network (DNN)
that maps a raw image pixel to the Q-value (via the context
of Q-learning). Although they made robotic control immune
to changes in the robot manipulator or environment during
the execution of reaching tasks, their approach needs large
amounts of training data, as mentioned in [149] and [155].
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In addition, RL, the standard paradigm for solving sequential
decision issues, helps robots learn directly from gained expe-
rience. However, it is ill-equipped to deal with scalable and
uncertain problems during real-world tasks because solving
high-level sequential decision tasks depends on the physical
robots themselves. Biasing action exploration using state-
and action-centric demonstration has been proposed in [240];
it combines object-oriented MDPs (OO-MDPs) and abstract
MDPs [241] (AMDPs). However, this approach was trained
via trial and error.

Low-level states and actions are challenges in formulating
MDPs, and they can be encountered during deep-RL-based
robotic manipulation. Such a problem is noticeable in a par-
tially observableMDP (POMDP)where the shape and pose of
the object are in a hidden state, such that the images or point
clouds produced by sensors cannot store the hidden state. The
DQN algorithm has been proposed to overcome this problem.
For instance, Gualtieri et al. [242] introduced an algorithm
that is rather similar to DQN but with a slight difference in the
use of a variant of Sarsa rather thanQ-learning. They gathered
all epochs of experience before labelling the database of expe-
rience replay by using the most recent weights of neural net-
works rather than running a single SGD after each experience.
Their target was to overcome the problems of pick–place
and re-grasping where the exact geometry of the objects to
be handled is unknown (e.g. mugs and bottles). Although
they showed a major improvement, they assumed fixed place
choices. Meanwhile, Gualtieri and Platt [18] learned 6-DoF
grasping and pick–place by using attention focus. The pur-
pose of their work is to generalize these attempts as a single
system that can identify 6-DoF grasp and place poses where
goal placement is non-trivial.

One of the challenges that can effectively reduce the
performance of RL approaches is when the reward can be
obtained from a successful trial during the learning of dif-
ficult behavioral actions. Learning an object palm-touching
task has been performed based on the learning of binocular
fixations using either anomaly detection with deep-RL [243]
through a weakly supervised, stage-wise learning of simple
tasks [244] or without using prior knowledge [245]. In these
works, the authors exploited the deep deterministic policy
gradient (DDPG) algorithm where the policy and Q-function
are approximated by a CNN. Their framework have three
stages of learning, namely, fixating an object with cameras,
eye–hand coordination by learning to fixate the end effec-
tor and using previously acquired skills for an informative
shaping reward. However, their work have several limitations.
Firstly, the task was executed with minimal consideration of
human supervision in terms of kinematic models, calibra-
tion parameters or hand-crafted features [246]. Secondly, the
detection usually requires processing large amounts of data,
a process that is difficult and costly [43]. Avoiding obstacles
in 3D space during grasping through multiple DoFs of the
robot arm’s end effector was presented in [247], where DDPG
was implemented to overcome the trajectory planning issue
and obstacle avoidance. However, the proposed framework

was tested only on the simulation environment. The com-
bination of hindsight experience replay with model-agnostic
meta-learning was proposed in [248] to increase the capabil-
ity of adjusting policies as a key in making learning deci-
sions. Although an improvement in terms of success rate
was observed, the framework was only evaluated using the
simulation environment.

In unstructured environments, allowing autonomous robots
to interact with dynamic objects requires manipulation capa-
bilities that can deal with clutter, changes and variability
of objects. To perform robotic tasks a robot must be able
to perceive the environmental workspace, prepare and con-
duct the next action through its sensors. To support us in
our everyday tasks, robots need to be able to explore and
communicate with unstructured and complex environments
found beyond conventional assembly lines and research lab-
oratories. Robust object manipulation is a key component in
all robotic applications which require interaction with the
environment. In [249], the authors addressed the issue of
closed-loop learning policies regarding the combined task of
reaching, grasping, and lifting objects. The policies have a
mapped depth image in their system, which is collected by a
wrist-mounted camera, to the motion of the end-effector, and
the gripper opening and closing commands. The authors com-
pared different approaches to RL as a means of improving
controller’s training efficiency and final performance. Instead
of learning to grasp and locate objects using planar manipu-
lation (e.g. a single, demonstrated target state), trust region
policy optimization (TRPO) [24] has been introduced as DL.
TRPO is close to methods of natural policy gradient and is
efficient in optimizing large nonlinear systems, such as neural
networks. The perception pipeline used in this work was,
however, based on the assumption that objects are positioned
on flat surfaces to perform the filtering steps described on the
camera images.

The challenge faced by all existing methods involved in
the trajectory planning of robotic grasping via supervised
learning with a prescribed model prevents the developed
grasping strategies from being used for new unknown sce-
narios. For example, in [250], the authors developed a new
method that optimizes grasp trajectories through a policy
search method inspired by the success of the RL method. The
authors aim to generate a multi-fine robotic hand grasping
trajectory and obtain the gripping configuration from objects
with a known pose by optimizing the trajectory. Furthermore,
research has shown that the softness and flexibility of foam
robots provide a great advantage in secure grasping and
robust in-hand manipulation [251]. However, working with
such a hand requires the application of new modelling and
control techniques. Schlagenhauf et al. [252] provided users
with tools and strategies to create and control dexterous foam
robot hands. The primary aim of this work is to evaluate and
compare different control strategies for solving the inverse
kinematics problem of foam robots. The study also attempted
to develop flexible and dexterous foam robot hands that can
avoid the IK problem by using a free model-based approach.
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However, the authors evaluated their method with simula-
tion as a sufficient tool. In [253], the authors developed a
perception and control framework to track a wire cable. The
framework relies on a vision-based tactile sensor, GelSight,
to estimate the pose of the cable in the grip and the fric-
tion forces during cable sliding. Table 3 presents additional
related studies on vision-based grasping objects and presents
useful information, including deep DLmethods, purpose, and
limitation.

Learning to grasp unknown objects is not a trivial task
to be executed. Thus, selecting suitable grasping algorithms
helps researchers to recognize the appropriate algorithm to
solve their own problem. The comparative study of different
grasping algorithms that suit research results of unknown
object grasping has been presented in [271], Furthermore,
an overview about recent research issues in robotic grasp-
ing and bin picking has also been presented [272], which
mainly concentrated on the perception aspects of the problem,
associated to computer vision algorithms. Different feasible
framework based pixel input has been well studied such
as adversarial learning based on ConvNet after AlexNet
for effective supervise learning [273], tool use based on
task-oriented grasping network (TOG-Net) [274], and grasp-
ing deformable objects based on point-level representa-
tions [275]. While learning to poke has been executed
based on different algorithms such as deep neural networks
for modeling the dynamics of robot’s interactions directly
from images [276], Self-supervised model-based approach
using vision-based robotic control [277], and stochastic opti-
mal control with latent representations (SOLAR) [278].
Learning complementary target pre-detection and robotic
grasp approach that benefit from each other has been
implemented based on Deep Q-Learning Algorithms [279].
However, the framework has only been evaluated in simula-
tion. Zeng et al. [280] have proposed end-to-end formulation
that jointly learns to infer control parameters for grasping
and throwing motion primitives from visual observations
(RGB-D images of arbitrary objects in a bin) through trial-
and-error. In another work,, framework of leveraging the
advantages of active perception has been presented in [281]
to perform manipulation tasks. They have used viewpoint
changes in determining the object location, which facilitate
learning the state representations based on self-supervised
concept and performing target directed actions. As they have
also compared their framework with vanilla deep Q-learning
algorithms as presented in [282]. To learning multimode
grasping, Hu et al. [283] have presented Policy learning for
dynamic grasping algorithm to perform actions such reach-
ing, grasping, and regrasping.

Recently, learning physical object representations for
robot manipulation has been performed based on Dense-
PhysNet system that actively executes a sequence of
dynamic interactions (e.g., sliding and colliding) [284].
Also, Merzic et al. [285] have attempted to generate robust
grasping under uncertainty based on synthesized control
policies that exploit contact sensing, where they have

utilized model-free deep reinforcement learning with
exploiting Trust Region Policy Optimization (TRPO).
Learning-based approaches to grasp planning are preferred
over analytical methods due to their ability to better general-
ize to new, partially observed objects. However, data collec-
tion remains one of the biggest bottlenecks for grasp learning
methods, particularly for multi-fingered hands. The relatively
high dimensional configuration space of the hands coupled
with the diversity of objects common in daily life requires a
significant number of samples to produce robust and confi-
dent grasp success classifiers. In [286], they have presented
the first active learning approach to grasping that searches
over the grasp configuration space and classifier confidence
in a unifiedmanner. In another work, grasp-optimized motion
planning (GOMP) has been presented in [287], which is
an algorithm that speeds up the execution of a bin-picking
robot’s operations by incorporating robot dynamics and a set
of candidate grasps produced by a grasp planner into an opti-
mizing motion planner. Besides, work in [288], has presented
a method that allows end-to-end top-grasp planning methods
to generate full six-degree-of-freedom grasps using a single
RGBD view as input. Moreover, Yen-Chen et al. [75] have
proposed a framework called Learning to See before Learning
to Act based on directly transferring model parameters from
vision networks to affordance prediction networks.

VIII. APPLICATION OF DEEP-RL IN VARIOUS AREAS
This section highlights several applications of deep-RL in
different research areas, including assistive robots, pouring
of liquids and assembly tasks.

A. HUMANOID ROBOTS
Humanoid-like mobile robots must learn complex motion
sequences in human–robot environments so that they can
adapt to suchmotions. The need for assistive robots which are
purposely designed and controlled to help the elderly carry
out their daily tasks is increasing [289]. Assistive robots are
devoted to providing safe grasping in daily tasks. The most
crucial challenge that currently faces researchers is how to
make the hand of a robot stable and robust during object
grasping. In addition, assistive robots can serve as warehouse
robots, and the challenge here is still picking up and placing
objects in cluttered places or shelves. Achieving tasks in
mobile manipulator planning (MMP) often needs thousands
of individual motions to be performed (e.g. reasoning about
complex targets and feasible movements in configuration
space). For example, Chitnis et al. [290] exploited the ran-
domized local search algorithm, which can be formulated as
an MDP. They aimed to speed up task and motion planning
(TAMP), which has the capability to learn samplers of con-
tinuous action parameters by exploiting the SGD classifier.
Learning samplers for continuous action parameters in TAMP
has also been focused on by many other studies [291]–[293].
Although these methods solve the problem of continuous
actions in TAMP, they do not consider how learning sam-
plers can be quickly adapted to a new task. The modular
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TABLE 3. Other related works, including their methods used, purposes and limitations.
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TABLE 3. (Continued.) Other related works, including their methods used, purposes and limitations.

meta-learning approach was used in [294] to overcome this
limitation. Moreover, Chitnis et al. trained their model on
multiple tasks; their model tried to learn various specializers
that can be quickly adapted to a new task by using minimal
data.

Silva et al. [295] focused on achieving tasks in which task
success depends on reaching a target pose that is controlled
by a human. They highlighted the issue of human–robot col-
laboration in scenarios where humans need robot assistance
in performing a complex motion to manipulate an object.
In this work, the RL-based approach was used to determine
a robot’s capability to execute a task by using a given cur-
rent position. However, this current position was indirectly
adjusted by prompting the human user. Moreover, they pro-
posed to model indirect control problems viaMDP formalism
by using trial–error learning based on Q-learning. In [296],
the authors proposed two hierarchy plans to perform reach-
to-grasp target object with the uncertainty of external pertur-
bations by using the neural-dynamic optimization (ND-Opt)
algorithm and low-level RL in operational and joint spaces,
respectively. The authors modelled and learned the joint tra-
jectories by using dynamic movement primitives (DMPs);
meanwhile, they learned the trajectory with uncertainties via
RL by exploiting cascade-forward networks (CF-MNN) and
multi-neural network (MNN). However, their approach has
a limitation in modelling gravity force because of the tool’s
weight and direction in coordinate and Cartesian space alike.
Su et al. [297] utilized two different MNN structures for tool
gravity identification on the basis of feed-forward networks

(FF-MNN) and cascade-forward networks (CF-MNN) to
overcome the limitations in [296]. They built a model that
allows improving the performance of nonlinear regression
analysis.

Several studies focus on controlling the stability and
robustness of hand motion during grasping. For example,
computer vision has been used to enhance wrist control
in robotized exoskeleton hands to achieve assistive robotic
grasping [298]. Although an improvement has been realized
in terms of enhancing the controlling part, the challenge of
achieving a natural reaching and grasping motion remains.
In the field of assistive robots, several studies have attempted
to design soft hands. For instance, research has examined
the design of a soft hand that has pneumatically enhanced
muscles [299] and soft gloves [300] that have a driven cable
with the features of flexion and extension that can be custom
3D printed. To decrease stress on the upper limbs, a super-
numerary hand with additional force has been designed for
grasping [301]. Another assistive robot is the warehouse
robot, where a challenge still exists in picking up and placing
objects in cluttered places or shelves. Grasping techniques
can provide a solution for a particular problem. For exam-
ple, CNNs based on the eye-in-hand approach is used for
object recognition and conventional grippers (e.g. hybrid
pinch and suction gripper). Corbato et al. [302] discussed
several lessons learnt from the Amazon Robotics Challenge.
The lessons include the following: task conditions must be
the base guide of the solution choice, an individual solu-
tion is required for integration and problem solving should
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be conducted using the hierarchical structure of levels of
automation [302]. Evidently, several robotic solutions for the
grasping task are associated with human hands [303]. Thus,
the real challenge in robots is when the robot gripper needs to
plan and navigate in extremely cluttered environments [304].
In contrast tomerely storing, kitting needs to prepare products
or tools quickly, pick up objects from a cluttered place and
place these objects down in cluttered environments by using
real-time planning, which can overcome object complexity
and detect collision issues [305].

B. HIGH-PRECISION ASSEMBLY TASKS
The authors in [189] aimed at learning policies which could
assemble high-precision gear. Through properly interpreting
observations they developed robust methods, a method that
is more attractive than heuristics or estimating ideal physical
dynamics. Their method integrates RL with knowledge about
force / torque through the integration of a proper controller for
space operation. They also proposed a neural network archi-
tecture mirror descent guided policy search, which could be
generalised to reasonable environmental variations. However,
precise insertion, when using motion planning controllers,
is known to fail outside of a very small convergence basin.
Previous work also dealt with high-precision assembly tasks,
in particular insertion-type tasks. One line of work centered
on obtaining high-dimensional observations including geom-
etry, forces, joint positions, and velocities [190]. However,
it is difficult to procure this knowledge, thus increasing the
difficulty of the experiments and the supervision required.
They tried to show how their approach not only solves
insertion tasks with far less environmental knowledge but
also under noisy conditions. Moreover, the motion plan-
ning method and DMP models exhibit stable performance
in contact-based tasks but fail if the initial conditions dif-
fer [306]. CAD was used in another work [307] for studying
robotic assembly. The authors addressed the RL problem,
which for learning a control policy relies on random explo-
ration. This condition includes several executions of robots,
and is sometimes stuck in solutions that are locally subop-
timal. By guiding RL (a policy search algorithm) along a
geometric motion path, which is calculated using CAD data,
the authors proposed to leverage prior knowledge. Most of
these studies, however, considered RGB images obtained in
a fixed position with a camera covering the entire scene and
several of them trained mappings directly from images to
actions. This situation produces very diverse distributions of
the image, which leads to difficult learning problems. Thus,
learning pose estimation for high-precision robotic assembly
using simulated depth images has been proposed in [308].

C. MANIPULATING LIQUIDS
Liquids in human environments are ubiquitous, and appear in
many common household activities. Recent robotics research
has begun to explore ways robots can think about and
manipulate liquids. Several research teams have success-
fully solved liquid discharge tasks using relatively poor

liquid flow physics models [235], [309], [310]. Others
have shown that physics-based models have the ability to
enhance our understanding of liquid-related actions [311].
A pouring task, for example, involves grasping and mov-
ing a container and selecting skills, such as tipping and
shaking. The authors suggested stochastic DDP in [312].
When dynamic systems are unknown they used stochas-
tic neural networks to learn. Their proposed method is a
type of RL and has three features, namely DDP (graph-
structured dynamic systems), model-based RL (hierarchical
dynamic systems) and SSA (represents complicated sys-
tems). Schenck et al. [313] employed granular media rather
than liquids for the same purpose. In robotics, however, some
studies have used simulators in terms of restricted environ-
ments, such as pouring activities, to reason about the liq-
uids. For example, Kunze and Beetz [311] used a simulator
to explain the actions of a robot as it attempts to make
pancakes, which involves reasoning about the liquid batter.
Yamaguchi and Atkeson [312], [314] have used a simulator
to rationalize the dissipation of various liquids. These stud-
ies, however, used crude liquid simulations for predictive
tasks that need no accurate feedback [315]. Yamaguchi and
Atkeson followed up their simulated work on pouring using
a real robot [316].

IX. CHALLENGES AND FUTURE DIRECTIONS
In term of existing challenges in robotic grasping task,
although how robot learning algorithms have been developed
and improved to overcome these challenges, there are still
many challenges. Fig. 16 shows the current challenges in
robotic grasping.

FIGURE 16. Challenges in robotic grasping.

A. CHALLENGE OF COLLISION AVOIDANCE
Learning of a good representation using unsupervised learn-
ing algorithms (e.g. deep learning) requires large amounts
of data, and arbitrary acquired visual representations are
usually easily controlled. Although collision avoidance is
one of the challenges that robots usually encounter when
exclusively performing a robotic task on the intended objects,
the environment can be utilized in facilitating robotic tasks,
such as grasping an object by pushing the object against
the wall or shifting the object to the edge of the table,
which serves as an obstacle. Thus, exploiting environmental
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obstacles sometimes provides another optional strategy when
grasping objects from the top (e.g. grasping fragile, flattened,
thin objects) is difficult; it remains to be an open challenge
in deep-RL. Several studies utilized environmental obsta-
cles [317]–[319], but they exclusively focused on designing
a new gripper mechanism by using tactile sensors, which is
another gap to be solved using deep-RL.

B. CHALLENGE OF SELECTING SUITABLE DEEP-RL
METHODS
Another challenge in deep-RL is determining the most
suitable deep-RL methods for manipulation purposes.
A number of model-free and off-policy deep-RL methods,
such as Q-learning, Monte Carlo, corrected Monte Carlo
(Corr-MC), DDPG, PCL and DQL, have been proposed to
solve off-policy tasks in the conceptual context of Q-learning.
Quillen et al. [282] studied different RL algorithms to deter-
minewhich off-policy RL algorithms are themost suitable for
vision-based robotic grasping. Their evaluation indicated that
DQL performs better in grasping tasks than other algorithms
do in low-data regimes for off-policy and on-policy learning.
Meanwhile, DQL, PCL and Corr-MC methods are stable,
whereas DDPG is unstable. Although model-free deep-RL
has produced promising results in domains ranging from
video games to simulated robotic manipulation and loco-
motion, model-free methods are known to perform poorly
because the interaction time with the environment is lim-
ited, as is the case for most real-world robotic tasks. With
regard to the application of RL in the control field, the first
consideration should be the action space because the major-
ity of previous RL methods are applicable in domains with
discrete actions, which are associated with value function
estimation. Although RL can be useful in performing robotic
tasks, which are difficult to model, not all RL algorithms are
suitable for all types of robotic manipulation. For example,
the tabular RL algorithm has limitations in terms of capacity;
it requires a model for the training of eachmap, and themodel
has no generalization performance. In the current form of
guided policy search (GPS) [264], the GPS algorithm cannot
be implemented in sequential multitask learning scenarios
because of its batch-style training requirement, where all
training samples are collectively provided at the start of the
learning process.

C. CHALLENGE OF COLLECTING EFFICIENT DATA
Collecting efficient data is currently the key in performing
complex manipulating tasks and increases the opportunity of
iteration success during task execution. Although enhancing
real data with synthetic data improves the success rate, this
augmentation can increase the amount of data storage, which
adversely affects the performance of running data in terms of
required time. These approaches can be utilized with simu-
lators as well. To collect more data, researchers have trained
more than one robot to help them collect data; this method is
effective in gathering sufficient data, as demonstrated in [7]
and [206]. In this case, collecting data requires considerable

time and large memory or storage. Thus, the gap between
real and synthetic data should be reduced, and simulated
data play a crucial role in reducing this gap. Several studies
attempted to address this gap by reducing the difference
through the learning process during the execution of grasping
tasks. Another attempted to create a map from synthetic to
real data by using deep learning. In addition, progressive
networks have been proposed to bridge such a gap by using
transfer learning from low-level to high-level visual features
for new tasks. However, all data, whether real or synthetic,
that have been used for specific tasks cannot be useful in
certain domains because data are particularly generated for
a certain type of robots with specific configurations. Thus,
we still need a method that can transform data and be widely
used in various platform robots and configurations. More-
over, producing an efficient algorithm remains to be an open
challenge. To the best of the current author’s knowledge, the
model-based method might be able to overcome the limits in
data efficiency.

D. CHALLENGE OF LEARNING FROM DEMONSTRATION
With regard to the challenges in LfD, an alternative strategy
for dealing with the data demand is to train in simulation and
transfer the learned controller to real hardware or to augment
real-world training with synthetic data. To transfer RL in
robotics, most RL studies employ the following research
paths: pre-training an RL model in simulators, transferring
the model to robots and fine tuning the model parameters.
These processes are usually executed sequentially; that is,
after the RL models have been pre-trained and transferred
to robots, no meaningful experience or knowledge from the
simulators can be provided to the final models fine-tuned on
real-life robots. Thus, training robots directly in the real envi-
ronment is unsafe, and training in simulation and deploying in
the real world have become a common trend in robotics under
the theme of sim-to-real transfer. An important first step to
sim-to-real transfer is sim-to-sim transfer [165]. Numerous
recent studies have examined the transfer of policies across
different simulation environments, across dynamic models
and from simulation to real environments [320]. Further-
more, the exploration method in robotics is still an open
challenge, particularly in finding an effective method to deal
with a continuous high-dimensional action space. Although
the ε greedy strategy exhibits a significant improvement,
it suffers from several issues, including dealing equivalently
with random execution of actions and lack of exploration
workspace. In addition, the off-policy is limited to a specific
task that cannot be used for more than one platform because
it can be generated by training the agent in performing a
particular task. As for the on-policy, it can execute robotic
tasks more efficiently than the off-policy can in terms of
updating the policy continuously; however, it still depends
on initial conditions and training steps, thus focusing more
on exploitation than on exploration. Hence, the on-policy is
restricted to local optimization. The deterministic policy adds
noise to actions during training time, such that reducing the
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scale of noise might assist in obtaining high-quality training
time. However, this policy is still inadequate for facing the
problem of sparse and deceptive rewards. Another challenge
in training a policy through the exploration strategy is that
its performance differs in terms of the environment’s and
robot’s configurations, which causes the exploration strategy
to face with difficulty in measuring the extent of successful
improvement. This challenge will place real robots in unsafe
conditions, particularly when exploring with uncertainty by
using fragile robots.

E. CHALLENGE OF EFFICIENT DEEP-RL ALGORITHM
Another challenge remains in real robotic applications, and
that is the need for an efficient deep-RL algorithm to
overcome the limitations of real-world obstacles, including
learning fast and efficiently. Certain variables in learning
robotic tasks need to be improved in different fields, namely,
(1) model-based learning, (2) learning from prior experience
(replay experience), (3) transfer learning and (4) domain
adaptation. Such an improvement is a new direction for
researchers in increasing the efficiency of executing robotic
tasks. For example, the deep network architecture can be
used to successfully predict over 100 steps of future frames
because this approach can be trained visually and poten-
tially applied to other visually rich RL problems. Several
approaches that are beneficial in predicting several hundred
frames despite being trained to estimate 10 future frames have
also been introduced; these include stochastic adversarial
video prediction [321], generative adversarial network [322]
and variational autoencoder variants [323]. In deep-RL,
the agent still learns from the same task procedures, and
learning from other tasks remains difficult. To the best of the
current author’s knowledge, a gap exists between deep-RL
algorithms and humans in terms of learning to perform tasks.
Human knowledge is a cumulative process, and deep-RL
algorithms derive inspiration from humans in terms of learn-
ing based on either trial and error or replay experience. How-
ever, the gap in learning style between humans and robots
remains to be a challenge in terms of learning from other
tasks. For example, humans can gather all prior knowledge to
perform a novel task with fewer trials compared with robots
that need to gather considerable data during training time
until they can adapt to a new task. Robots learn and train
on a specific task with limitations in the environment’s and
robot’s configurations, and they cannot use prior knowledge
on other tasks when performing novel ones. The most recent
work on alleviating this gap is model-based learning, which is
a promising approach in achieving fast and efficient learning.

F. CHALLENGE OF SYNERGISING TWO ACTIONS
Teaching agents how to synergize between prehensile and
nonprehensile actions remains to be a challenge in robotic
manipulation, although various studies have been conducted
to overcome the limitations of grasping objects in cluttered
scenes. Different mechanisms, such as push to grasp, shift
to grasp and suction grasp, have been utilized. However,

the performance efficiency of these mechanisms still needs
to be improved. The aforementioned studies focus on dealing
with specific range types of objects, and no consideration
has been given to the materials of the objects to be grasped
(fragile or deformable). In addition, a limitation exists in
terms of the behavior of synergy types between prehen-
sile and nonprehensile actions that can be executed. Several
studies trained only a nonprehensile policy, whereas others
attempted to train prehensile and nonprehensile policies by
using parallel neural networks. Increasing the complexity of
training resources is one of the challenges encountered during
training, and these frameworks require a large amount of data
to be able to synergize two actions. This requirement may
adversely affect the performance of agents in terms of training
time. In this particular task, all studies on object grasping in
cluttered environments have attempted to discover and learn
synergies between prehensile and nonprehensile actions from
experience through model-free deep-RL. Meanwhile, model-
based learning can produce promising results and can learn
rapidly and efficiently. Another suggestion for improvement
is to implement deep networks in Q-function estimation.
Examples of these networks are double Q-learning [141] and
dueling networks [142], which have the potential to improve
performance efficiency.

X. CONCLUSION
This article discusses different topics, including grasping in
clutter, transfer of the learned policy from simulation to a real
robot, learning from demonstration, learning from pixel input
and learning other tasks (pouring liquid and humanoid robot-
based grasping), which are all associated with robotic grasp-
ing. The review also highlights different strategies of data
collection and model types that show how speedily robots can
learn transition models and how these models can be general-
ized to new tasks. In today’s fast-pacedworld, deep-RL-based
robotic manipulation is becoming increasingly crucial in alle-
viating the problems in performing complex robotic tasks.
In the last decade, many researchers attempted to achieve
complex robotic performance by teaching agents to execute
various tasks autonomously through different approaches,
including robotic learning based on trial and error, end-to-
end learning and vision-based robotic grasping. This article
also presents the challenges in robotic grasping and how robot
learning algorithms have been developed and improved to
overcome these challenges.

Introducing the deep-RL approach to robotics has consid-
erably improved the learning features of the environment and
agent and the main elements of the RL concept. Given the
increasing demands for the realization of complex tasks, deep
learning has been combined with RL to transform robotic
learning by utilizing most of the features that can be useful
for robotic tasks in different robotic applications. The main
contribution of this review is that it focuses on deep-RL-based
object grasping, including applicable approaches and their
applications, limitations and existing challenges. It also pro-
vides recommendations that are based on the summary of all
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relevant studies in this field. This review can be valuable and
applied to recent work on robotic grasping because it presents
the challenges and future research directions in the robotic
grasping field. To the best of the current author’s knowledge,
robotic grasping is still a challenging topic despite the exten-
sive work performed on it. Different research directions can
be pursued in the future. These directions include (1) efficient
RL, (2) long-horizon reasoning, (3) hierarchical RL, (4)meta-
RL, (5) reward function, (6) multi-model, (7) lifelong learn-
ing and (8) simulation-to-reality concept.
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