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ABSTRACT The article proposes a solution for the problem of high-resolution remote sensing data classifi-
cation by applying deep learning methods and algorithms in conditions of labeled data scarcity. The problem
can be solved within the geosystem approach, through the analysis of the genetic uniformity of spatially
adjacent entities of different scale and hierarchical level. Advantages of the proposed GeoSystemNet model
rest on a large number of freedom degrees, admitting flexible configuration of the model contingent upon the
task at hand. Testing GeoSystemNet for classification of EuroSAT dataset, algorithmically augmented after
the geosystem approach, demonstrated the possibility to improve the classification precision in conditions
of labeled data accuracy by 9% and to obtain the classification precision with a larger volume of training
data (by 2%) which is slightly inferior in comparison with other deep models. The article also shows that
synthesis of the geosystem approach with deep learning capabilities allows us to optimize the diagnostics
of exogeodynamic processes, owing to the calculation of landscape differentiation regularities. Application
of the presented approach enabled us to improve the accuracy in detecting landslides at the testing site
‘‘Mordovia’’ by 5% in comparison with the classical approach of using deep models for remote sensing
data analysis. The authors advocate that application of the geosystem approach to improve the efficiency of
remote sensing data classification through methods, proposed in the article, requires an individual project-
based approach to source data augmentation.

INDEX TERMS Convolutional neural networks, deep learning, geospatial analysis, geosystems, image
classification, machine learning.

I. INTRODUCTION
Development and experimental substantiation of new geo-
information methods and algorithms for automated analysis
of spatial data (satellite images, digital models and maps,
attributive spatial-temporal information) instrumental in the
analysis of the state of lands and prediction of natural and
man-made emergencies is a pressing challenge of our times.
Development of machine learning technologies, including
those based on deep neural network models [1], enables us
to perform a highly precise automated monitoring of natural
resources management systems and to analyze regularities of
occurrence of natural processes and phenomena.

The associate editor coordinating the review of this manuscript and

approving it for publication was Gerardo Di Martino .

In view of this, algorithms of large arrays of spatial-
temporal data and software packages that function on their
basis are becoming an integral part of digital spatial data
infrastructures (SDI).

Automated analysis of spatial data can be made by both
traditional hard computing and soft computing, based on a
combined use of fuzzy logic, artificial neural networks and
evolutionary modeling [2]. The first decade of the 21st cen-
tury has seen the rise of deep learning [3], methods and prin-
ciples relying on the use a variety of levels of the non-linear
data processing for extraction and transformation of features,
analysis and pattern classification.

Research into the deep learning methods and algorithms
have contributed to solution of a range of issues, connected
with automated analysis of large arrays of spatial-temporal
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FIGURE 1. Number of articles with keywords from the problem area in
the Google Scholar bibliographic database.(https://scholar.google.com).

data [4]. According to Google Scholar search engine [5],
scientific interest in application of deep learning methods and
algorithms to spatial data analysis has been growing for the
last five years (Figure 1).

Application of deep neural network models should be
problem-oriented: the processes of machine analyzer archi-
tecture design, selection of its hyperparameters, formulation
of requirements for data output and consolidation of amounts
of training, checking and testing samples are to be determined
by specificity of the task to be tackled [6]. Quality of the
documentation on application and flexible tuning of a select
model does also matter.

The article proposes a solution for the problem of high-
resolution remote sensing data classification relying on deep
learningmethods and algorithms in conditions of labeled data
scarcity within the geosystem approach that implies analysis
of the genetic uniformity of spatially adjacent entities of
different scale and hierarchical level.

II. RELATED WORK
A. DEEP LEARNING IN GEOSPATIAL DATA ANALYSIS
Assessment and reasoning on the basis of spatial-temporal
data deep analysis are applied in addressingmultiple practical
tasks – environmental monitoring, forecasting of develop-
ment of different natural phenomena and processes. A great
deal of publications on spatial data analysis looks into
the issues of environmental incidents and natural disasters;
a number of papers explore social and economic spatial
processes.

Application of deep learning reduces the cost of conducted
research owing to the possibility of fine interpolation and
extrapolation of the measurements. Although most of the
publications in the subject area are focused on the application
of recurrent and convolutional neural networks, as well as
autoencoders, other deep models are also used to address a
variety of tasks. For example, deep belief networks can be
applied to tackle the tasks of spatial anomaly detection [7]
and classification [8] quite well; self-organizing maps are
used for spatial data classification together with feed-forward
networks [9].

The task of classification by means of deep learning
mostly refers to remote sensing data analysis. Reference [10]

describes multitier architecture, keyed to Land Cover clas-
sification by Landsat 8 and Sentinel multispectral satellite
images. The proposed model rests on a spontaneously learn-
ing neural network, and the system is supplemented with an
ensemble of supervised neural networks – multilayer percep-
trons, decision trees and convolutional networks.

Deep learning methods and algorithms facilitate efforts to
address the issue of feature extraction frommultidimensional
spatial data, which has been traditionally solved by means of
labour-intensive expert work. Reference [11] proposes a deep
model, based on the use of deep belief networks and restricted
Boltzmannmachines, as well as new functions of hierarchical
feature extraction and image classification. Reference [12]
describes a classification model, based on spectral-spatial
features, which applies a combination of methods of dimen-
sion reduction and deep learning for collaborative automated
extraction of spectral and spatial features from the sets of
large-dimension hyperspectral data with the use of convolu-
tional networks. Reference [13] proposes a feature extraction
method with respect to unlabeled data, based on application
of a sparse autoencoder for automatic extraction of spectral
singularities and multi-scale spatial characteristics and sup-
port vector machines for further classification.

Autoencoders can be used for addressing the task of spatial
data classification quite well. For example, [14] presents
a deep learning method, based on an automated coder for
remote sensing data classification, exemplified by a case
study of the land cover in Africa. Methods of spectral-spatial
classification of hyperspectral images with the use of autoen-
coders are described in [15]–[17]. Models that are based on
a combined use of convolutional and recurrent models are
successfully applied to remote sensing data classification.
References [18]–[20] describe some methods of land cover
classification on the basis of multitemporal spatial data with
the use of deep recurrent neural networks.

Analysis of publications showed that application of deep
learning methods and algorithms to the analysis of geospatial
data comes across a number of open problems that need to be
solved:

1) deep model training in conditions of labeled data
scarcity. Despite the fact that deep models are capable
of extracting information features from multidimensional
data, the efficiency of this relies strongly on a large num-
ber of training samples. Nevertheless, creating banks of
high-resolution labeled spatial data is costly and labour-
intensive, that is why a task of preserving the deep model’s
ability to extract features on the basis of a smaller number of
costly or hard-to-extract training samples remains open.

2) internal complexity of the images, obtained from remote
sensing data, is determined by the fact that certain spatial
objects are characterized by different sizes, spectral bright-
ness, structural features and mutual position in relation to
neighbor objects, and leads us to harder extraction of reliable
and stable features from them. One should be careful with
using the traditional methods of training data set augmen-
tation that are based on applying primitive distortions in
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FIGURE 2. Sample image patches of 10 classes covered in the EuroSAT dataset.

TABLE 1. Classification accuracy (%) on EuroSAT dataset of different training-test splits.

analysis of remote sensing data: natural systems are often
not indifferent to cardinal-direction orientation. For example,
the slope exposure is an informative feature that should not
be lost.

3) defining hyperparameters of the model in the analysis
of complex spatial data is an open problem. Deep models
can learn a larger number of features, but they are strongly
liable to overfitting. Not the least is the factor of high resource
intensity when training excessively intensive models, which
makes one embrace for either high prices of experimental
facilities or significant time expenditures.

4) the problem of adaptation to a new set of data is also
relevant when finishing the deep model training for classifi-
cation of lands of a new spatial area. The possibility to reuse
the trained model for deciphering satellite images of another
area can significantly increase the profitability and speed of
conducted work, and the ways to obtain it require further
systemic research.

The trained models can be tested when solving the task of
testing data classification. A method of error matrices, built
upon the classification results, can be chosen as a mathemat-
ical apparatus to calculate objective metrics of the models
efficiency [21]. To test and fine-tune new algorithms for
Earth remote sensing data analysis, open labeled datasets are
created. The EuroSAT open dataset [22], created for train-
ing and testing machine training models to effectively deal
with the problem of classification of land use and vegetation
cover systems on the basis of Sentinel-2 satellite images,
was applied for primary testing of the proposed method.
The dataset is uniformly labeled by 10 classes and consists
of 27,000 images, containing information on land plots, dis-
tributed across the European Union, in 13 spectral ranges.

The size of each element of the dataset is 64 × 64 pixels
with the spatial resolution of 10 meters per pixel, and is
characterized by geographical reference (Figure 2).

The authors of EuroSAT dataset [23] describe the clas-
sification precision characteristics based on different ratios
between training and test samples (Table 1). ResNet-50 neu-
ral network model demonstrates the precision of 96.43%
(in spliting training and test samples at the ratio of 80:20)
and 75.06% (at the ratio of 10:90). A shallow two-layer
CNN reaches the precision of 87.96% (at the ratio of 80:20)
and 75.88% (at the ratio of 10:90). Note also that
convolution-layer deep models mostly demonstrated higher
precision than support vector machines did.

Therefore, modern deep convolutional networks demon-
strate excellent precision of satellite image classification with
a relatively large size of the training sample of EuroSAT
dataset, but the presented approaches have a significant pre-
cision loss in case of training data scarcity. At the same
time, improving the precision of methods and algorithms of
spatial data analysis with account of their scarcity is a topical
problem [24].

One has to search for a decision to the outlined problems
not only through the improvement of deep model archi-
tectures but also through the development of methods and
algorithms of optimal enrichment of training data sets. It is
proposed to complete this task on the basis of the geosystem
approach.

B. GEOSYSTEM APPROACH
The geosystem approach [25] relies on a hypothesis that
the geographical envelope, landscape sphere, population,
environment, economic sectors and territorial production
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complexes are intertwined with internal deep interconnec-
tions that form a basis for drawing conclusions on object’s
origin and state.

Geosystems include holistic entities, sets of interconnected
components, the properties and state of which depend on
their spatial positioning and qualities of the environment.
The notion of geosystem is used to designate quite a wide
range of spatial objects, geographical and territorial produc-
tion complexes. Any geosystem and its structural components
are based on a functioning element that exercises specific
functions and is indivisible in dealing with the task to be
solved.

The introduction of the geosystem approach rests on exam-
ination of the complex objects’ structure, formed from sim-
pler ones that are organically interconnected, and makes it
possible to deal with the issues of geoinformation support of
regional schemes and projects, which leads to development
of the systemic mapping.

Hierarchic structuring of geosystems for land analysis and
classification should be based on marking out typological
units (taxa). For example, to study the state and regularities of
development of certain areas, it is worthwhile to use taxa of
geosystems, proposed in [26] – system, class, types, genera
and kind of geosystems:

1) System (rank) of geosystems (GS1) is an essential clas-
sification category that is marked out by peculiarities of
a power base – the water and heat balance. Systems that
are marked out by peculiarities of the microclimate deter-
mine the specificity of development of geoecological pro-
cesses like weathering, exogeodynamics of geological and
geomorphological processes, hydrogeodynamics and hydro-
geochemistry of groundwater, hydrological and soil-forming
processes and biological cycle; they determine the possibility
of climatogenic emergency situations.

2) Classes of geosystems (GS2) are determined by heat
and moisture redistribution under the action of lithogenous
bases – following this, plain and mountain classes are marked
out. Differences in lithogenous bases determine peculiarities
of landscape zonation – horizontal zonation on the plains and
the vertical in the mountains. The same features, though this
time more specific ones, are used to mark out subclasses of
geosystems. Subclasses of high, lowland and low-lying plains
are marked out in the plain geosystem class with regard to
the genesis and history of development. The landscape metric
diagnoses peculiarities of manifestations of the newest and
modern tectonics, exogeodynamic processes, localization of
areas with progressing and prevailing processes of denuda-
tion and accumulation.

3) Types of geosystems (GS3) are marked out by soil and
bioclimatic features and are essential classification categories
in terms of analysis of landscape development processes. The
geosystem type is a category that is singled out with account
to specificity of the development of soil and biological pro-
cesses: 1) of chemical elements and compounds getting onto
the parent rock with atmospheric precipitation, soil animals
and plants; 2) transformation, movement and accumulation

of chemical elements along the soil profile and formation of
genetic horizons; 3) chemical elements’ carry-over out of the
soil profile with atmospheric precipitation. Analysis of the
area at the level of geosystem types diagnoses such geoeco-
logical processes as transit or accumulation of technogenesis
products in soils, development of slope processes and erosion.

4)Genera of geosystems (GS4) are marked out on the basis
of morphosculptural forms of the relief and their compos-
ing sediments and are a result of the activity of exogeody-
namic processes (types of the erosion relief, forms of karst,
suffusion, etc.).

5) Kinds of geosystems (GS5) are determined by a factorial
and dynamical structure of the sites and vegetation on the
topological level and are an elementary territorial unit that
can be associated with the land cover class.

Following the geosystem approach, the state and properties
of each territorial unit are determined by 1) peculiarities of
its interaction with neighbor objects of the same hierarchi-
cal level; 2) characteristics of the host geospatial system
of a higher hierarchical level, and 3) interaction between
the objects of a lower hierarchical level that the area under
analysis consists of.

Specific features of every area are largely determined by
its location in the structure of the environment. Hierarchical
nature and self-dependence are typical features of geosys-
tems, that is why large volume of information on spatial
object’s belonging to a certain class can be potentially con-
tained in the data on the geosystem of a higher level of the
hierarchy that hosts the classified area and influences it.

III. METHODS OR METHODOLOGY
A. DATA PREPARATION
In view of this, it is possible to formulate a hypothesis that
it is possible to improve the precision of land classification,
based on a remote sensing database, if the classifying model
takes into account and analyzes not only the properties of a
certain area but also specific features of the geosystems that
it interacts with and, in particular, that it is a part of.

In order to test the hypothesis, it is necessary to prepare
several sets of data to train the models – basic (consisting
of expertly labeled samples of the areas, captured by the
satellite) and extended (augmented with the compared data,
containing information on neighbour and host geosystems).
After this, it is necessary to propose a deep model that
receives input data on the area and the associated geosystems,
analyzes this information andmakes a decision on classifying
this area. If the classification precision is improved and the
preparation process becomes slightly more expensive and
complicated, one may speak about reasonability of applica-
tion of the geosystem approach in the training of deep neural
network models.

The solution to the problem of classification of remote
sensing data through deep learning using the geosystem
approach should be based on the preliminary augmentation
of the data and the creation of a deep model that is capable
of analyzing these data efficiently. Under ‘‘classification’’

VOLUME 8, 2020 179519



S. A. Yamashkin et al.: Improving the Efficiency of Deep Learning Methods in Remote Sensing Data Analysis: Geosystem Approach

FIGURE 3. Geosystem model of the area. The following illustrations are given as an example: the layers L1, L2 and L3 are host geosystems of different
hierarchical levels in the visible spectrum, while the layer LS is a fragment of the landscape map of the area.

we shall basically mean the function f , carried out by the
modelM that has the experience E and allows us to associate
a local object, characterized by the set of parameters xLocal
and directly interconnected with the geosystems, determined
by the property vector xGeosystem, to a certain class mark y:

y = f
(〈
xLocal, xGeosystem

〉
,M ,E

)
(1)

If xGeosystem is an empty set, we may speak about classi-
fication without involvement of geosystem data. The set of
features of the local object xLocal will be formed on the basis
of remote sensing data and can be of different formats. For
example, the area can be classified on the basis of pixel analy-
sis (pixel-based classification) and through extraction of fea-
tures from different-size fragments of the area (patch-based
classification). Besides, data on the area are described by
different spatial, spectral and radiometric resolutions.

The set of features of a local object which can be packed in
different-dimension tensors by itself, determines the level L0
of the created geospatial model of the area (Fig. 3). According
to the geosystem approach, the host geosystem has a signifi-
cant effect on the area’s properties. Remote sensing data are
a helpful source of information on it. However, while rigid
requirements are set for the L0 data on the object xGeosystem
(they must be obtained strictly at a certain time and have high
resolution) and, as a consequence, they are rather expensive,
requirements to data of the levels starting from L1 can be
relaxed, ensuring simplification and reduction in cost of the
process of their receiving. Currently, remote sensing data of
medium and high spatial resolution are openly supplied by
various providers through the Internet, and some of them
provide handy application programming interfaces (API) [27]
for their quick receiving. The fact that these data have low

temporal resolution (we often unable to choose a certain data
of satellite imagery) explains their low cost.

At the same time, they still are a helpful source of informa-
tion on xGeosystem concerning the host geosystems of different
hierarchical levels.

The process of receiving data of the levels L1, L2, . . ., LN
is subject to potentially full automation:

with data on the geographical coordinates (latitude and
longitude) of the classified area, one is able to make a request
to the API of the spatial data provider for a fragment of the
territory’s satellite image with above coordinates, required
scale and resolution.

Therefore, we have the possibility of algorithmic augmen-
tation of the training data set by importing satellite imagery
fragments, describing the geosystems of a higher hierarchical
level and hosting the classified area.

Not only remote sensing data of a certain scale are able
to characterize geosystems of different hierarchical levels –
this function can be well assigned to synthetic digital maps
too. Land Cover, Land Use, electronic landscape and other
thematic maps traditionally being a final artifact of remote
sensing data analysis and classification, contain a significant
volume of information on the properties of the areas that are
part of it, and, as a consequence, they can be used for creating
input tensors of additional information in the set xGeosystem.
Despite the fact that these maps often have relatively low res-
olution, their high abstraction level allows us to speak of their
high potential for enrichment of information on classification
of a small-size region, located in the area of geosystems
that are discernible only on a smaller scale. Synthetic digital
maps form the level LS of a geospatial model of the area
become another source for augmentation of the auxiliary data
set xGeosystem.
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For classification on the basis of the data tuple〈
xLocal, xGeosystem

〉
, let us move to a design of a deep neural

system which receives input tensors of data of different
hierarchical levels about the classified area (L0) and its host
geosystems (L1, L2, . . . , LN, LS) and gives a hypothesis on
belonging of this area to a certain class.

B. METHODS FOR MODEL SEARCH
It is proposed to design a deep model by the following opti-
mizing algorithm:

1) to form a system of requirements to the model: to deter-
mine inputs and outputs, performance and precision rating;

2) to determine basic architecture of the model on the basis
of the unit approach that describes general organization of the
classifier;

3) to decompose top-level units into linear or branching
structures;

4) to manage the problem of the classification precision
dilution and overfitting through heuristic configuration of
deep model hyperparameters and addition of normalization,
subsampling and regularizing layers;

5) to optimize the model by the principle ‘‘small is better
than big’’ – the process of training large models is computing
resource intensive and, which is even more important, deep
neural networks are inclined to overfitting;

6) to train the model with testing different precision mea-
sures, optimization algorithms, loss functions and the number
of training epochs;

7) to analyze the model training process through calcula-
tion of the dependence of the expected value and standard
deviation of classification precision on the training epoch on
the basis of a series of experiments;

8) to assess the obtained result quality through building
error matrices and estimation of accuracy and fallibility met-
rics upon results of the model functioning;

9) to draw a conclusion on correspondence of the obtained
model to objective and subjective requirements.

The proposed chain of actions results in obtaining a model
sample with specific properties, and if they aremet, the search
can be completed. If the parameters of the designed and
trained model do not meet the pre-set requirements, it is nec-
essary to roll a few steps back along the deep model creation
path (down to the first stage if the formulated requirements
turned out to be unachievable) and re-search in a heuristically
adjusted direction.

As a result, the process of seeking an efficient classification
model may be formalized as a tree, the root node of which
precedes the first stage of the search algorithm and corre-
sponds to the task of study problem statement. The tree nodes
determine a variant of model statefulness at the i-th stage of
the efficient model search algorithm. Terminal nodes (leaves)
of the tree correspond to a particular solution of the task
of searching for an optimal model, ready for using a deep
classifier.

Obtained particular solutions can be compared with split-
testing, based on comparison of objective numerical metrics

of model efficiency with subjective expert assessment of
classification quality.

C. DEEP MODEL FOR GEOSYSTEM ANALYSIS OF
SPATIAL DATA
From the black box perspective, a deep classification model,
based on application of the geosystem approach (GeoSys-
temNet), is a functional element that receives input satellite
images of the area (L0) and its host geosystems (Li), as well as
synthetic maps (LS). The number of inputs may vary depend-
ing on the number of levels of the area’s geosystemmodel, but
one should be particularly careful with their growth because it
will inevitably lead to the necessity for increasing the model
capacity. The model has one output in the form of a vector,
each i-th element of which determines predicted probabil-
ity of area’s belonging to the i-th class. A final hypothesis
on area’s belonging to a certain class is put forward on a
the-winner-takes-all principle, when the object belongs to a
class for which the model predicts the maximum probability.
Figure 4 illustrates the decomposition of the describedmodel.

FIGURE 4. General architecture of GeoSystemNet model with 3 inputs.

Unit Lx, that extracts hierarchical features Fxi of different
levels i = 1,N from the source image Lx is introduced to
initial extraction of features on the basis of the data of each
input Lx ∈ 〈L0, . . . ,Li, . . . ,Ls〉. Unit Lx is decomposed into
N data extraction units, each one having an external output.
The structure of each unit is a chain of layers. The first
layer, performing the operation of depthwise separable 2D
convolution [28], allows the extraction of features from the
source image and, in contrast to the application of a traditional
convolution layer, facilitates us to make a deep model more
compact and, consequently, overfitting-tolerant.

An operation of two-dimensional convolution with the
kernel W of the size K , as the basis of the layer functioning,
is linear transformation where each value yi,j of the output
matrix Y is calculated on the basis of the values x of the initial
matrix X according to the following equation:

yi,j = W ∗ X =
K−1∑
a=0

K−1∑
b=0

Wa,bxi+a,j+b (2)

The convolution operation has a number of important prop-
erties: it preserves the input structure and geometry and is
characterized by sparsity and a multiple use of the same
weight. The operation of depthwise separable convolutions
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works not only with spatial measuring but also with depth
measuring, for example, with image channels, and, in contrast
to the classical convolution, implies the use of individual
convolution kernels, on the basis of which two convolutions
are sequentially applied to the initial tensor – depthwise and
pointwise.

Noteworthy is that when solving the test tasks on classifica-
tion described below, we carried out a split-testing of models
with classical convolution layers and with depthwise separa-
ble 2D convolution layers, which confirmed the efficiency of
the second approach. The batch normalization layer [29], that
allows us to achieve the model regularization and stability,
was the next layer of the feature extraction unit, the efficiency
of which had been experimentally tested.

A rectified linear unit, which carries out transformation of
the type x = max (0, x), was chosen to perform the activa-
tion operation. A subsampling layer with external outputs,
performing the application of the operation of max pooling
for 2D spatial data [30] to reduce the size of the obtained
representations, completes the feature extraction unit.

The subsampling operation, applied to the elements xi.j
of the initial matrix X , leads to obtaining the matrix Y , for
which the value of each element yi,j under the subsampling
window size d is calculated according to the equation (3).
Experiments showed that application of the operation on
reaching the maximum yielded the best result.

yi,j = max
0≤a<d
0≤b<d

(xi+a,j+b) (3)

Also of relevance is that we propose to choose the num-
ber of output filters in the convolution and the convolution
kernel size according to the principle of minimization of
these values to keep the classification adequately precise. It is
recommended to increase the number of output filters for the
depthwise separable 2D convolution with each new step of
extracting features of the next level. Figure 5 presents a block
diagram of Unit Lx, allowing the extraction of hierarchical
features of two levels from the image Lx .

FIGURE 5. Module Unit Lx of extracting hierarchical features of two
levels.

The next component unit of GeoSystemNet model is a
feature merging module, presented in Figure 6. It receives
input features of the level N, extracted from the classified
area’s image and geosystems’ images associated with it. The
merging modules of the second and subsequent levels also

FIGURE 6. Feature merging module of level Merge HN.

receive the output data of the previous merging module. The
overall number of feature merging modules equals to the
number of levels of hierarchical feature extraction in sections
of Unit Lx.
All input data are concatenated in a single tensor and

processed by a feature extraction pipeline that has a structure
similar to the one used in the module Unit Lx. It consists
of such layers as depthwise separable 2D convolution, batch
normalization, activation and max pooling for 2D spatial
data, and it is proposed to opt for a larger number of output
filters in the convolution for the unit Merge HN than the
filter dimension in the process of feature extraction at the
respective level N in the module Unit Lx.

The feature merging module output is transformed into a
vector through the flatten operation and is input to a multi-
layer perceptron (Figure 7).

FIGURE 7. Module of geosystem classification based on hierarchical
features.

The number of tightly concatenated layers of themultilayer
perceptron and their power are chosen following the principle
of minimization of these parameters to maintain sufficient
precision of the classification. Besides, in order to solve the
problem of overfitting, we recommend to apply operations of
batch normalization and dropout to the outputs of a tightly
concatenated layer to activate the output of input and hidden
layers; for the output layer, it was a sigmoid unit for the
binary classification and a softmax unit for the multi-class
classification.

When training GeoSystemNet classifier, the root mean
square propagation algorithm (RMSProp), based on the
method of stochastic gradient descent, was used as an

179522 VOLUME 8, 2020



S. A. Yamashkin et al.: Improving the Efficiency of Deep Learning Methods in Remote Sensing Data Analysis: Geosystem Approach

optimizer, while the cross entropy served as a loss function.
Peculiarities of a specific classification task have an impact
on the fine tuning of GeoSystemNet model.

IV. EXPERIMENTS AND RESULTS
A. QUALITY ASSESSMENT ON EuroSAT DATASET
Availability of spatial data on the host geosystem has
paramount importance. We have developed an algorithm for
training dataset augmentation that allows us to download
different-scale images of the host area from MapBox API,
using coordinates of the element from EuroSAT dataset.
Therefore, the basic dataset (level L0) was extended with
additional levels of informationwithout substantial costs. The
final dataset (EuroSAT extended) got the following structure:

- Level L0. Labeled data of EuroSAT dataset (64 × 64
images in the visible spectral range, natural colours). Training
and test samples are splited at the ratio of 10:90 to simulate a
data scarcity situation.

- Levels L1, L2, L3. Fragments of open satellite images
in the visible spectral range, obtained automatically from
MapBox online map provider through the application of pro-
gramming interface (API) in the zoom level of 8, 12 and
14 respectively.

The initial dataset augmentation led to each classified
section’s being represented by four different-scale images of
the area.

The experiment was conducted on the equipment with the
following key characteristics: CPU – Skylake X (14-Core
3.30 GHz Intel Core i9-9940X), RAM – (3000 MHz DDR4
32 GB), GPU – Nvidia Titan RTX based on Turing architec-
ture (576 tensor cores, 24 GB GDDR6).

A software code, implementing GeoSystemNet model and
a possibility to conduct experiments and comparative analy-
sis, was written in Python with involvement of TensorFlow
framework and Keras library [31].

Themodule of extraction of hierarchical features Unit Lx is
implemented at two levels; experiments prove that the values
of the number of output filters in convolutions for these levels
are equal to 64 and 128 (decrement of these values resulted
in lower precision, while their increment led to instability of
the training process at the early epochs and to the increase of
its resource intensity). The convolution filters are square with
the side size of 3, pooling window – 2.

The first-level feature merging module Merge HN has a
layer performing the operation of depthwise separable 2D
convolution with the number of output filters equal to 128,
of the second level – 256. The convolution filters are square
with the side size of 3.

The multi-layer perceptron, meant for geosystem classifi-
cation on the basis of hierarchical features, have layers with
the capacity of 128, 64 and 10 elements. The dropout layer
coefficient was adjusted to be equal to 0.4. The deep model
was trained during 50 epochs.

Comparison values of the precision of the pro-
posed model GeoSystemNet and modern deep learning

models (GoogleNet, DenseNet121, InceptionV3, ResNet50,
ResNet101, VGG16) are given in Table 1.

The model, proposed in the article, demonstrates the best
result with extraction of the testing data from EuroSAT
dataset at the ratio of 40% and lower, and the relative
efficiency increases with a decrease in the training sample
up to 10% (86.23% against 79.77% in the second result
(ResNet101)). As long as the training data grow in their size,
GeoSystemNet model becomes inferior to other deep models
ResNet-50, but this gap falls within the range of 3%.

It should be noted that GeoSystemNet model obtained such
results owing to the analysis of EuroSAT dataset, extended
after the geosystem approach (while other models were
trained with and analyzed EuroSAT initial dataset). The dif-
ference in the experiment conditions was leveled with the
low cost and quickness of a fully automated process of the
training set augmentation, as well as with lower capacity of
GeoSystemNet model – 1.3 million units against 138 million
in case of VGG16. Therefore, the advantages in deep model
training under data scarcity conditions were gained owing
to 1) low-cost automated augmentation of the dataset on the
basis of the geosystem approach and 2) creation of an efficient
deep model for its analysis.

Analysis of the GeoSystemNet training process is of inter-
est. Since neural network training is a random process,
a series of 10 experiments was conducted, resulted in con-
structing dependence of the expectation E of the testing
data classification precision on training epochs. Results of
the experiment under training data scarcity (training - test
samples’ split at the ratio of 10:90) are presented in Figure 8.

FIGURE 8. Visualization of the expectation E of the classification accuracy
of the testing dataset dependence (90% of the total set) on the number
of training epochs.

GeoSystemNet model demonstrates low precision of the
extended set classification at early stages of the training
process, which starts growing almost from the zero value.
A light two-layer CNN and deep models reach the precision
ofmore than 40% from the first epoch. Nevertheless, GeoSys-
temNet outstrips other models after the 10th training epoch,
reaching the desired precision of 86%. Of significance is a
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TABLE 2. Classification metrics (%) of different classification models trained in condition of data scarcity.

low standard deviation from the dependence mathematical
expectation, typical for GeoSystemNet when being trained
with a small dataset. This points to a higher stability of the
deep model training process and high capability of the correct
generalization of information on the analyzed features.

Informative relative metrics were calculated on the basis of
the absolute measures of the classification process: TPclass –
number of hits (correctly detected class objects), FPclass –
Type I error or false positive (it shows how many times the
objects were incorrectly classified as belonging to the class),
FN class – Type II error or miss (it shows how many times the
class objects were classified incorrectly).

They served the basis for determining such relative metrics
as precision (4), recall (5), F1 Score (F1class) (6) and Fbeta
Score (Fβclass) (7) for each class of the land surface according
to the following equations.

precisionclass =
TPclass

TPclass + FPclass
(4)

recallclass =
TPclass

TPclass + FN class
(5)

F1class =
precisionclass · recallclass
precisionclass + recallclass

(6)

Fβclass = (1+ β2)
precisionclass · recallclass

β2 · precisionclass + recallclass
(7)

FIGURE 9. Error matrix for GeoSystemNet, trained under data scarcity
conditions (10:90 training-test splitting range) on EuroSAT dataset,
extended according to the geosystem approach.

Result values of the metrics are given in Table 2.
It is seen that GeoSystemNet, trained in conditions of

source data scarcity, demonstrated a far better result in many
cases, up to the rate increase by more than 30%. Note the
model weaknesses too – lower efficiency indices, fixed in
extracting forest and human-induced geosystems (it ranks
below the leader by 5% at most).

Figure 9 presents error matrix for GeoSystemNet models
within the conducted experiment in conditions of training
dataset scarcity. Values of the main diagonal elements show
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that the value of metric ‘‘true positive’’ for GeoSystemNet
model is relatively low only for Industrial and Water classes.

It is connected with the fact that consideration of images
of the host geosystems during the classification process
inevitably leads to the increase in the analyzed data, and
higher capacity of the model may be required to analyze these
data.

Besides, in some cases additional images can misinform
the deep model: in terms of an algorithm, it is certainly easier
to classify one uniform image of the water surface than an
image, supplemented by several fragments of a smaller scale
that include coastal areas.

Therefore, the augmentation of EuroSAT dataset after the
geosystem approach and the development of GeoSystemNet
model allowed to raise the classification precision in condi-
tions of training data scarcity (training-test samples splitting
at the ratio from 10:90 to 40:60) and to demonstrate results
that exceed precision values of deep models in the EuroSAT
dataset classification.

FIGURE 10. A scatter plot visualizing the accuracy and training time
characteristics of compared models under conditions of different training
data sizes.

Scatter diagrams (Figure 10) allow a comparative evalu-
ation of the efficiency of the considered models. The larger
the radius of each point, the greater the number of units of the
corresponding model. The first diagram describes the results
of the experiment in the conditions of training models on
10% of the labeled data, the second - on 90%. It can be

seen that under the conditions of a scarcity of training data,
the GeoSystemNet model showed the maximum accuracy,
while the time spent on its training was less than that of other
models (with the exception of Shallow CNN, which showed a
relatively low accuracy). In conditions of a sufficient amount
of labeled data, the GeoSystemNet model is inferior to the
known deep models within 3% accuracy, however, the model
learns faster and is characterized by fewer units. The increase
in the speed of training and a lesser size with a slight loss
of data classification accuracy is an advantage that matters
because of the high cost of GPUs.

Experiments also showed that application of the geosystem
approach according to the method, described in the article,
is not a panacea for the problem of improving remote sensing
data classification efficiency in conditions of data scarcity.
Each specific task of geospatial data analysis requires an indi-
vidual approach to the choice of a data model and organiza-
tion of the process for its classifier. One of the advantages of
GeoSystemNet model is a large number of freedom degrees,
ensuring flexible configuration when dealing with tasks at
hand.

Variable parameters of the model include 1) number of
model inputs, 2) number of levels of feature extraction by
Unit Lx, 3) capacity and number of feature merging modules
Merge HN, 4) hyperparameters of the multi-layer perceptron
that makes a result decision. Finally, the process of selecting
sources of information on the host geosystems has an infinite
number of variants: these can be both remote sensing data
of different scale and resolution and fragments of electronic
maps of different types. It is necessary to be fully aware of the
responsibility in selecting data on host geosystems – a wrong
decision will lead to a situation when an extended training set
will rather misinform than raise the GeoSystemNet training
model efficiency and even lower metrics of model efficiency
and classification quality in general.

B. PRACTICAL CASE: LANDSLIDE DETECTION
The next stage in testing the proposed approach was imple-
mented when dealing with detection of landslides on the
remote sensing database.

Test area ‘‘Mordovia’’, located within the coordinates
of 42.16’’E, 46.78’’E from westward and eastward and
53.62’’N, 55.21’’N from southward and northward, was
taken as a basis. The area is located in subboreal semi-
humid (forest-steppe) geosystems of the bedded-layer Volga
Upland. The forest-steppe geosystems contrastively extend
into the forest province of aquaglacial plains of the layered
Oka-Don Lowlands.

The relevance of assessment of geological environment
stability and exogeodynamic process forecasting in the cho-
sen area is determined by an increasing number of complex
natural and man-made emergencies. The exogeodynamic
process forecasting (EPF) rests on the assumption that the
future natural and man-made emergencies highly likely take
place under the same conditions they did in the past. That is
why assessment of the spatial correlation between factors of

VOLUME 8, 2020 179525



S. A. Yamashkin et al.: Improving the Efficiency of Deep Learning Methods in Remote Sensing Data Analysis: Geosystem Approach

FIGURE 11. Landscape map, plotted on the basis of Mordovia GIS.

different nature and the previous episodes of occurrence plays
an important role.

The factors that reflect EPF development include
morphometrical (profile slope, altitude or curvature) and
morphological features of the relief, tectonics, geology and
hydrogeology, climate and hydrologic behaviour of surface
water, type of soil and vegetation cover, land use, geotechni-
cal systems and density of these objects.

Multi-zone satellite images, digital models of the relief
and synthetic landscape maps constituted the main sources
of information for analysis.

The geosystem model of data is as follows:
- Level L0. Data, obtained from Sentinel-2 satellite and

presented as a 32 × 32 px fragment in three spectral
channels – 2 (blue), 4 (red), 12 (short-wave infrared range).
Spring (April-May) images of the test area were taken as a
basis since they demonstrate landslide process manifestation
in the most pronounced way.

- Level L1. Fragments of satellite images in the visual
spectral range with the size of 32 × 32 px, algorithmically
obtained through MapBox API in the 14th scale of tile
representation 8.

- Level LSL . Fragments of a digital landscape map of
Mordovia GIS, corresponding to square areas with the side
of 1 km and discretized to 32× 32 px screens.

- Level LSE . Fragments of a normalized altitude map,
plotted on the basis of Google Elevation API and having the
shape of a 32× 32 px square with the resolution of 10 meters
per pixel.

FIGURE 12. ROC curve of the used algorithms of extracting areas with
development of landslide processes.

Figure 11 presents a digital landscape map, plotted on the
basis of Mordovia GIS. The geosystems that are presented on
themap and extracted in the process of landscapemapping are
described by common origin and development, uniformity of
interaction between superficial deposits, relief forms, water
and geochemical regimes and, as a consequence, by sim-
ilar morphological structures of the soil profile, water-air
and thermal conditions of soils, content and reserves of
humus and nutrient substances. The main mapping objects
are tracts and geographical localities, united in landscapes
and systematized in typological complexes – classes, groups,
types, genera and kinds.
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FIGURE 13. Landslide map, plotted upon results of the geospatial data analysis.

24 landscapes are marked out on the Mordovia land-
scape map – their structure is formed by 19 types of
localities, divided into 43 genera of tracts. Landscapes of
broadleaved forests and forest-steppes of secondary morainic
and erosion-denudation plains are characterized by a slope
change of localities and tracts from forest cameo and
water-dividing areas and areas near the water-divide to
meadow-steppe geocomplexes of lower (near-valley) slope
parts and river valleys. On the aquaglacial plains, a cell spatial
structure of mixed-wood landscapes is prevalent due to poor
development of slope processes.

Machine analysis was to solve a binary classification task
of finding out if the area is exposed to landslides. Source
data of the level L0 were expertly labeled on the basis
of materials of the satellite imagery Sentinel-2, and then
they were algorithmically extended by data of the levels
L1, LSL ,LSE .

Figure 12 presents ROC curves, that reflect correla-
tion between sensitivity and specificity of the classification
algorithm under variation of the decision rule threshold,
for GeoSystemNet, trained on the geosystem data model
described above, and for ResNet50, InceptionV3 and Shallow
CNN, trained on Sentinel-2 data.

Application of the geosystem approach to the task of
detecting lands that are characterized by development of
landslide processes with deep learning technologies allowed
to raise the classification precision by 5%.

Classification results allow to plot a map of landslide
process development in the Republic of Mordovia (Fig. 13).
A total of 1,370 landslides were detected. The following
types were singled out by sets of features on the basis of
expert analysis: block slides, debris flows, topples, viscoplas-
tic landslides, flow slide landslides and slides.

Mapping results showed that highland (higher than 245 m)
cameo and water-dividing masses of an axial region of the
Volga Upland are exposed to landslide formation least of all –
there, landslides are few and far between.

Most of the landslide geosystems are located within the
altitude interval from 120 to 250 metres with the maximum
concentration on the absolute elevation of 141 – 210 m.
It should be noted that distribution of springs has a similar
regularity. Highland areas (more than 250 m) have low spring
run-off.

The most evident morphostructural elements on the
multi-zone satellite images are lineaments. Geodiagnostics
of EPF development considers them as areas with high frac-
ture of rock formations and collectors of groundwater flow.
In order to identify regularities of natural differentiation,
a map of lineament density is plotted upon results of their
interpretation, followed by a comparison with a structural
and tectonic map, plotted on the basis of geophysical data
interpretation.

For the training area under study, significant activity of
EPF is typical for regions with prevailing orthogonal systems

VOLUME 8, 2020 179527



S. A. Yamashkin et al.: Improving the Efficiency of Deep Learning Methods in Remote Sensing Data Analysis: Geosystem Approach

of lineaments. Prevalence of short dashes on a satellite image
may indicate that this region has a high probability of active
development of the processes. It is important to mark out
some common regularities of landslide propagation – con-
finedness to the slopes of southwest, southern and southeast
expositions and stem slopes of river valleys that form dis-
charge areas of interlayer water.

Groups of geosystems represent the elements of groundwa-
ter filtration areas – regions of intake, transit and discharge.
In the structure of natural differentiation, it is expressed in
formation of geosystems with different degrees of moisture.

Regularities of landscape cover differentiation at the level
of geosystem genera are determined by morphosculptural
forms of the relief and the deposits they are formed of.

V. CONCLUSION
The findings, presented in the article, allow us to draw the
following conclusions:

1) The main importance of the approach to geospatial data
analysis by means of deep learning, presented in the paper,
rests on in the use of the geosystem approach for profitable
augmentation of the training dataset and development of
GeoSystemNet deep model that is capable of efficient anal-
ysis of these data. The presented approach gains the main
advantages in conditions of geospatial training data scarcity.
It also allows to approximate to the precision of deeper mod-
els by means of a certain-capacity model through analysis of
additional automatically obtained information.

2) One of the advantages of the presented GeoSystemNet
model rests on a large number of freedom degrees, admit-
ting its flexible configuration contingent upon the task to be
solved. Variable parameters of the model include the number
of model inputs, the number of levels of feature extraction by
Unit Lx, the capacity and number of feature merging modules
Merge HN and hyperparameters of the multi-layer perceptron
that makes a resulting decision.

3) Application of GeoSystemNet model for classification
of EuroSAT, algorithmically augmented within the geosys-
tem approach, allowed to raise the classification precision in
conditions of training data scarcity (splitting the training set
into training and test ones at the ratio from 10:90 to 40:60)
by 9%, and to show the classification precision with larger
volume of training data (by 3%) which is slightly inferior in
comparison with different deep models.

4) Synthesis of the geosystem approach with deep learning
capabilities enables to optimize the process of online diagnos-
tics of exogeodynamic process development, establishment
of landscape differentiation regularities and development of
exogeodynamic processes. Detecting lands that are charac-
terized by development of landslide processes in the test
area ‘‘Mordovia’’ showed that in the area of interaction of
forest-steppe geosystems of the bedded-layer Volga Upland
and forest landscapes of the layered Oka-Don Lowlands,
the main regularities of the development of exogeodynamic
processes are observed in the area of meadow-steppe and
forest landscapes. Application of the presented approach

allowed to raise the precision of extracting landslides by
5% in comparison with the classical approach of using deep
models for remote sensing data analysis.

5) Application of the geosystem approach following the
methods, presented in the article, to the task of improving
efficiency of remote sensing data classification in conditions
of data scarcity requires an individual approach to model
configuration and organization of its training. The process
of selecting sources of information on host geosystems has a
large number of solutions – these can be both remote sensing
data of different scale and resolution and fragments of elec-
tronic maps of different type. It is necessary to fully realize
the responsibility when selecting data on host geosystems –
a wrong decision will lead to a situation when an extended
training set will rather misinform than raise GeoSystemNet
training model efficiency and even lower metrics of model
efficiency and classification quality in general.
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