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ABSTRACT This paper proposes a novel generalized integral inequality based on free matrices and applies
it to stability analysis of time-varying delay systems. The proposed integral inequality estimates the upper
bound of the augmented quadratic term of the state and its derivative term by utilizing not only the single
integral term but also the higher-order multiple integral terms. The proposed integral inequality includes
several well-known integral inequalities as special cases. For the stability analysis of time-varying delay
systems, a new Lyapunov-Krasovskii functional is constructed by including the double integral term with
the augmented vector of the state and its derivative to utilize the proposed integral inequality when estimating
the derivative of the Lyapunov-Krasovskii functional. Furthermore, to fully exploit the information on the
time-varying delay, this paper divides the interval of the double integral term into two parts. Two numerical
examples show that the results of the proposed method outperform those of the existing methods.

INDEX TERMS Stability analysis, time-varying delays, Lyapunov-Krasovskii functional, free matrices,
generalized integral inequality.

I. INTRODUCTION
Time delays are inevitable phenomenon in the practical sys-
tems and they result in performance degradation and system
instability. In recent decades, stability analysis of time delay
systems has attracted considerable attention in many areas,
such as communication systems, biological systems, network
control systems or cyber-physical systems [1]–[5]. The main
purpose of stability analysis of time delay systems is to obtain
maximum delay bound that ensures the asymptotic stabil-
ity for the concerned systems, and the Lyapunov-Krasovskii
functional (LKF) method is an efficient way for such anal-
ysis. The LKF method consists of two essential aspects to
improve conservatism: the construction of a proper LKF and
the estimation of the LKF derivation.

From the aspect of the LKF construction, researches on
employing more state information in the LKFs have been
carried out by using the augmented vectors [6]–[8]. However,
the usage of the augmented vectors is only limited to the

The associate editor coordinating the review of this manuscript and

approving it for publication was Feiqi Deng .

quadratic forms of the single integral terms and constant
terms in the LKFs, and the double integral terms have been
only treated with a single state derivative term. Recently,
the LKF which uses state and its derivative term in a double
integral is proposed by using a new free-matrix-based inte-
gral inequality in [9]. The usage of additional energy from
the state term and the cross-term of state and its derivative
effectively improve conservatism. However, a crucial disad-
vantage of the new free-matrix-based integral inequality is
that the higher-order multiple integral term cannot be applied,
and this is one of the motivations for working on this paper.

On the other hand, from the aspect of the estimation of
the LKF derivation, many integral inequalities have been
proposed to provide a tighter upper bound: Jensen inequal-
ity [10], Wirtinger inequality [11], Bessel-Legendre inequal-
ity [12], free-matrix-based integral inequalities [13], and
auxiliary function-based integral inequalities [14]. These
integral inequalities have efficiently reduced the conser-
vatism of constant delay systems, and Bessel-Legendre
inequality ensures the tightest bound among them. However,
there have been challenges for applying these inequalities to
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time-varying delay (TVD) systems due to the reciprocal con-
vexity. To overcome these challenges, several papers related
to handling the reciprocal convexity conditions have been
proposed [15]–[17]. In the last several years, some papers
have concentrated on developing several integral inequalities
based on the Bessel-Legendre integral inequality by convert-
ing the reciprocal convexity into the convexity [18]–[20].
Especially in [20], a generalized free-matrix-based integral
inequality is proposed and a less conservative stability criteria
for TVD systems is derived by providing the convexity con-
ditions. However, this inequality does not take full advantage
of the free matrices, so further improvement can be done by
extending the use of the free matrices.

Motivated by the above discussions, this paper proposes a
novel generalized integral inequality based on free matrices
(GIIBFM), and derives a stability analysis for TVD systems.
The proposed GIIBFM estimates the upper bound of the
augmented quadratic term of the state and its derivative term
by utilizing not only the single integral term but also the
higher-order multiple integral terms. The proposed GIIBFM
includes several famous existing integral inequalities as spe-
cial cases such as the generalized free-matrix-based inte-
gral inequality [20] and the new free-matrix-based integral
inequality [9]. For the stability analysis of TVD systems,
a new LKF is constructed by including the double integral
term with the augmented vector of the state and its deriva-
tive to utilize the proposed GIIBFM when estimating the
derivative of the LKF. Furthermore, to exploit the additional
information on the TVD, this paper divides the interval of the
double integral term into two parts. Finally, two numerical
examples shows that the results of the proposed method
outperform those of the existing methods.
Notation: The superscripts ‘−1’ represents the inverse

matrix; ‘T ’ represents the transpose of matrix; N stands
for non-negative integers; Rn denotes the n-dimensional
Euclidean space; Rm×n stands for the set of all n × m real
matrices; 0m×n is m× n zero matrix; 0n is n× n zero matrix;
In is n× n identity matrix; Sym{X} = X +XT ; Y > 0 means
that Y is a symmetric and positive definite matrix; ‘?’ stands
for symmetric terms in a symmetric matrix; The binomial
coefficients is represented as

(p
q

)
=

p!
q!(p−q)! .

II. PROBLEM FORMULATION
A. TIME-VARYING DELAY SYSTEM
Consider the continuous-time linear system with TVD h(t):{

ẋ(t) = Ax(t)+ Adx(t − h(t)), t > 0,
x(t) = φ(t), t ∈ [−h̄, 0],

(1)

where x(t) ∈ Rn is the state vector, A,Ad ∈ Rn×n are the
constant matrices, and the initial condition φ(t) which is a
continuous and differentiable function in t ∈ [−h̄, 0]. The
interval TVD h(t) satisfying

0 ≤ h(t) ≤ h̄, µ1 ≤ ḣ(t) ≤ µ2, (2)

for constant h̄, µ1, and µ2.

B. INTEGRAL INEQUALITIES
The following inequality is recently introduced to derive the
stability criteria for TVD systems.
Lemma 2.1 [20]: Let N ∈ N, ζ (t) ∈ Rm, and x be a

continuous and differentiable function: [a, b] → Rn. For
symmetric matrix R ∈ Rn×n and any matrix Y ∈ R(N+1)n×m,
the following inequality holds:

−

∫ b

a
ẋT (s)Rẋ(s)ds

≤ (b− a)ζ T (t)Y T R̃−1Y ζ (t)+ Sym
{
ζ T (t)Y0TN ζN

}
,

where

0N = [πN (0) πN (1) · · · πN (N )],

R̃ = diag{R,
1
3
R, · · · ,

1
2N + 1

R},

ζN =


[xT (b) xT (a)]T , N = 0,

[xT (b) xT (a)
1

b− a
2T

0 · · ·
1

b− a
2T
N−1]

T ,

N ≥ 1,

πN (k)=

{
[In − In]T , N = 0,
[In (−1)k+1In θ0NkIn · · · θ

N−1
Nk In]T , N ≥ 1,

θmNk =

{
(2m+ 1)((−1)k+m − 1), m ≤ k,
0, m > k,

pk (s) = (−1)k
k∑
i=0

[
(−1)i

(
k
i

)(
k + i
i

)]( s− a
b− a

)i
,

2k =

∫ b

a
pk (s)x(s)ds,

∫ b

a
pi(s)pj(s)ds=


b− a
2i+ 1

, i = j,

0, i 6= j.

Lemma 2.2 (Generalized integral inequality based on free
matrices, GIIBFM): Let ζ (t) ∈ Rmn, N ∈ N, x(s) ∈ Rn

be a continuous and differentiable function in [a, b]. For
the positive definite matrix R ∈ R2n×2n, any free-matrix
Yi,j ∈ Rmn×n (i = 0, 1, 2, · · · ,N for j = 1 and i =
0, 1, 2, · · · ,N − 1 for j = 2), YN ,2 = 0mn×n, η(s) =[
ẋT (s) xT (s)

]T , and h = b−a, the following integral inequal-
ity holds:

−

∫ b

a
ηT (s)Rη(s)ds ≤ ζ T (t)�N (R, h)ζ (t), (3)

where

�N (R, h) =
N∑
k=0

{
h

2k + 1

[
Yk,1 Yk,2

]
R−1

[
Yk,1 Yk,2

]T
+Sym

{
Yk,1Mk,1 + Yk,2Mk,2

}}
,

Mk,1ζ (t) = πTN (k)ζN , Mk,2ζ (t) = 2k ,

and the definitions of parameters, ζN , πN (k), and 2k , are
same as in Lemma 2.1.
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Proof 1: Before deriving this proof, the two structured
matrices and the integral characteristic of pk (s) are defined
such that

Y =


YN ,1 YN ,2
YN−1,1 YN−1,2
...

...

Y0,1 Y0,2

 , P(s) =


pN (s)
...

p1(s)
p0(s)

 ,
where pk (s) is defined in Lemma 2.1. Then, Since R > 0,
the following integral inequality is satisfied:

0 ≤
∫ b

a

[
P(s)ζ (t)
η(s)

]T [YR−1Y T Y
Y T R

] [
P(s)ζ (t)
η(s)

]
ds

=

∫ b

a
ηT (s)Rη(s)

+ ζ T (t)
(∫ b

a
PT (s)YR−1Y TP(s)ds

)
ζ (t)

+ 2ζ T (t)
∫ b

a
PT (s)Yη(s)ds

=

∫ b

a
ηT (s)Rη(s)

+ ζ T (t)
N∑
k=0

{∫ b

a
p2k (s)ds

[
Yk,1 Yk,2

]
R−1

[
Yk,1 Yk,2

]T
+Sym

{
Yk,1

∫ b

a
pi(s)ẋ(s)ds+Yk,2

∫ b

a
pi(s)x(s)ds

}}
ζ (t).

This concludes the proof.
Remark 1: Lemma 2.2 includes the existing integral

inequalities. The new free-matrix-based integral inequality
in [9] can be easily derived from Lemma 2.2 with N = 1.
In addition, Lemma 2.2 with Yj,2 = 0mn×n (for j = 0,
1, 2, · · · ,N ) leads to Lemma 2.1, so we can conclude that
Lemma 2.2 includes Lemma 2.1 as a special case.
Remark 2: A pair of free matrices Yk+1,1 and Yk,2 in

Lemma 2.2 are related to the k-th order multiple integral
term, so the structured matrix Y is constructed with YN ,2 =
0mn×n. Compare to the integral inequalities which are based
on Bessel-Legendre polynomial such as [19] and Lemma 2.1,
Lemma 2.2 uses not only πTN (k)ζN but also 2k by intro-
ducing the augmented vector of x(t) and ẋ(t) to fully utilize
information of free matrices. When increasing the order N
in Lemma 2.2, we can use the higher-order multiple integral
terms, so the upper bound becomes tighter.

III. MAIN RESULT
In this section, we provide a developed stability analysis for
TVD system (1). Before deriving main result, some notations
are defined as follows:

ek =
[
0n×n(k−1) In 0n×n(9−k)

]
, for k = 1,2,3,· · ·,9,

ζ (t)=
[
xT(t) xT(t − h(t)) xT(t−h̄) ẋT(t−h(t)) ẋT(t−h̄)

1
h(t)

∫ t

t−h(t)
xT (s)ds

1

h̄− h(t)

∫ t−h(t)

t−h̄
xT (s)ds

1
h2(t)

∫ 0

−h(t)

∫ t

t+r
xT (s)dsdr

1

(h̄− h(t))2

∫
−h(t)

−h̄

∫ t−h(t)

t+r
xT (s)dsdr

]T
,

η1(t)=
[
xT(t) xT(t − h(t)) xT(t − h̄)

∫ t

t−h(t)
xT(s)ds∫ t−h(t)

t−h̄
xT(s)ds

1
h(t)

∫ t

t−h(t)

∫ t

r
xT (s)dsdr

1

h̄− h(t)

∫ t−h(t)

t−h̄

∫ t−h(t)

r
xT (s)dsdr

]T
,

η2(t, s)=
[
η3(s) xT (t − h(t))

∫ t

s
ẋT (r)dr∫ s

t−h̄
ẋT (r)dr

∫ s

t−h(t)
ẋT (r)dr

]T
,

η3(s) =
[
ẋT (s) xT (s)

]T
.

In the following Theorem 3.1, a stability analysis for TVD
systems (1) is derived using Lemma 2.2 with N = 2.
Theorem 3.1: For a TVD h(t) satisfying condition (2),

the system (1) is asymptotically stable if there exist posi-
tive definite matrices P ∈ R7n×7n,Qk ∈ R6n×6n,Rk ∈
R2n×2n(k = 1, 2) and any matrices Yl, Ȳl ∈ R9n×n(l ∈
{(0, 1), (0, 2), (1, 1), (1, 2), (2, 1)}) satisfying the following
LMIs for i = 1, 2:

9(0, µi) < 0, 9(h̄, µi) < 0, R̂1(ḣ(t)) > 0, (4)

where

9(0, ḣ(t)) =
[
0(0, ḣ(t)) h̄Y2

? −h̄R̄2

]
,

9(h, ḣ(t)) =
[
0(h, ḣ(t)) h̄Y1

? −h̄R̄1

]
,

with

Y1=
[
Y0,1 Y0,2 | Y1,1 Y1,2 | Y2,1 09n×n

]
,

Y2=
[
Ȳ0,1 Ȳ0,2 | Ȳ1,1 Ȳ1,2 | Ȳ2,1 09n×n

]
,

R̂1(ḣ(t)) = (1− ḣ(t))R1 + ḣ(t)R2,

R̄1 =

 R̂1 02n 02n
02n 3R̂1 02n
02n 02n 5R̂1

 ,
R̄2 =

R2 02n 02n
02n 3R2 02n
02n 02n 5R2

 ,
e0 = Ae1 + Ade2,

51(h(t)) = [511 512(h(t))]T ,

52(ḣ(t))= [521(ḣ(t))522(ḣ(t))523(ḣ(t)) 524(ḣ(t))]T ,

53 = [eT0 eT1 eT2 09n×n eT1 − e
T
3 eT1 − e

T
2 ]
T ,

54 = [eT4 eT2 eT2 eT1 − e
T
2 eT2 − e

T
3 09n×n]T ,

55 = [eT5 eT3 eT2 eT1 − e
T
3 09n×n eT3 − e

T
2 ]
T ,

56(ḣ(t)) = [09n×n 09n×n (1− ḣ(t))eT4
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eT0 − e
T
5 − (1− ḣ(t))eT4 ]

T ,

57(h(t)) = [571(h(t)) 572(h(t))]T ,

58(h(t)) = [581(h(t)) 582(h(t)) 583(h(t))]T ,

59 = [eT0 eT1 ]
T

511 = [eT1 eT2 eT3 ],

512(h(t)) = [h(t)eT6 (h̄−h(t))eT7 h(t)e
T
8 (h̄−h(t))eT9 ],

521(ḣ(t)) = [eT0 (1− ḣ(t))eT4 eT5 ],

522(ḣ(t)) = [eT1 − (1− ḣ(t))eT2 (1− ḣ(t))eT2 − e
T
3 ],

523(ḣ(t)) = eT1 − (1− ḣ(t))eT6 − ḣ(t)e
T
8 ,

524(ḣ(t)) = (1− ḣ(t))eT2 − e
T
7 + ḣ(t)e

T
9 ,

571(h(t)) = [eT1 − e
T
2 h(t)eT6 h(t)eT2 h(t)(eT1 − e

T
6 )],

572(h(t)) = [h(t)(eT6 − e
T
3 ) h(t)(e

T
6 − e

T
2 )],

581(h(t)) = [eT2 − e
T
3 (h̄− h(t))eT7 ],

582(h(t)) = [(h̄− h(t))eT2 (h̄− h(t))(eT1 − e
T
7 )],

583(h(t)) = [(h̄−h(t))(eT7 − e
T
3 ) (h̄−h(t))(eT7 − e

T
2 )],

0(h(t), ḣ(t)) = Sym
{
5T

2 (ḣ(t))P51(h(t))

+5T
6 (ḣ(t))Q157(h(t))

+5T
6 (ḣ(t))Q258(h(t))

}
+5T

3Q153 + (1− ḣ(t))5T
4 (Q2

−Q1)54 −5
T
5Q255

+5T
9 (h(t)R1 + (h̄− h(t))R2)59

+Sym
{
Y0,1M0,1 + Y0,2M0,2 + Y1,1M1,1

+Y1,2M1,2 + Y2,1M2,1

+ Ȳ0,1M̄0,1 + Ȳ0,2M̄0,2 + Ȳ1,1M̄1,1

+ Ȳ1,2M̄1,2 + Ȳ2,1M̄2,1

}
,

�2(R̂1(ḣ(t)), h) = h
[
Y0,1 Y0,2

]
R̂−11 (ḣ(t))

[
Y0,1 Y0,2

]T
+
h
3

[
Y1,1 Y1,2

]
R̂−11 (ḣ(t))

[
Y1,1 Y1,2

]T
+
h
5

[
Y2,1 09n×n

]
R̂−11 (ḣ(t))

[
Y2,1 09n×n

]T
+Sym

{
Y0,1M0,1 + Y0,2M0,2 + Y1,1M1,1

+Y1,2M1,2 + Y2,1M2,1

}
,

�2(R2, h) = h
[
Ȳ0,1 Ȳ0,2

]
R−12

[
Ȳ0,1 Ȳ0,2

]T
+
h
3

[
Ȳ1,1 Ȳ1,2

]
R−12

[
Ȳ1,1 Ȳ1,2

]T
+
h
5

[
Ȳ2,1 09n×n

]
R−12

[
Ȳ2,1 09n×n

]T
+Sym

{
Ȳ0,1M̄0,1 + Ȳ0,2M̄0,2 + Ȳ1,1M̄1,1

+ Ȳ1,2M̄1,2 + Ȳ2,1M̄2,1

}
,

M01
M02
M11
M12
M21

 =


e1 − e2
h(t)e6

e1 + e2 − 2e6
h(t)(−e6 + 2e8)

e1 − e2 + 6e6 − 12e8

 ,


M̄01
M̄02
M̄11
M̄12
M̄21

 =


e2 − e3
(h̄− h(t))e7
e2 + e3 − 2e7

(h̄− h(t))(−e7 + 2e9)
e2 − e3 + 6e7 − 12e9

 .
Proof 2: To evaluate the stability criterion of system with

TVD (1), the LKF candidates are constructed as

V (t) =
3∑
i=1

Vi(t),

V1(t) = ηT1 (t)Pη1(t),

V2(t) =
∫ t

t−h(t)
ηT2 (t, s)Q1η2(t, s)ds

+

∫ t−h(t)

t−h̄
ηT2 (t, s)Q2η2(t, s)ds,

V3(t) =
∫ t

t−h(t)

∫ t

r
ηT3 (s)R1η3(s)dsdr

+

∫ t−h(t)

t−h̄

∫ t

r
ηT3 (s)R2η3(s)dsdr . (5)

The time-derivative of each LKF in (5), Vi(t) where i ∈
{1, 2, 3}, can be computed as follows

V̇1(t) = Sym
{
5T

2 (ḣ(t))P51(h(t))
}
,

V̇2(t) = 5T
3Q153+(1−ḣ(t))5T

4 (Q2−Q1)54−5
T
5Q255

+Sym
{
5T

6 (ḣ(t))Q157(h(t))

+5T
6 (ḣ(t))Q258(h(t))

}
,

V̇3(t) = h(t)5T
9 R159 + (h̄− h(t))5T

9 R259

−

∫ t

t−h(t)
ηT3 (s)R̂1(ḣ(t))η3(s)ds

−

∫ t−h(t)

t−h̄
ηT3 (s)R2η3(s)ds. (6)

By applying Lemma 2.2 with N = 2, we can obtain

−

∫ t

t−h(t)
ηT3 (s)R̂1(ḣ(t))η3(s)ds

≤ ζ T (t)�2(R̂1(ḣ(t)), h(t))ζ (t), (7)

−

∫ t−h(t)

t−h̄
ηT3 (s)R2η3(s)ds

≤ ζ T (t)�2(R2, h̄− h(t))ζ (t). (8)

Combining (6), (7), (8) yields:

V̇ (t) = V̇1(t)+ V̇2(t)+ V̇3(t)

≤ ζ T (t)
{
0(h(t), ḣ(t))

+ h(t)
[
Y0,1 Y0,2

]
R̂−11 (ḣ(t))

[
Y0,1 Y0,2

]T
+
h(t)
3

[
Y1,1 Y1,2

]
R̂−11 (ḣ(t))

[
Y1,1 Y1,2

]T
+
h(t)
5

[
Y2,1 09n×n

]
R̂−11 (ḣ(t))

[
Y2,1 09n×n

]T
VOLUME 8, 2020 179775
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TABLE 1. The maximum admissible h̄ for various µ.

+ (h̄− h(t))
[
Ȳ0,1 Ȳ0,2

]
R−12

[
Ȳ0,1 Ȳ0,2

]T
+
h̄− h(t)

3

[
Ȳ1,1 Ȳ1,2

]
R−12

[
Ȳ1,1 Ȳ1,2

]T
+
h̄− h(t)

5

[
Ȳ2,1 09n×n

]
R−12

[
Ȳ2,1 09n×n

]T }
ζ (t).

(9)

By using schur complement, it can be concluded that (9)
and the LMIs in (4) are essentially equivalent for the condi-
tion (2). Therefore, if V̇ (t) < 0 which is equivalent to the
LMI in (4) is satisfied, then the system (1) is asymptotically
stable. This concludes the proof.
Remark 3: Through the usage of the augmented vector

with x(s) and ẋ(s) in the LKF, freematrices providemore free-
dom in deriving the stability criterion. In addition, the interval
of the double integral LKF in (5) [t − h̄, t] is divided into
[t − h̄, t − h(t)] and [t − h(t), t] to fully exploit the infor-
mation on TVD and to provide a less conservative stability
criterion. It can be verified by numerical examples in the
section IV.When the order of the proposed integral inequality
N is increased, the higher-order multiple integral terms can
be added to the LKF augmented vectors, η1 and η2, for
constructing a less conservative stability condition.

IV. NUMERICAL EXAMPLE
In this section, the performance of the proposed method is
compared with the existing methods through two numerical
examples.
Examples 4.1: Consider TVD system (1) with

A =
[
−2 0
0 −0.9

]
, Ad =

[
−1 0
−1 −1

]
,

and µ1 = −µ2 = µ. This system is a commonly-used exam-
ple for verifying conservatism of many methods. In Table 1,
it is shown that the highest maximum admissible upper bound
is obtained by Theorem 3.1. Among the results of existing
methods, the authors of this paper thought that the result of the
paper [20] with N = 1 was incorrect, so it was re-simulated
and corrected from [4.841, 4.154, 3.159, 2.729] to
[4.837, 4, 145, 3.152, 2.727]. According to the corrected
results, Theorem 3.1 provides a less conservative stability
criterion for all cases µ than other existing methods. Fur-
thermore, with the same order of the integral inequality N ,

TABLE 2. The maximum admissible h̄ for various µ.

Theorem 3.1 shows better results compared with other gen-
eralized methods such as [18] and [20], and it is also clearly
shown that Theorem 3.1 enhances a feasible region of delays
by increasing the order N .
Examples 4.2: Consider TVD system (1) with

A =
[

0 1.0
−1.0 −2.0

]
, Ad =

[
0 0
−1.0 1.0

]
,

and µ1 = −µ2 = µ. From the Table 2, it should be noted
that the maximum admissible upper bound of Theorem 3.1
is superior than other existing methods. In addition, it can
be clearly verified that Theorem 3.1 shows the dramatic
improvement in performance for the same order of the
integral inequality N .

V. CONCLUSION
This paper developed a novel GIIBFM to derive an improved
stability analysis for TVD system. The upper bound of the
augmented quadratic term of the state and its derivative term
was estimated by the proposed GIIBFM by utilizing the
higher-order multiple integral terms as well as the single
integral term. In addition, the proposed GIIBFM included
some famous integral inequalities as special cases, and made
it possible to find a tighter bound than other existing gener-
alized integral inequalities with the same order. Particularly,
increasing the order of the integral inequality guaranteed a
tighter upper bound and enabled the use of the higher-order
multiple integral terms in deriving the stability criteria. The
LKF was constructed with the augmented vectors, and we
further reduced conservatism by dividing the interval of the
double integral term of the LKF into two parts. The stability
criteria was derived by utilizing the proposed GIIBFM at
derivative of double integral LKF, and it was clearly verified
that the results of the proposed method outperform those of
the existing methods.
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