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ABSTRACT The integration of unmanned aerial vehicles (UAVs) into cellular networks as aerial user
equipment (aUE) has attracted increasing interest from both academia and industry in recent years. To
ensure stable uplink (UL) service performance, the potential UL capacity must be determined for a variety of
communication techniques to guide the system design or to obtain an optimized solution. Unlike traditional
interferences from ground UEs, which contribute to only local and nearby cells, UAV systems involve strong
LoS paths to even far side base stations (BSs) due to higher altitude. As a result, intercell interference
becomes the dominating factor in the estimation of the potential capacity. In this article, we propose a
theoretical model on the ergodic sum power of the interference arising from all UAVs maintaining LoS
paths with the target BS. The solution to this model is difficult to obtain, and is essentially rooted in the
dynamic trajectories of interfering UAVs within a vast geological range. To address this problem, we divide
the model into noncorrelated parts, where each part contains the interfering UAVs that are independently and
identically distributed (i.i.d.). Thenwe utilize the ergodic method to solve the interference power of each part.
Based on this, the original nonanalytical expression for the ergodic sum interference power is transformed
into a solvable integration problem, and the closed-form solution is successfully derived. Simulation based
experiments are conducted on both rural macro (RMa) cell and urban macro (UMa) cell scenarios. The
results validate the feasibility and accuracy of the proposed model, and confirm the severe influence of the
intercell interference on the UL capacity.

INDEX TERMS Unmanned aerial vehicles, cellular network, base station, uplink capacity, ergodic sum
interference power.

I. INTRODUCTION
The integration of unmanned aerial vehicles (UAVs) into cel-
lular networks has the potential to support long-term, beyond
line-of-sight (LoS) communications for a wide range of UAV
applications and has thus attracted considerable research
attention in recent years [1]–[4]. In these scenarios, the UAVs
are incorporated into the cellular network as aerial user
equipment (aUE) to perform civil tasks, e.g., highway traffic
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monitoring [5], [6], aerial event coverage [7] and security
surveillance [8]. Unlike the traditional UE, e.g., smartphones,
which fetch information through the downlink (DL) stream,
the UAVs in these applications act as information providers
relying on the uplink (UL) stream with heavy traffic load and
strict delay requirements. To fulfill the intensive data transfer
requirements, multiple UAV communication techniques have
been proposed based on the estimation of UL capacity. For
example, capacity is the key metric in UAV data compression
and transmission for choosing strategies [9], [10]. Capacity,
and signal-to-interference-plus-noise ratio (SINR) which is a
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FIGURE 1. Illustration of intercell UL interference caused by LoS signals from UAVs operating in neighboring cells.

medium state parameter in calculating the capacity, are also
applied in UAV power allocation and trajectory designs for
performance optimization [11]–[14].

Unfortunately, the characteristics of interference necessary
for estimating the SINR and potential capacity are difficult
to obtain. Due to the high altitude above the ground, UAVs
are likely to have strong LoS paths with nearby and even
far-reaching BSs as interference sources shown in Fig. 1.
This scenario gives rise to a challenging issue, where BSs are
vulnerable to considerable interference from a large number
of neighboring cell UAVs [15].

In a large network, UAVs occupying the sameUL resources
will produce continuous interference signals to the local cell
BS. The total of these signals greatly affects capacity. The
patterns of the UAVs’ trajectories vary according to the appli-
cation requirements, resulting in a random duration of con-
nections with the target BS. Since the resources within a cell
are orthogonally distributed to users, no more than one inter-
fering UAV will exist in each cell at any moment. Therefore,
these interfering UAVs are not independently and identically
distributed (i.i.d.) in the geological domain. Based on the
above analysis, the total intercell interference is difficult to
model. To the best of the author’s knowledge, most research
works in this area conduct only empirical measurements on
the signals from a single or multiple UAVs [15]–[21], while
theoretical studies are lacking sufficient analysis with closed-
form solutions [22]. A theoretical model with analytically
solvable methods to precisely estimate the system-level inter-
ference remains an open issue.

To this end, we propose an ergodic model on the sum
interference power, which captures the statistical properties
of the signals of interfering UAVs over their dedicated move-
ment patterns and connection durations. The proposed sys-
tem model is grounded in the UAV channel model provided
by the standard of the 3rd Generation Partnership Project

(3GPP) [23]. To analyze the model, we first divide the region
containing the interfering UAVs into noncorrelated parts,
which can be analytically solved for the interference power
using the ergodicmethod.We then transform the original non-
analytical problem into a set of solvable integration problems.
Finally, we obtain the solution to the sum of these integrations
as the UL ergodic interference power. The proposed model
provides closed-form solutions to the ergodic sum interfer-
ence power for varying network conditions. This guarantees
accurate estimations on the UL capacity in UAV communica-
tions. Therefore, upper-layer applications relying on the UL
capacity or SINR to form the optimization problems should
experience improved performance.

The rest of this article is organized as follows. Section II
introduces the related works on interference and capacity in
cellular-based UAV networks. Section III provides the system
model and problem formulation. Section IV derives the ana-
lytical solutions of the UL ergodic sum interference power
and capacity. Simulation based experiments and results are
given in Section V. Finally, Section VI concludes the paper
and discusses potential future work.

II. RELATED WORKS
To study UAV network interference, the LoS connectivity
between the UAV and the BS and the signal propagation
model must first be established. Most importantly, because
the interference power is a collective effect arising from all
interfering UAVs, the probabilistic geological distribution of
the UAVs must be studied. Sophisticated research has been
conducted on interference and capacity in traditional ground
cellular networks [24]–[26], whereas much less attention
has focused on cellular-based UAV communications. Mean-
while, the results of the previous works cannot be applied
directly in our scenario due to the radical differences in signal
propagation conditions: Rayleigh fading is assumed in the
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traditional networks, whereas Rician fading is assumed in
UAV communications.

Regarding the LoS connectivity in the Rician-dominated
air-ground (AG) channel, the recent work of 3GPP has
already provided accurate channel modeling capabilities
based on comprehensive measurements [23]. In this doc-
ument, general forms of path loss models and probabilis-
tic models of LoS connections between a UAV and a BS
are provided. Other measurements in real-world environ-
ments [15]–[19] have achieved results similar to the
3GPP models. Clearly, the analytical models provided
in [15]–[19], [23] focus only on the connectivity between
a single UAV and a BS. Network layouts containing large
numbers of cells and UAVs have been constructed in [20]
and [21] to study the influence of UAV interference. In [20],
simulation results on the outage probability and outage time
caused by intercell interference are provided. Although [20]
and [21] are based on large network layouts, their measure-
ments were performed in only specific areas; thus, the results
lack universality.

Among the efforts to theoretically characterize UAV
network interference and capacity, the work of [27] has pro-
vided interference modeling using stochastic theory, assum-
ing UAVs as aerial base stations (aBSs). Although the signal
propagation channels are similar, the motivations in [27] are
not compatible with our studied scenario since the modeled
interference is in the DL. The capacity of a UAV’s UL con-
nection to a cellular system has been studied using LoS signal
transmission models in [28]–[30], with a focus on the long-
term achievable SINR. Nonetheless, these studies failed to
systematically model the interference from UAVs in nearby
cells. A more comprehensive modeling on the sum interfer-
ence assuming UAVs uniformly distributed in a spherical area
is conducted in [22]. In this work, the authors propose a
theoretical model for instantaneous interference signals with-
out characterizing the ergodicity, and no analytical solution is
provided.

In this article, we theoretically derive the ergodic power
of UL interference signals from UAVs to a BS in the cellular-
basedUAV communication scenario. Comparedwith existing
works, our study characterizes the ergodic sum interference
power as a function of the key system parameters, e.g., path
loss conditions, aerial user density and geological range.
Our model can provide precise results when the network
conditions vary. Therefore, various UAV-based applications
are benefited. For example, data compression algorithms can
utilize our model to estimate available capacity to properly
adjust the compression ratio [9], [10], which is beneficial in
two aspects. First, significant package loss and retransmission
due to subcompression can be avoided, which is essential for
applications requiring real-time data transfer, e.g., maritime
surveillance and monitoring farmland or traffic [4], [5]. Sec-
ond, such an act provides higher-quality videos and images
when the bandwidth is sufficient. This enhancement then
enables high-definition photography for event coverage and
journalism applications [7]. Enabling the calculation of SINR

TABLE 1. Application scenarios.

and capacity also contributes to the formulation of optimiza-
tion problems in multiple UAV trajectory design and power
allocation algorithms [11]–[14]. These two techniques help
to obtain higher throughput and optimized power consump-
tion for UAVs executing complex tasks assisted by the BS,
e.g., computational data offloading in disaster coverage [31],
or providing services to ground users, e.g., hot spot service
in sports events [11]. Successful execution of these tasks
requires delicate operations to achieve a high transmission
bandwidth and a limited power consumption. Table 1 sum-
marizes the typical applications, their key features, and our
contributions to enhance these features.

III. SYSTEM MODEL AND PROBLEM FORMULATION
Weconsider the intercell interference signals caused byUAVs
in neighboring cells as the main interference during UL com-
munications. Each UAV is equipped with a single omnidi-
rectional antenna [23]. To simplify the problem formulation,
the BS is assumed to have omnidirectional gains on the
receiving end. This assumption is later relaxed in Section IV.

To model the systematical interference, the signal propa-
gation properties should be characterized first. As discussed
in section I, due to the clear paths in the AG channel the
UAV’s transmitted signal will most likely reach BSs other
than its local cell, which will act as interference and pose
a major challenge for the system performance. We adopt
the channel model of 3GPP Release 15 [23], according to
which the probability of LoS between UAVs and a local cell’s
BS approaches 1 for most of the altitude range. Meanwhile,
the LoS component possesses more than 99.9% and 97%
receiving power in rural macro (RMa) cell and urban macro
(UMa) cell scenarios, respectively. Due to their high probabil-
ity and strong significance, this article focuses directly on the
LoS signals, which assumption is in accordance with multiple
existing works in this field [11], [28], [29], [32]. The path loss
model of the LoS signals for the UMa scenario, PLU , is given
as [23]:

PLU = 28.0+ 22log10(d3D)+ 20log10(fc), (1)

where d3D is the 3-dimensional (3-D) distance between the
UAV and the BS, and fc is the carrier signal frequency.
The path loss for the RMa scenario is denoted by

PLR, and is expressed as PLR = max(23.9 − 1.8 ∗
log10(h), 20)log10(d3D) + 20log10(

40π fc
3 ), where h is the
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UAV’s altitude [23]. As specified by the 3GPP standard the
altitude range of high LoS probability is 40 − 300 m. For
this range, max(23.9 − 1.8log10(h), 20) = 20. Therefore,
the expression of PLR is directly simplified as:

PLR = 20log10(d3D)+ 20log10(
40π fc
3

). (2)

Based on Equ. (1) and Equ. (2), as well as the path loss model
in [20], a general form of the path loss incorporating both the
RMa and UMa models is given:

PL = 20log10(d3D)+ αlog10(d3D)+ β(fc)+ γ, (3)

where β(fc) is a constant decided by fc, and γ is an arbitrary
constant; 0 ≤ α ≤ 5. By applying Equ. (3), a universal
solution to the ergodic interference power can be derived.
This channel model is capable of characterizing the system
capacity with its major power, even in the presence of small-
scale fading.

Based on the current UL resource allocation scheme of 4G
and 5G systems, the full bandwidth is divided into a number
of subchannels, or equalized variations, which are allocated
to all UEs. Following the exclusivity standard for the resource
allocation restrictions [33], [34], a single subchannel can be
assigned to only a single user. And a uniform distribution of
UL resources across all UEs is assumed [21]. Moreover, since
orthogonal resources are allocated to UEs within the same
cell, the local cell will not involve any interfering UAV at any
given time. Hereafter, we refer to interfering UAVs as iUAVs
for simplicity of discussion.

The 3-D intercell interference scenario is illustrated
in Fig. 1. While the BS in the local cell is receiving data from
the target UAVon a specific subchannel, multiple UAVs in the
neighboring cells are simultaneously transmitting data using
the same resources. These UAVs produce continuous inter-
ference to the local cell BS. Notably, the iUAVs move with
independent trajectories, e.g., curves and circles, according to
the application definitions. Let the instantaneous interference
power be denoted by X (t). X (t) is the effective sum of all
interference signals from iUAVs:

X (t) =
N0(t)∑
k=1

10
Ptk (t)−PLk (t)+Gk (t)

10 , k = 1, 2, . . . ,N0(t), (4)

where N0(t) is the instantaneous number of iUAVs. Ptk (t),
expressed in dBm; PLk (t), expressed in dB; and Gk (t),
expressed in dB, are the transmission power, path loss and
receiving gain of the BS antenna, respectively, for the k-th
iUAV signal.

Furthermore, once the service of the current UAV is termi-
nated, the UL resources are allocated to another UE in that
cell. If the new UE is a ground user, then no interference will
be produced since the lower altitudewill restrict the formation
of LoS paths to neighboring BSs. Otherwise, the interference
source in the cell becomes another UAV with a new position
and trajectory pattern. The fluctuations in individual UE’s
connection durations dictates that iUAVs with various mobil-
ity patterns emerge and disappear randomly at any time. Such

TABLE 2. Definitions of parameters.

effect produces a constantly varying distribution topology of
iUAVs, thereby making the sum interference a complicated,
time-varying random process.

The ergodic model has been widely utilized in analyzing
the long-term system performance for both ground cellular
networks and emerging UAV communication networks [25],
[26], [35]. Therefore, it is straightforward to employ this
methodology to model the long-term statistical property of
such processes. The ergodic interference power, denoted as
µI , can be expressed as follows:

µI = lim
Ttotal→+∞

1
Ttotal

∫ Ttotal

0
X (t)dt

= lim
Ttotal→+∞

1
Ttotal

∫ Ttotal

0

N0(t)∑
k=1

10
Ptk (t)−PLk (t)+Gk (t)

10 dt, (5)

where Ttotal is the total time duration. Further analysis on
µI leading to a closed-form solution is provided in the next
section. We present the global parameters defined for the
following discussion in Table 2.

IV. ERGODIC SOLUTIONS
A. ANALYTICAL ANALYSIS
Based on the discussion in the previous section, the analytical
solutions would be difficult to derive for µI in Equ. (5) using
most existing mathematical tools because of the complicated
distribution patterns of iUAVs. In this subsection, we uti-
lize the ergodic method to characterize the sum interference
power as a function of multiple given parameters of the
system.

To solve Equ. (5), we divide all the iUAVs involved in the
calculation of µI into groups by their geological locations so
that each group contains all iUAVs that appear in the same
cell area. Note that at any moment, no more than one iUAV
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exists in the i-th cell, thus, the Ni iUAVs appear subsequently
during the process. Once data transmission from the j-th
iUAV is terminated, the (j+1)-th iUAV either appears imme-
diately or after a certain duration (e.g., when the resources
of the j-th iUAV are reallocated to a ground user device and
then to an aUE device after several rounds of reallocation).
Let Tij(t) denote the connection duration of the j-th iUAV in
the i-th cell, where i = 1, 2, . . . ,Ncell and j = 1, 2, . . . ,Ni.
Notably,

∑Ni
j=1 Tij(t) ≤ Ttotal since sometimes there exist

0 iUAVs in a cell. Based on the above definitions, we can
rewrite µI as:

µI = lim
Ttotal→+∞

1
Ttotal

Ncell∑
i=1

Ni∑
j=1

∫ Tij

0
10

Ptij(t)−PLij(t)+Gij(t)
10 dt,

(6)

where Ptij(t),PLij(t) and Gij(t), i = 1, 2, . . . ,Ncell, j =
1, 2, . . . ,Ni, are the transmitting power, the path loss and the
gain of the j-th iUAV signal in the i-th cell, respectively. We
further use αi, i = 1, 2, . . . ,Ncell , to denote the expression of
each part, which leads to the following form of µI :

µI =

Ncell∑
i=1

αi, (7)

where αi is expressed as follows:

αi = lim
Ttotal→+∞

1
Ttotal

Ni∑
j=1

∫ Tij

0
10

Ptij(t)−PLij(t)+Gij(t)
10 dt,

i = 1, 2, . . . ,Ncell . (8)

Based on Equ. (8), αi is the ergodic sum interference power
of the i-th cell. Since the studied network covers a large
geological area, and the iUAVs are in different cells at any
moment, we assume the iUAVs are carrying out independent
tasks and with independent trajectories. Therefore, according
to [23], the location of any UAV in a tagged cell adheres
to a uniform distribution. Furthermore, as individual UEs,
the iUAVs appear subsequently in the same cell, the distribu-
tions of which are not constrained by the resource allocation
strategy of the cellular system. These UAVs are therefore
independent from each other and are thus i.i.d. By applying
the ergodic theory proposed in [36], αi can be calculated as,

αi = Exp(ni)Expi(I ), i = 1, 2, . . . ,Ncell, (9)

where Exp(ni), i = 1, 2, . . . ,Ncell , is the expectation of the
number of iUAVs in the cell area over Ttotal , and Expi(I ), i =
1, 2 . . . ,Ncell , is the expectation of the UAV interference
power in the i-th cell area.
Then the relationship between Ni and Nintf can be written

as follows:

lim
Ttotal→+∞

Ni = fi lim
Ttotal→+∞

Nintf , i = 1, 2, . . . ,Ncell,

(10)

where fi, i = 1, 2 . . . ,Ncell , is a multiplication factor.
Although the aUE rates vary over time on a large time scale,

all cells should have identical average aUE rates which guar-
antees the equal density of iUAVs across the whole region
where they exist. Based on the signal propagation conditions
and the fact that the local cell contains no iUAVs, this region
is defined by the local cell boundary (as the inner boundary),
the 2-D distance range of high LoS probability (as the outer
boundary), and the corresponding altitude range defined by
3GPP Release 15. Thus, fi is the ratio between the volume of
the i-th cell within the defined region �celli to the volume of
the entire region,�R, fi =

�celli
�R

. Similarly, by letting Exp(nt )
denote the expectation of the number of iUAVs in the defined
region, Exp(ni) is equal to fiExp(nt ). From the definition of
Exp(nt ) and Exp(ni), the following equation can be derived:

Exp(nt ) =
Ncell∑
i=1

Exp(ni). (11)

Since the iUAVs are uniformly distributed in a cell, accord-
ing to probability theory, Expi(I ) within the 3-D region of the
cell area is calculated as

Expi(I ) =
∫ ∫ ∫

�

1
�celli

10
Pt(h,d3D)−PL(h,d3D)+G(h,d3D)

10 dσ,

(12)

where 1
�celli

, i = 1, 2, . . . ,Ncell , is the probabilistic function
of the uniform distribution of the iUAV in the i-th cell.
Pt(h, d3D), PL(h, d3D) and G(h, d3D) are the transmission,
path loss and gain functions of the UAV altitude and 3-D
distance from the local cell’s BS. By substituting fi =

�celli
�R

,
Exp(ni) = fiExp(nt ) and Equ. (12) into Equ. (9), the expres-
sion of αi is obtained as follows:

αi =
�celli

�R
Exp(nt )

∫ ∫ ∫
�

1
�celli

10
Pt(h,d3D)−PL(h,d3D)+G(h,d3D)

10 dσ,

i = 1, 2, . . . ,Ncell . (13)

Then, substituting Equ. (13) into Equ. (7),µI can be rewritten
as:

µI = Exp(nt )
Ncell∑
i=1

1
�R∫ ∫ ∫

�

10
Pt(h,d3D)−PL(h,d3D)+G(h,d3D)

10 dσ. (14)

Equ. (14) can be divided into two parts. The first part is
Exp(nt ), which is defined by Equ. (11), and the second part
is the rest of the expression in Equ. (14).

To derive the expression of Exp(nt ), wemake the following
deductions. First, the UAVs in the i-th cell which are expected
to occupy the same resources as the target UE are denoted
as γi, i = 1, 2, . . . ,Ncell . Note that if a cell is entirely
contained in the defined region, then Exp(ni) = γi; otherwise,
Exp(ni) < γi. Define gi, i = 1, 2, . . . ,Ncell, as the ratio of the
volume of the i-th cell within the defined region to the total
volume of the i-th cell. Therefore, Exp(ni) = giγi. Let the

VOLUME 8, 2020 178543



T. Zhao et al.: Enabling Capacity Estimation With Ergodic Interference Power in Cellular

average number of UE devices of the i-th cell be denoted by
aNue. SinceUL resources are evenly allocated, the probability
that a UAV is an iUAV is specified by Piuav = 1

aNue
. Then, let

the average aUE rate be denoted by aRaue, which will lead to
γi as:

γi = aNueaRauePiuav

= aNueaRaue
1

aNue
= aRaue, i = 1, 2, . . . ,Ncell . (15)

Now, the expected number of iUAVs in the i-th cell is
obtained by:

Exp(ni) = giaRaue, i = 1, 2, . . . ,Ncell . (16)

The second part of Equ. (14) is a sum of integrations
each within the boundary of a cell contained in the defined
region. Since these boundaries are connected, the sum of
these integrations equals the integration of the whole defined
region. Thus,

Ncell∑
i=1

1
�R

∫ ∫ ∫
�

10
Pt(h,d3D)−PL(h,d3D)+G(h,d3D)

10 dσ

=
1
�R

∫ ∫ ∫
�

10
Pt(h,d3D)−PL(h,d3D)+G(h,d3D)

10 dσ. (17)

Finally, the analytical expression of µI is obtained:

µI = (
Ncell∑
i=1

giγi)
1
�R

∫ ∫ ∫
�

10
Pt(h,d3D)−PL(h,d3D)+G(h,d3D)

10 dσ.

(18)

The original expression of µI has been successfully trans-
formed into a calculable integration problem, the closed-form
solution of which will be provided in the next subsection.

B. DERIVATION OF CLOSED-FORM SOLUTIONS
1) ERGODIC SUM INTERFERENCE POWER
In this subsection, we solve the integration problem of
Equ. (18) to obtain the final solution of µI . By means of
simple algebra, Equ. (18) can be rewritten as:

µI = (
Ncell∑
i=1

giγi)
1
�R

10
Pt
10∫ ∫ ∫

�

10
G(h,d3D)

10 dσ
∫ ∫ ∫

�

10
PL(h,d3D)

10 dσ. (19)

In terms of G(h, d3D), the BS typically applies omnidirec-
tional gain on the receiving end. For the case of MIMO-based
receiving beamforming, the average gain is still identical in
any direction over long durations with the constant shifting
beam directions. Therefore, G(h, d3D) is a constant, which
leads to the following equation:∫ ∫ ∫

�

10
G(h,d3D)

10 dσ = Ge, (20)

where Ge is a constant.

Since it is difficult to obtain the integration output by
directly substituting Equ. (3) into Equ. (19), we give the
following close form expression of the path loss:

PL=20log10(d3D)+αlog10(
Ru + Rl

2
)+β(fc)+γ. (21)

Furthermore, since both the transmission power and the
expected gain are independent [23], we assume that the trans-
mission power is identical across the whole region. By sub-
stituting Equ. (21) and Equ. (20) into Equ. (19), the following
expression of µI is obtained:

µI = (
Ncell∑
i=1

giγi)
1
�R

10
Pt
10Ge

1

(Ru+Rl2 )α/10
1

10(β(fc)+γ )/10
νI ,

(22)

where �R = π (Hu − Hl)(R2u − R2l ), and νI =∫ ∫ ∫
�

1
r2+(h−hBS )2

dσ .
Then, by applying polar coordinates to the horizontal

plane, the integration in νI can be calculated as follows:

νI =

∫ 2π

0
dθ

∫ Ru

Rl
r
∫ Hu

Hl

1
r2 + (h− hBS )2

dhdr

= 2π
∫ Ru

Rl
arctan(

Hu − hBS
r

)− arctan(
Hl − hBS

r
)dr .

(23)

To solve Equ. (23), we introduce the following lemma:
Lemma 1:∫
arctan

c0
x
dx=xarctan

c0
x
+
1
2
c0ln(c20 + x

2)+c1, (24)

where x is a positive real number, c0 and c1 are both arbitrary
constants. The proof of this lemma is given in the Appendix.
By applying Lemma 1, we obtain the expression of νI in
Equ. (25), as shown at the bottom of the next page.

Finally, by substituting the expression of�R and Equ. (25)
into Equ. (22), the expression of µI is derived, as shown in
Equ. (26), as shown at the bottom of the next page. Through
these efforts, the solution of the ergodic sum interference
power can easily be calculated with the derived closed-form
solution, given the geological information of the defined
region, the average aUE rate, and transmission power, path
loss and gain functions of the UAVs.

2) UL CAPACITY
Based on the closed-form solution to the ergodic interference
power proposed in the last subsection, the UL capacity can be
derived as well, by assuming that the target UE in the local
cell is a UAV moving along its own trajectory independently.

As strong interference due to LoS paths are presented,
SINR is applied to calculate the capacity C , which is
expressed as follows,

C = W log2(1+ ζ ), (27)

where W is the subchannel bandwidth expressed in Hz and
ζ is the average SINR expressed in dB. Let Prt (t) denote the
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received signal power from the target UAV.Prt (t) is expressed
in dBm. Since the target UAV and the iUAVs are independent
from each other, ζ is obtained by calculating the ergodic sum
interference power µI and the average power of the received
target signal E(Prt ) separately:

ζ = 10log10(
E(Prt )
µI + PN

), (28)

where, PN denotes the noise floor of the BS. Notably,
Prt (t) is determined by the UAV’s real-time positions and
is therefore expressed as Prt (t) = Ptt (ht (t), d3Dt (t)) −
PL(ht (t), d3Dt (t))+Gt (ht (t), d3Dt (t)) where ht (t) and d3Dt (t)
denote the altitude of the target UAV and the 3-D distance
from the target UAV to the BS relative to time, respectively.
Ptt (ht (t), d3Dt (t)), expressed in dBm; PL(ht (t), d3Dt (t)),
expressed in dB; and Gt (ht (t), d3Dt (t)), expressed in dB, are
the transmission power, path loss and receiving gain of the
target UAV, respectively. Based on [23], the target UAV expe-
riences the same signal propagation conditions as the iUAVs.
Thus, the path loss function is identical for them. E(Prt ) is
then expressed by the following equation:

E(Prt ) =
1

Ttotal

∫ Ttotal

0

10
Ptt (ht (t),d3Dt (t))−PL(ht (t),d3Dt (t))+Gt (ht (t),d3Dt (t))

10

dt. (29)

According to the industrial standard, a civil UAV’s real-time
positions should be reported to the ground controllers for
safety concerns [4]. Therefore, E(Prt ) can be obtained by
the processor as a constant determined by the target UAV’s
trajectory, or be known as a prior constraint by the upper layer
algorithms.

Through the above analytical analysis, the final expression
of C is obtained,

C = W log2(1+ 10log10(
E(Prt )
µI + PN

)), (30)

where µI is specified by Equ. (26). From the above calcu-
lations, the capacity can be obtained via Equ. (30) given the
noise level and gain type of the BS receiving antenna array
and the target UAV’s trajectory.

The proposed closed-form solution is of low computa-
tional complexity to themainstream processors of civil UAVs,
with less than 150 adding and 200 multiplying instructions,
depending on the number of cells included. Based on the
default CPU frequency of DJI MATRIC 300 series, which is
between 2.40 and 2.48 GHz, we estimate that the time cost of
executing our proposed solution without applying any com-
putational optimization methods is less than 5 microseconds.
Therefore, this model is sufficient to be employed by most
optimization algorithms in varying UAV applications.

V. SIMULATION RESULTS
This section validates the feasibility and accuracy of the
proposed analytical model through simulation-based exper-
iments. A simulation system is defined with hexagonally
shaped cells [37]. Within this region, a number of random
iUAVs are generated. The key simulation parameters are
summarized in Table 3. The basic assumptions on the network
layout are based on the settings of [23], including number of
UEs in each cell, aUE rate, 2-D upper boundary, UAV’s speed
and altitude range, and BS’s altitude. To both get the full
vision of the target (or the target area) and clear photography,
the UAV’s altitude should be neither too low nor too high.
Based on 3GPP’s specifications, the altitude ranges are set
to 40 − 300 m and 100 − 300 m for the RMa and UMa
scenarios, respectively. The radius ranges of the local cell
and the neighboring cells are set to 1000 − 2500 m and
600 − 1200 m for the RMa scenario and the UMa scenario,
respectively. We apply the results of [21] by assuming that
the bandwidth allocated to the UAV is 10 MHz with a trans-
mission power of 23 dBm. The height-dependent small scale
fading models of both the RMa and UMa signals are added
based on the second alternative model in [23]. We choose
3 mins and 30 mins as the lower and upper duration bounds,

νI = 2π (Ruarctan
Hu − hBS

Ru
+
Hu − hBS

2
ln(R2u + (Hu − hBS )2)− Ruarctan

Hl − hBS
Ru

−
Hl − hBS

2

ln(R2u + (Hl − hBS )2)− Rlarctan
Hu − hBS

Rl
−
Hu − hBS

2
ln(R2l + (Hu − hBS )2)+ Rlarctan

Hl − hBS
Rl

+
Hl − hBS

2
ln(R2l + (Hl − hBS )2)). (25)

µI = (
Ncell∑
i=1

giγi)
2

(Hu − Hl)(R2u − R
2
l )
10

Pt
10Ge

1

(Ru+Rl2 )α/10
1

10(β(fc)+γ )/10
(Ruarctan

Hu − hBS
Ru

+
Hu − hBS

2

ln(R2u + (Hu − hBS )2)− Ruarctan
Hl − hBS

Ru
−
Hl − hBS

2
ln(R2u + (Hl − hBS )2)− Rlarctan

Hu − hBS
Rl

−
Hu − hBS

2
ln(R2l + (Hu − hBS )2)+ Rlarctan

Hl − hBS
Rl

+
Hl − hBS

2
ln(R2l + (Hl − hBS )2)). (26)
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TABLE 3. Simulation parameters.

and 10 mins is chosen to exhibit the medium state. Based on
a large number of tests, these three durations are sufficient
to show the trend of the theoretically calculated ergodic sum
interference power values compared with the experimental
results.

Each UE has an equal probability of occupying the same
subchannel with the local cell. If an iUAV exists in a cell,
its position within the 3-D cell area is generated following a
uniform distribution. Specially, for the outer-edge cells, if an
iUAV is generated outside of the defined upper limit of the
2-D distance, the UAV model does not produce interference.

We use a random-walk model to represent the movement
of each UAV [38]. During an individual UAV’s existence, its
velocity is randomly regenerated 10 times within the value
and direction ranges specified in Table 3. Each iUAV moves
within the bounds of the defined region. If it reaches the
boundary, the process of randomly generating velocities is
executed recursively until a new velocity that keeps the UAV
in the region is generated. A 2-D illustration of the cell dis-
tribution and the generated UAVs’ tracks are shown in Fig. 2.
The figure is obtained assuming a 50% aUE rate of each cell
in the RMa scenario, and the cell radius is 1500 m. The area
in light green represents the 2-D range where the iUAVs are
generated. In the area it shows the 2-D trajectories displayed
in red of all iUAVs appeared within 45 s.

A. ROOT MEAN SQUARE ERROR (RMSE) PERFORMANCE
The accuracy of the proposed analytical models with vari-
ous aUE rates and simulation durations is verified in this
subsection. Three groups of experiments are performed, each
repeated 40 times for the selected durations. In Fig. 3 - Fig. 6,

FIGURE 2. 2-D horizontal illustration of the network layout and the
trajectories of the generated iUAVs.

the root mean square errors (RMSE) are calculated between
the theoretical estimations and simulation results. In each
figure, cells with low, medium and high aUE densities are
examined for aUE rates of 10%, 50% and 90%. We set
the cell radius to 1500 m for the RMa scenario and 800 m
for the UMa scenario [20], [39]. While typical UAV data
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FIGURE 3. RMSE of the theoretical results compared with the
experimental results versus simulation durations of the RMa scenario.
Each iUAV model exists randomly for between 0 and 24 s.

FIGURE 4. RMSE of the theoretical results compared with the
experimental results versus simulation durations of the UMa scenario.
Each iUAV model exists randomly for between 0 and 24 s.

transmission durations [40] are applied in Fig. 3 and Fig. 4,
short-term transmission cases, where the duration is between
0 and 2 s [20], are considered in Fig. 5 and Fig. 6.

As expected, the overall RMSE values are very small for
both the RMa and UMa scenarios, which validates the accu-
racy of the proposed closed-form solutions. After 30 mins of
simulation, the RMSE for the 10% aUE rate is approximately
0.30 dBm and 0.47 dBm for the RMa and UMa scenarios,
respectively. For the other two aUE rates, the RMSE is
approximately 0.21 dBm and 0.29 dBm for the RMa and
UMa scenarios, respectively. When the aUE rate is 10%,
the distribution of iUAVs shows more drastic variations in
the simulation experiment, which leads to slightly higher
RMSE than that of the other two cases. The RMSE outputs
for all aUE rates decrease as the simulation duration increases
in Fig. 3 and Fig. 4. Nonetheless, for the same time, the out-
puts are similar for all aUE rates and durations in Fig. 5 and
Fig. 6, whichmeans fast convergence can be expected in these
scenarios.

FIGURE 5. RMSE of the theoretical results compared with the
experimental results versus simulation durations of the RMa scenario.
Each iUAV model exists randomly for between 0 and 2 s.

FIGURE 6. RMSE of the theoretical results compared with the
experimental results versus simulation durations of the UMa scenario.
Each iUAV model exists randomly for between 0 and 2 s.

To summarize, we conclude that over a sufficiently long
time, the theoretical model yields a stable performance for
varying aUE rate cases in both the RMa and UMa scenarios.
On the other hand, when UAVs and BSs maintain short-
term connections, the analytical results are more accurate for
short simulation durations. Furthermore, the channel model
employed in the simulations includes small-scale fading,
which validates the representativeness of our proposed ana-
lytical model.

B. ERGODIC SUM INTERFERENCE POWER OVER TIME
As the UL resources are allocated to the iUAVs whose trajec-
tories and topology are constantly varying, in this subsection,
the real-time calculated ergodic sum interference power is
obtained and compared with the theoretical results. We set
each UAV to randomly exist for between 0 and 24 s. The cell
radii are 1500 m and 800 m for the RMa and UMa scenarios,
respectively. The total simulation duration is 30 mins, and the
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FIGURE 7. The ergodic sum interference power versus time duration of
the RMa scenario.

FIGURE 8. The ergodic sum interference power versus time duration of
the UMa scenario.

results are shown in Fig. 7 and Fig. 8. In both figures, three
cases are considered, in which the aUE rate is chosen to be
10%, 50% or 90%.

For all three aUE rates, the experimental results converge to
a constrained range. After 20 mins, the differences between
the theoretical and experimental ergodic interference power
results are all less than 0.40 dBm.We observe that the theoret-
ical ergodic sum interference power is slightly lower than the
experimental results. This may be due to the slightly different
cell shape between the proposed theoretical model and the
experimental system model. Specifically, the defined inner
boundary is a circle in the theoretical model and a hexagon in
the experimental model.

It can be seen that a higher aUE rate results in stronger
interference in the region. For example, in Fig. 7, the theo-
retically calculated ergodic sum interference power reaches -
65.81 dBm for the 90% aUE rate and decreases to -75.40 dBm
when the aUE rate is 10%. This phenomenon is due to the fact
that when more aUEs are present, there is a higher probability

FIGURE 9. Comparison between the theoretical and experimental results
of the ergodic sum interference power for varying RMa cell radii.

FIGURE 10. Comparison between the theoretical and experimental
results of the ergodic sum interference power for varying UMa cell radii.

that a cell has an iUAV, which results in a higher number of
iUAVs, and thus a stronger total interference.

C. INFLUENCE OF THE CELL RADIUS
In this subsection, the values of the interference power for
various cell radii are examined. We set the aUE rate to 50%
for both the RMa andUMa scenarios. A total of 5 experiments
are performed for each scenario, and in each experiment,
the radii of all cells are the same. The RMa cell radius varies
from 500 m to 2500 m in increments of 500 m, and the
UMa cell radius varies from 600 m to 1200 m in increments
of 200 m. With a larger cell radius, the number of cells
within the defined region is reduced. For example, in the third
experiment of the RMa scenario, the cell radius is 1500 m,
and 61 cells are included, while in the last experiment, where
the cell radius is 2500 m, there are only 31 cells.

Fig. 9 and Fig. 10 show the ergodic sum interference power
for varying local cell radii. The red lines show the experimen-
tal results obtained by averaging 20 simulations, each with
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FIGURE 11. Comparison between the theoretical and experimental
results of UL capacity versus aUE rates for the RMa scenario.

a duration of 30 mins. The blue lines show the theoretical
results obtained directly from the proposed closed-form solu-
tion. The figures show a good match between the theoretical
and experimental results, which demonstrates the accuracy of
the proposed analytical model. The total ergodic interference
decreases considerably as the radius increases: among all
simulated scenarios, at least 19.59 dBm and 8.73 dBm mar-
gins are observed between the cases of smallest and largest
radii for the RMa and UMa scenarios, respectively. This is
mainly due to two reasons. First, a larger cell radius causes
the average path loss to increase, thereby degrading the inter-
ference signals. Second, a larger cell radius means fewer cells
are contained in the defined region. Thus, a smaller number
of simultaneous iUAVs can be expected.

D. UL CAPACITY
This subsection examines the performance of the proposed
analytical model in terms of capacity in various scenarios.
We assume that the target signal is from a UAV being served
in the local cell. The capacity values are calculated for aUE
rates varying from 10% to 90% with an increment of 20%.
Both the RMa and UMa scenarios are studied where the cell
radii are 1500 m and 800 m, respectively. In each group of
experiments, a unique position of the target UAV is chosen,
with a fixed 2-D distance to the BS but varying altitude.
The 2-D distance is 600 m and 300 m for the RMa and
UMa scenarios, respectively. The considered altitudes are
40 m, 150 m and 300 m for the RMa scenario and 100 m,
150 m and 300 m for the UMa scenario. The experiment
is executed 50 times, each with a 30 min duration, and the
average capacity values are computed and compared with the
theoretical results in Fig. 11 and Fig. 12.

These two figures show the accuracy of the proposed
analytical model in terms of capacity with varying aUE
rates and target UAV altitudes. An increase in the aUE rate
causes a significant capacity degradation in both the RMa
and UMa cases, i.e., theoretically 21.51 − 24.17 Mb/s and

FIGURE 12. Comparison between the theoretical and experimental
results of UL capacity versus aUE rates for the UMa scenario.

23.31 − 24.95 Mb/s for the RMa and UMa scenarios as
the aUE rate increases from 10% to 90%, respectively. Due
to such a decrease in capacity, the available bandwidth for
upper layer applications will also be significantly lowered.
The highest capacities are obtained for the target UAV at an
altitude of 150 m and 100 m in the RMa and UMa scenarios,
respectively, which is a result of the lowest path loss occurring
at the chosen altitudes. Clearly, these results not only validate
the accuracy of the proposed model but also confirm the
considerable influence of the intercell interference imposed
by UAVs.

VI. CONCLUSION AND FUTURE WORKS
The widely deployed cellular networks can provide connec-
tivity with UAVs across vast geological ranges and thus have
become a potential solution for data exchange with UAVs
in many applications. However, to ensure stable connections
between UAVs and BSs, the UL interference problemmust be
addressed. In this article, we conduct a theoretical study of the
ergodic sum interference power fromUAVs to a BS to charac-
terize the system-level performance in cellular networks that
incorporate UAVs as aUE. To study the intercell interference
imposed by iUAVs, the primary expression of the ergodic
UL sum interference power is given with this geological
model and the 3GPP channel model. Then, by means of the
ergodic method, we derive an equivalent form of the proposed
primary expression and solve the corresponding problem to
obtain a closed-form solution for the ergodic sum interfer-
ence power, which can easily be utilized to estimate the link
capacity. Through simulation based experiments, we verify
the feasibility and accuracy of the proposed analytical model,
which benefits many optimization-based studies in cellular-
based UAV systems.

Further verification of the proposed model based on real-
world tests will be presented in future work. Other poten-
tial work includes the consideration of multiple modulation
schemes and large-scale fading in the UAV channel model.
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Moreover, the performance enhancement of combining the
theoretical model and algorithms at the application level, e.g.,
adaptive video compression [41], will also be examined in our
future works.

APPENDIX
Proof: The following functions are defined:

u(x) = arctan
c0
x

(A.1)

and

v(x) = x. (A.2)

Taking the first derivative of v(x), we obtain,

dv(x)
dx
= 1. (A.3)

Then, from the properties of derivatives, the following equa-
tion is obtained:

d(u(x)v(x))
dx

= u(x)
dv(x)
dx
+

du(x)
dx

v(x). (A.4)

Thus,

u(x)
dv(x)
dx
=

d(u(x)v(x))
dx

−
du(x)
dx

v(x). (A.5)

Applying the integration operation to Equ. (A.5),∫
u(x)

dv(x)
dx

dx =
∫

d(u(x)v(x))
dx

dx −
∫

du(x)
dx

v(x)dx,

(A.6)

which further leads to the following equation:∫
u(x)dv(x) = u(x)v(x)−

∫
v(x)du(x). (A.7)

Substituting Equ. (A.1) and Equ. (A.2) into Equ. (A.7),
we obtain,∫

arctan
c0
x
dx = xarctan

c0
x
−

∫
xd(arctan

c0
x
)

= xarctan
c0
x
−

∫
−

c0x

x2 + c20
dx

= xarctan
c0
x
− (−

1
2
c0ln(x2 + c20))+ c1

= xarctan
c0
x
+
1
2
c0ln(x2 + c20)+c1. (A.8)

Therefore, Lemma 1 is proven.
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