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ABSTRACT A deep learning approach is proposed for performing tissue-type classification of tomographic
microwave and ultrasound property images of the breast. The approach is based on a convolutional neural
network (CNN) utilizing the U-net architecture that also quantifies the uncertainty in the classification of
each pixel. Quantitative tomographic reconstructions of dielectric properties (complex-valued permittivity),
ultrasonic properties (compressibility and attenuation), as well as their combination, with the corresponding
actual tissue-type classification constitute the training set. The CNN learns to map the quantitative property
reconstructions to a single tissue-type image. The level of confidence in predicting a tissue-type at each
pixel is determined. This uncertainty quantification is diagnostically critical for biomedical applications,
especially when attempting to distinguish between cancerous and healthy tissues. The Gauss-Newton
Inversion algorithm is used for the quantitative reconstruction of both dielectric and ultrasonic properties.
Electromagnetic and ultrasound scattered-field data is obtained from MRI-derived numerical breast phan-
toms. Several numerical breast phantoms types, from fatty to dense, are considered. The proposed classi-
fication and uncertainty quantification approach is shown to outperform a previously studied tissue-type
classification method based on a Bayesian approach.

INDEX TERMS Tissue classification, uncertainty quantification, deep learning method, convolutional
neural network, microwave tomography, ultrasound tomography, multi-physics imaging, inverse scattering,
breast imaging.

I. INTRODUCTION
Microwave tomography (MWT) and ultrasound tomogra-
phy (UT) are imagingmodalities aiming to create quantitative
or qualitative images of the dielectric or ultrasonic prop-
erties of an object-of-interest (OI) [1]–[19]. These images
can be used for different applications such as industrial
non-destructive testing or biomedical imaging. Quantitative
dielectric properties of interest are the real and imaginary
parts of the relative complex-valued permittivity related to
the dielectric constant and the conductivity of the OI. Typical
quantitative ultrasonic properties that can be recovered are the
compressibility, attenuation, density and sound speed.
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Different reconstruction algorithms can be utilized to cre-
ate quantitative dielectric and ultrasonic properties of the OI
such as ray-basedmethods, the Born-iterativemethod, as well
as the Contrast-Source Inversion (CSI) and Gauss-Newton
Inversion (GNI) algorithms. [8], [9], [19]–[24]. In this study,
GNI is used as the full-wave reconstruction algorithm for both
MWT and UT.

Having quantitative images of different physical properties
of an OI can be beneficial, as one tissue-type may be
well distinguished using one property whereas other tis-
sues may be better distinguished in other properties [25].
However, it is more convenient for end-users (medical doc-
tors for biomedical imaging applications) to be provided
with a single image having each pixel interpreted as being
a single tissue (with a certainty factor included). Such an
image is called a tissue-type image (TTI) that is created
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using a classification algorithm’s ‘‘interpretation’’ of avail-
able property images. The quantification of the classification
algorithm’s uncertainty in choosing a tissue for each pixel
is also very crucial for medical doctors because sometimes
artifacts may arise in some or all of the property images that
make the assignment of a tissue difficult. If the confidence is
high, it means that the medical doctors can have more trust
that the chosen tissue-type for that pixel is correct. In the
low confidence case, they may choose to implement other
diagnostic methods.

The concept of creating composite tissue type images
along with the uncertainty quantification (probability image)
for ultrasound and microwave imaging was presented for
the first time in [25]. Bayesian decision theory was used in
that work to classify different tissues as well as to create
an associated probability image that quantified the uncer-
tainty. In that method, it is assumed that property values
for each tissue are available and that the probability den-
sity functions or multivariate probability density function,
describing the range of property values for each tissue, can
be estimated [25]. The experimental validation of this method
for both ultrasound and microwave imaging for a tissue
mimicking phantom and a human forearm was presented
in [1].

Deep learning methods have recently been investigated
for biomedical imaging and inverse problems [26]–[37].
For example, a deep learning method was used to improve
the quantitative reconstruction of microwave imaging
in [27], [32]. The use of a Convolutional Neural
Network (CNN) to learn the complex mapping from Mag-
netic Resonance (MR) images to dielectric images which is
used as prior information for the microwave inverse scat-
tering algorithms was considered in [28]. The segmentation
of brain tumors based on contrast enhanced T1-weighted
magnetic resonance imaging (MRI) was reported in [33].
A deep learning method for the classification of benign and
malignant lung nodules on chest CT images is presented
in [34]. In [35], a deep neural network architecture is utilized
to map the image obtained from the low-resolution back-
propagation method to a higher resolution result in the elec-
tromagnetic inverse scattering problem. Solving a full-wave
inverse scattering problems using a CNN technique under
different scenarios is presented in [29]. For example, complex
scattered-field data are directly used as the input of a CNN to
create dielectric properties of the OI in one of the scenarios
proposed in [29].

Convolutional Neural Networks were typically designed
for classification tasks [38], [39]. In this case, the input of
the CNN is an image and the output is a label for the class
member. In some applications such as image segmentation,
it is required that the typical architecture of CNNs is changed
in such a way that the output of CNN is also an image
instead of a label for the classmember. One of thewell-known
architectures proposed to create images as the output of CNN
(as opposed to labels) is U-net [26]. This architecture was
originally utilized for the segmentation of neuronal structures

in electron microscopic recordings and cell segmentation in
light microscopic images [26].

In this paper, a CNN with the U-net architecture is uti-
lized to create a TTI along with the uncertainty quantifica-
tion. The U-net architecture is modified for this application
and it is trained based on a set of quantitative reconstruc-
tions of the dielectric and/or ultrasonic properties of several
numerical phantoms and the true TTI corresponding to each
of the reconstructions. Several numerical MRI-based breast
phantoms are used in this work for creating the training
and testing data sets [4], [40], [41]. The structure of this
paper is as follows. In Section II, the training and testing
date-sets for the U-net are described. The microwave and
ultrasound scattered-field data-acquisition set-ups, problem
formulations, and non-linear inversion algorithms are briefly
described in Subsections II-A and II-B. The particular U-net
architecture utilized for creating the uncertainty quantifica-
tion image and TTI is presented in Section III. Results of
testing the U-net for tissue classification and uncertainty
quantification using MRI-based numerical breast phantoms
are presented and discussed in Section IV. Finally, conclu-
sions are presented in Section V.

II. TRAINING AND TESTING DATA SETS
To create training and testing data sets for our deep learning
network, we start with eight tumorless MRI-derived numer-
ical breast models that are segmented into four regions:
the background, skin, fat, and fibroglandular regions. Five
of the eight models are obtained from 2D tomographic
MRI intensity images whereas the remaining three models
are obtained from cross-sections of 3DMRI intensity images.
Fifty different cross-sections are used from each of the three
3Dmodels. Thesemodels represent all three of themain types
of breast (dense, heterogeneously-dense and fatty). Random-
ized tumors of different sizes and at different locations are
introduced into these models as follows. For each of the
2D-MRI derived models, we generate 50 cases containing
one to three tumors within the fibroglandular region using a
procedure similar to what was presented in [27]. Thus, these
250 cases have five different base-models (the top four and
the left-most model on the second row of Fig 1). In each of
the 50 cross-sections of each of the three 3D MRI intensity
models, we introduce one set of tumors (a set being one to
three tumors). This gives us 150 cases obtained from three
3D MRI intensity models and 250 cases from five 2D MRI
intensity models, for a total 400 numerical breast phantoms
containing one to three randomized tumors. We refer to our
data-set as containing 50 tumor cases from 8 differentmodels,
although 150 of the cases obtained from the 3D MRI breast
models have different fibroglandular regions (coming from
different cross-sections of the 3D model).

The 400 numerical breast phantoms are segmented into
the background region plus four tissue-type regions: skin,
fat, fibroglandular, and tumor (as shown in Fig 1). These
400 MRI tomographic intensity phantoms are then filled
with the dielectric and ultrasonic properties of the breast.
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FIGURE 1. The tissue type image of eight models of numerical MRI based breast phantoms utilized for training and testing of the deep learning network.

For example, the true TTI and images with the corresponding
dielectric properties (i.e., real and imaginary parts of the
relative complex-valued permittivity denoted by εr and εi)
and ultrasonic properties (i.e., compressibility and attenua-
tion denoted by κ and α) for five numerical breast phantoms
are illustrated in Fig 3. It should be noted that none of the fifty
phantoms for a particular model have been used for training
theU-net when one of the phantoms of thatmodel is chosen as
a test-case for the deep learning network. This corresponds to
an eight-fold cross-validation procedure (i.e., one of the eight
groups of fifty is removed from the training set when a test
case from that group is used for testing).

A. MWT AND UT SCATTERED FIELD FORMULATION
In non-linear inversion algorithms, the unknown contrasts
related to the dielectric and ultrasonic properties can be found
by iteratively minimizing the discrepancy between the mea-
sured and simulated scattered electric and pressure fields.
The simulated scattered field is defined as the subtraction
of the incident field (i.e., the field in the absence of the OI)
from total field (i.e., the field in the presence of the OI). The
simulated scattered pressure for the inhomogeneous com-
pressibility and attenuation can be found as [9], [19], [21]

pscat (r) = k20

∫
D
g(r, r′)χc1 (r

′)p(r′)dr′ (1)

where k0 and g(r, r′) are the background wavenumber and
Green’s function of the background medium. Also, χc1 (r) is
the complex contrast of compressibility defined as

χc1 (r) ,
κ(r)− κb

κb
− j

2δα(r)
k0

(2)

where δα(r) is defined as the subtraction of the back-
ground attenuation from the attenuation at position r. Also,
κ(r) and κb are the compressibility at position r and the

compressibility of the background medium. The variation of
density is neglected in the above scattered pressure equation.

The simulated scattered electric field for the inhomoge-
neous permittivity and conductivity is obtained as [42]

Escat (r) = k20

∫
D
g(r, r′)χ (r′)E(r′)dr′ (3)

where χ (r) is the complex permittivity contrast defined as

χ (r) ,
εr (r)− εb

εb
(4)

and εr (r) and εb are the complex permittivity at position r and
the background complex permittivity.

B. RECONSTRUCTION SETUP FOR MWT AND UT
The Gauss-Newton inversion is used as the non-linear inver-
sion algorithm to reconstruct both dielectric and ultrasonic
properties of the OI [20]. It should be noted that the vari-
ation of density considered in [5], [21] is neglected for the
UT reconstructions. The scattered-field data used to create
ultrasonic and dielectric properties of the OI for all examples
used in training the CNN is contaminated with five percent
noise [43]. The OI is surrounded by 30 and 64 transceivers for
MWT and UT, respectively. These transceivers are positioned
in a circle having a radius of 12 [cm]. It is assumed that the
relative complex permittivity of the background medium for
MWT is 23.3− j18.46 [44] and water is used as a background
medium for UT. Three frequencies of operation are simul-
taneously used for the reconstruction of object properties.
These frequencies for MWT are f = [1, 1.5, 2] GHz and
for UT are f = [100, 130, 160] kHz.

III. DEEP LEARNING FOR TISSUE CLASSIFICATION AND
UNCERTAINTY QUANTIFICATION
The CNN U-net architecture originally proposed in [26] for
segmentation of neuronal structures in electron microscopic
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FIGURE 2. Flowchart of a deep learning network for tissue-type classification and uncertainty quantification. The input is quantitative reconstructions of
dielectric and/or ultrasonic properties and the output for testing the U-net are the tissue-type and uncertainty quantification images. The training mask
for this phantom is also shown as the output of U-net for training. The training mask has five channels corresponding to the background, skin, fat,
glandular and tumor masks. The number of channels are shown on top of each box.

recordings was modified for our application. The flow-chart
of the particular U-net utilized is shown in Fig 2. As can be
seen in this flowchart, the left (input) side of the U-net corre-
sponds to repeated convolutional and downsampling layers.
It should be noted that the number of feature channels is
doubled at each downsampling step. The right (output) side of
the U-net corresponds to the deconvolution and upsampling
layers. The number of feature channels is reduced by half at
each step of upsampling. For the final layer, a 1 × 1 convo-
lution (with ‘‘softmax’’ activation) is used to map 32 feature
channels to 5 channels corresponding to the number of chosen
regions in each breast. As previously described, we have
chosen five regions, namely the background plus four tissue-
types: skin, fat, fibroglandular, and tumor.

Training of our deep learning networks was achieved using
both MWT and/or UT images obtained from the previously
described MRI-derived data-set. That is, the input to the
CNN are the images of the quantitative reconstructions of the
dielectric and/or ultrasonic properties obtained using GNI on
the synthetic scattered-field data for each of the numerical
breast phantoms. The U-net maps these input images to an
output imagewhich is then compared to the true tissue-type of
the numerical breast phantom. The categorical cross-entropy
error is used as the loss-function for training. Each of the
background and four tissue-types predicted by the U-net
are represented by a binary mask output by one of the five
channels. For example in the tumor mask, the value of pixels

corresponding to tumor regions is set to be one (i.e., the
probability of being a tumor on that pixels is one) whereas the
values of other pixels are set to be zero (i.e., zero probability
of being a tumor). Example input and output images for one
of the phantoms are shown in Fig 2 (the output of training is
denoted by the ‘‘training mask’’). Each U-net is trained based
on the input of dielectric properties, ultrasonic properties,
as well as their combination.

After the U-net is trained, we tested it with several breast
models that were not used for training. The output of the
U-net when tested with a particular breast phantom has five
channels (each a complete image) containing the probability
that a pixel corresponds to the particular region associated
with that channel. For example, the last channel shows the
probability of a pixel in the image being a tumor. At each
pixel the tissue-type (channel) with the highest probability
is taken to be the predicted tissue-type in the TTI and this
highest probability is also stored in a probability image. This
probability image estimates the confidence we have in choos-
ing a particular tissue-type for each pixel. The reconstruction
of TTI and probability image for one of the breast phantoms
based on the input of dielectric properties and/or the input of
ultrasonic properties are shown in Fig 2. Note that each pixel
of the input has a quantitative value for the particular property
it represents. However, each pixel of the output corresponds
to a particular tissue-type such as fat, glandular and tumor
(a discrete quantitative value).
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FIGURE 3. Five cases of MRI-based numerical breast phantoms. Each row consists of five figures for a given case: true TTI, true dielectric properties
(real and imaginary parts), and true ultrasonic properties (compressibility and attenuation).

IV. RESULTS
Five of the different numerical MRI-based breast models
used for testing, with particular tumor instances, are shown
in different rows of Fig 3. The last row is a case with no
tumor present and was used to test the robustness of the
technique.

The true TTI and corresponding dielectric and ultrasonic
properties for each case are shown in a particular column
of Fig 3. The multiplicatively regularized GNI algorithm
is used as a non-linear inversion algorithm for the recon-
struction of dielectric and ultrasonic properties [20], [23].

The quantitative reconstructions of the dielectric and ultra-
sonic properties for each of these breast phantom cases are
shown in a particular row and column of Fig 4. To avoid
inverse crime, the meshes used in the inversion algorithm
(for both MWT and UT) are different from those used in
the generation of the simulated data to be inverted. The
reconstructed dielectric and ultrasonic properties are then
interpolated to the meshes used for the generation of the
simulated data (true profile). Furthermore, the scattered data
for both UT and MWT are contaminated with five percent
noise according to the formula presented in [43].
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FIGURE 4. Reconstruction of dielectric and ultrasonic properties of five breast cases. Each row consists of four reconstructed images.
The first two images in each row correspond to the reconstruction of dielectric properties (real and imaginary parts of the relative
complex permittivity) and the last two images in each row correspond to the reconstruction of ultrasonic properties (compressibility
and attenuation).

In the following, the reconstruction of tissue type as well
as uncertainty quantification (probability images) using the
reconstruction of dielectric and/or ultrasonic properties are
shown for the same five cases. The CNN U-net tissue-type
reconstructions are also compared with the tissue-type recon-
structions obtained using our previous Bayesian approach
in Sections IV-A.3 and IV-B.3. The multi-variate normal

probability density function is used in applying the Bayesian
method [25]. The single frequency reconstruction of dielec-
tric properties is tested in Section IV-E. It should be noted that
the U-net is trained based on the images obtained from the
simultaneous frequency inversion. The U-net which is trained
with breast phantoms having tumors is also tested with a
phantom that does not have any tumors in the Section IV-F.
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FIGURE 5. The reconstruction of TTI, probability image, correct pixels, glandular and tumor regions for the breast phantom-Case 1. The first row
corresponds to the results based on dielectric properties. The second row corresponds to the results based on dielectric and ultrasonic properties. The
third row corresponds to the results based on the ultrasonic properties. The last row corresponds to the results based on ultrasonic properties using
Bayesian approach. (Note that the false positive and false negative are denoted by FP and FN.)

A. CASE 1
The true TTI for this case is shown in Fig 3a. The true dielec-
tric properties and ultrasonic properties for this phantom are
also shown in Figs 3 (b,c) and Figs 3 (d,e), respectively. The
reconstruction of dielectric properties and ultrasonic proper-
ties for this case are shown in Figs 4 (a,b) and Figs 4 (c,d),
respectively. As can be seen, the resolution of the
reconstructed ultrasonic property images is higher than the
reconstructed dielectric property images due to the smaller
wavelength used for the ultrasound imaging. The reconstruc-
tions of the predicted TTI and the associated uncertainty
quantification for this phantom under different scenarios are
discussed below.

1) TWO DIELECTRIC PROPERTIES
The reconstruction of the TTI and uncertainty quantification
based using only the two dielectric properties (i.e., real and
imaginary parts of complex permittivity) as input for the

U-net are shown in Figs 5 (a,b). The correct pixels as well
as the reconstructed glandular and tumor regions are shown
in Figs 5 (c,d,e).

2) TWO DIELECTRIC AND TWO ULTRASONIC PROPERTIES
The reconstruction of the TTI and uncertainty quantification
based on using both the two dielectric (i.e., complex permit-
tivity) and the two ultrasonic properties (i.e., compressibility
and attenuation) as input for the U-net are shown in the
Figs 5 (f,g). The correct pixels and the reconstructed glan-
dular and tumor regions are shown in Figs 5 (h.i.j). As can be
seen in the correct pixel images, the overall error is reduced
from 0.102 to 0.024, when we use the U-net trained by
both ultrasonic and dielectric properties instead of being only
trained with microwave properties. One reason for this is
that the wavelength used in the ultrasound imaging is much
smaller than that of the microwave imaging. For example,
the fine details of the glandular region is more clear in the
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FIGURE 6. The reconstruction of TTI, probability image, correct pixels, glandular and tumor regions for the breast phantom-Case 2. The first row
corresponds to the results based on dielectric properties. The second row corresponds to the results based on dielectric and ultrasonic properties. The
third row corresponds to the results based on the ultrasonic properties. The last row corresponds to the results based on ultrasonic properties using
Bayesian approach.

reconstructed compressibility compared to the reconstruc-
tions of the complex permittivity shown in Fig 4. The false
positive and false negative for both glandular region and
tumor region are also decreased as shown in Figs 5 (d,e) and
Figs 5 (i,j).

3) DEEP LEARNING VS BAYESIAN METHOD FOR TWO
ULTRASONIC PROPERTY IMAGES
We now compare the deep learning U-net reconstructed
TTI and uncertainty quantification with using the Bayesian
method described in [25] when using two ultrasonic prop-
erties (i.e., compressibility and attenuation). The results of
tissue-type classification, uncertainty quantification, correct
pixels, reconstructed glandular and tumor regions usingU-net
and the Bayesian method are shown in the third and fourth
rows of Fig 5. As can be seen, the result of tissue-type
classification obtained from the U-net is more accurate than
the result obtained from Bayesian method. For the example
shown, the overall error of classification using U-net and

Bayesian method are 0.024 and 0.066, respectively, as shown
in Figs 5 (m,r). False positive and false negative for tumor and
glandular regions using the Bayesian method are higher than
the FP and FN using the trained U-net as shown in Figs 5 (s,t)
and Figs 5 (n,o). In the Bayesian method, many skin pixels
are wrongly predicted as a glandular or tumor.

B. CASE 2
The true TTI, true dielectric and true ultrasonic property
images are shown in the second row of Fig 3. The reconstruc-
tion of dielectric properties and ultrasonic properties for this
case are shown in the second row of Fig 4. The reconstruc-
tions of the predicted TTI and uncertainty quantification for
this phantom under different scenarios are discussed below.

1) TWO DIELECTRIC PROPERTIES
The results of tissue-type classification and uncertainty quan-
tification based on the input of two dielectric properties
for the U-net are shown in Figs 6 (a,b). The correct pixels
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FIGURE 7. The reconstruction of TTI, probability image, correct pixels, glandular and tumor regions for the breast phantom-Case 3. The first row
corresponds to the results based on dielectric properties. The second row corresponds to the results based on dielectric and ultrasonic properties.

and reconstructed glandular and tumor regions are shown
in Figs 6 (c,d,e). Comparing the reconstruction of TTI
in Fig 6 (a) with the true TTI in Fig 3 (f), it can be seen
that one region on the right side of the reconstructed TTI is
wrongly chosen as a tumor region. This is due to the fact
that the quantitive reconstruction of complex permittivity for
this region is close to the quantitative value corresponding
to tumor tissue as shown in Figs 4 (e,f). However, the good
point is that the probability of the pixels in that region is
low as can be seen in the uncertainty quantification. For
example, the probability of one of the pixels in this region
wrongly chosen as a tumor is about 0.5842 and the probability
of two pixels which are truly chosen as a tumor are high
(1 and 0.9782) as shown in Fig 6e.

2) TWO DIELECTRIC AND TWO ULTRASONIC PROPERTIES
The results of tissue-type classification and uncertainty quan-
tification based on using two dielectric and two ultrasonic
properties as the input for the U-net are shown in Figs 6 (f,g).
The correct pixels and reconstructed glandular and tumor
regions are shown in Figs 6 (h,i,j). Comparing the result in this
section with the result obtained based on using only dielectric
properties, we can see that the region which is wrongly cho-
sen as a tumor in the previous case is now correctly detected
as a glandular region. Furthermore, the overall error in the
tissue classification has decreased from 0.081 to 0.023 as
shown in Figs 6 (c,h) and the false positive and false negative
for glandular and tumor regions are also reduced as shown
in Figs 6 (d,e) and Figs 6 (i,j).

3) DEEP LEARNING VS BAYESIAN METHOD FOR TWO
ULTRASONIC PROPERTY IMAGES
The comparison between the reconstructions of the TTI as
well as probability image using deep learning and Bayesian
method are shown in the third and fourth rows of Fig 6,
respectively. As can be seen, the reconstruction of TTI using
the deep learning method is again more accurate than the

result obtained from the Bayesian method. For example,
the overall error in the reconstruction of the TTI using deep
learning and the Bayesian method are 0.023 and 0.036,
respectively. The number of false positive and false negative
pixels for the glandular region using deep learning method
are 181 and 186 as shown in Fig 6 n. However, these numbers
using Bayesian method are 273 and 253.

C. CASE 3
The true TTI, true dielectric and true ultrasonic properties for
this case are shown in the third row of Fig 3. This model has
two tumors with different sizes. Approximating the tumors
with a circular shape, the radius of the smaller tumor is about
4 [mm] which corresponds to 0.42λmin in UT and 0.13λmin
in MWT (λmin is the minimum wavelength of the ultrasonic
wave or microwaves in the background medium based on
their respective frequencies of operation). The radius of the
other tumor is about 6 [mm] corresponding to 0.64λmin
in UT and 0.19λmin in MWT. The reconstruction of dielectric
properties and ultrasonic properties are shown in the third
row of Fig 4. The results of tissue-type classification and
uncertainty quantification based on the input of two dielectric
properties and four dielectric and ultrasonic properties are
shown in the first and second rows of Fig 7. As can be seen,
the two tumors are detected in both cases. The glandular
region is better detected when both ultrasonic and dielectric
properties are used as shown in Figs7 (d,i). For this example,
the number of false positive and false negative pixels for the
glandular region obtained from using only dielectric proper-
ties are 800 and 737. However, these numbers are reduced to
369 and 273 when both dielectric and ultrasonic properties
are used as the input of U-net for tissue classification.

D. CASE 4
The true TTI, true dielectric and true ultrasonic properties
are for this case are shown in the fourth row of Fig 3.
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FIGURE 8. The reconstruction of TTI, probability image, correct pixels, glandular and tumor regions for the breast phantom-Case 4. The first row
corresponds to the results based on dielectric properties. The second row corresponds to the results based on dielectric and ultrasonic properties.

The reconstruction of dielectric properties and ultrasonic
properties are shown in the fourth row of Fig 4. The results of
tissue type classification and uncertainty quantification based
on the input of two dielectric properties and four dielectric
and ultrasonic properties are shown in the first and second
rows of Fig 8.

E. CASE 4 - MW SINGLE FREQUENCY INVERSION
The true TTI, and true dielectric properties for this phantom
are shown in the fourth row of Figs 3. As was explained in
Section II-B, three frequencies are simultaneously utilized
to create the dielectric properties of the breast phantoms.
The reason for using simultaneous frequency inversion is to
increase the amount of data leading to a more accurate recon-
struction of the dielectric properties. The training microwave
images for the U-net are also based on the reconstruction
of dielectric properties obtained from the simultaneous fre-
quency inversion.

In this section, we test the trained U-net based on the input
of dielectric properties obtained from the single frequency
inversion. The results of the reconstruction of dielectric prop-
erties for this phantom based on the single frequency (1 GHz)
inversion are shown in the first row of Fig 9. The recon-
struction of the TTI, probability image, glandular and tumor
regions are shown in the second and third rows of Fig 9.
As can be seen in Fig 9 f, the TTI is properly reconstructed,
although the trained U-net for dielectric properties is based
on the simultaneous frequency inversion (using three frequen-
cies). It should be noted that the reconstruction of the dielec-
tric properties using simultaneous frequency inversion shown
in Figs 4 (m,n) is more accurate than the reconstruction based
on the single frequency inversion shown in the first row of
Fig 9. For example, the two tumors are more distinguishable
using the simultaneous frequency inversion as compared to
the single frequency inversion. Thus, the reconstruction of
the TTI is also more accurate using the input of dielectric

FIGURE 9. Reconstruction of TTI based on dielectric properties obtained
from single frequency inversion. The first row is the reconstructed real
and imaginary parts of complex permittivity using single frequency
inversion. The second row shows the reconstruction of glandular and
tumor regions. The last row corresponds to the reconstruction of TTI and
probability image.

properties obtained from simultaneous frequency inversion.
For example, the number of correct, false positive and false
negative pixels for the tumor region obtained from single
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FIGURE 10. The reconstruction of TTI, probability image, correct pixels, fat and glandular regions for the breast phantom-Case 5. This phantom does not
have any tumor. The first row corresponds to the results based on dielectric properties. The second row corresponds to the results based on dielectric
and ultrasonic properties.

frequency are 132, 49 and 78 respectively. These numbers for
the tissue-type reconstruction based on the input of dielectric
properties obtained from simultaneous frequency inversion
are 185, 38 and 25.

F. CASE 5 (PHANTOM WITH NO TUMOR)
All the phantoms used for the training of the various U-nets
have different numbers of tumors ranging from 1 to 3 with
different sizes and different locations within the breast. In this
example, we want to test the trained network for a case that
does not have any tumor. The true TTI, true dielectric and true
ultrasonic properties of this phantom are shown in the last row
of Fig 3. As can be seen in the true TTI of this phantom, it does
not have any tumor region but we still keep the tumor in the
colorbar of this image. The reconstruction of dielectric prop-
erties and ultrasonic properties for this case are shown in the
last row of Fig 4. The results of the reconstruction of the TTI,
uncertainty quantification, correct pixels, fat and glandular
regions based on the input of two dielectric properties and
four dielectric and ultrasonic properties are shown in the first
and second rows of Fig 10. As can be seen in the reconstructed
TTI in Figs 10 (a,f), although the trained U-net has never seen
breast phantoms having no tumors, there is no region detected
as a tumor in the reconstruction of the TTI.

V. CONCLUSION
We have proposed a framework for tissue classification and
uncertainty quantification for a breast imaging application
based on a deep learning approach. The deep learning net-
work is trained based on the input of quantitative images of
dielectric and ultrasonic properties of the OI and maps this
input to a predicted tissue-type image. To train and test the
U-net, eightmodels of numericalMRI-based breast phantoms
are utilized for bothMWT and UT. For each model, we create
fifty different phantoms with different numbers, sizes and

positions of tumor in the breast phantom. The Gauss-Newton
inversion is used as a full-wave reconstruction algorithm
for the reconstruction of ultrasonic and dielectric properties
of the object of interest. The results of tissue-type imag-
ing and the associated uncertainty quantification using the
input of dielectric properties, ultrasonic properties and their
combination are shown using different types of numerical
breast phantoms. It is shown that this deep learning tech-
nique can provide promising results of TTI and uncertainty
quantification. This deep learning technique is also compared
with a previously studied Bayesian method and it shows a
significant enhancement in the reconstruction of the TTI.
The robustness of this technique is also checked with a
breast phantom with no tumor regions and the reconstruction
obtained from single frequency inversion.
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