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ABSTRACT A novel Fusion Convolutional Network (FCN) is proposed in this research for potential
real-time monitoring of insulators using unmanned aerial vehicle (UAV) edge devices. Precise airborne
imaging of outdoor objects, such as high voltage insulators, suffers from varied object resolution, cluttered
backgrounds, unclear or contaminated surfaces, and illumination conditions. Accurate information about
the insulator surface condition is essential and is of a high priority since insulator breakdown is a leading
cause of electrical failure. A multi-modal information fusion (MMIF) system is developed during this
research to analyze and classify possible contaminations present on the electrical insulators. A novel system,
referred to as FCN, consists of a Convolutional Neural Network (CNN) and a binary Multilayer Neural
Network (MNN) sub-classifier. While constructing the MMIF dataset for training and testing the novel FCN,
the image classification output of the CNN is combined with the leakage current values (LCV) obtained
as the classification output of MNN. Each sample of the MMIF dataset is, therefore, represented as a
series of fusions. Later, sub-classifiers, of the FCN, are trained to identify the contamination types in the
fusion series by implementing a voting system of sub-classifiers which is trained to identify a given class.
As a result of the implementation of the proposed FCN, the classification accuracy increased by 8.4%,
i.e., from 92% to 99.76%. To compare and benchmark the performance of proposed FCN, conventional
classification algorithms are also implemented on the fusion of features that are extracted employing the
wavelet transform and PCA methods. State-of-the-art CNN architectures are also discussed on account of
their time consumption and memory usage. The conceptualization of a potential hardware implementation of
the proposed FCN, on emerging edge devices, is also provided for completeness of the discussion. Pertinent
outcomes of this research can be further extended to other potential applications of airborne imaging.

INDEX TERMS Convolutional neural network, multi-modal information fusion, electrical insulators,
unmanned aerial vehicle.

I. INTRODUCTION

Outdoor electrical insulators are essential components of
the power grid since they provide mechanical support to
the high voltage carrying conductors besides the intended
electrical insulation. Since insulator breakdown is a lead-
ing cause of electrical failure, precise information about the
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insulator surface condition is crucial and is of a high priority.
The performance of outdoor insulators is often affected by
atmospheric pollution, aging, and severe weather conditions
(humidity, icing, heat, dust, ultraviolet) [1]. To prevent the
faults in insulators, power grid operators have to conduct
regular visual condition monitoring.

Insulator inspection methods, which are extensively used,
include standard ground patrolling, and airborne imaging
through helicopters. During these procedures, the power lines
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FIGURE 1. Deep CNN architecture for the classification of insulator surface contaminations.

and their components are observed using optical measur-
ing devices [2], [3]. Ground patrolling inspectors perform
the visual inspection using different instruments, such as,
binoculars, infrared radiation, and ultraviolet (UV) cameras,
and identify external defects and the pollution intensity on
the outdoor insulators. While these approaches are practical,
the work involved is too cumbersome since a large number
of insulators, placed in geographically isolated remote loca-
tions, are to be inspected during extreme weather conditions.
To overcome these challenges and improve the conventional
monitoring methods, different remote sensing techniques,
employing a variety of platforms (unnamed aerial vehicles,
satellites, etc.), have been proposed and applied for the con-
dition monitoring of electrical insulators [4].

Recently, the use of unmanned aerial vehicles (UAVs) has
shown potential in airborne imaging for the surveillance of
the power lines apart from other applications [5]. The benefits
of employing UAVs include, mobility, low operating costs,
and the possibility of computer vision with the aid of online
edge computing. It is likely to achieve higher accuracies of
detection and classification of outdoor objects using com-
puter vision on edge devices enabled with deep learning CNN
algorithms [6]. The overall framework of UAV deployment
to enable visual inspection and analysis of insulators with the
help of CNN algorithms is illustrated in Figure 1. However,
owing to the resource constraints of small-scale commer-
cial UAVs, implementation of this scheme requires immense
computing and communication-related operations, making
this a challenging task [7]. Currently, the implementation of
onboard machine learning algorithms to the UAV devices for
embedded scenarios is one of the leading research directions
for edge computing [8], [9], communication [10], [11], and
cloud computing fields [12]. In this article, we propose to
reduce the computational overhead of the computer vision
algorithms to facilitate edge processing on UAV devices.
In the proposed work, this is achieved by minimizing the
trainable parameters of CNN and compensating the architec-
ture reduction with information fusion approach. The novel
architecture, referred here as Fusion Convolutional Network
(FCN), is found to be less time-consuming and has low
memory requirements compared to the state-of-the-art deep
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learning architectures and conventional machine learn-
ing (ML) algorithms on the same dataset classification tasks.
FCN uses multi-modal information fusion (MMIF) of drone
images with the insulator surface leakage current values
(LCV) and classifies insulator contamination into the states
that usually precede failures such as, water, snow, metal dust,
and salt.

To elaborate implementation of the proposed Fusion Con-
volutional Network approach and establish its efficacy,
the following tasks are carried out and discussed in various
sections and sub-sections of the manuscript.

1) Development of the image dataset comprising of five
classes of outdoor insulators acquired via a drone under
real winter condition. (sub-section III a)

Experimental measurement of the leakage current data,
that correspond to the types of the pollutant on the
insulator surface. (sub-section III b)

Construction of MMIF dataset, using NN encoding,
and feature extraction techniques. (Section I'V)
Training of FCN using the MMIF dataset of LCV and
the images. (Section IV).

Comparison of FCN performance with conventional
ML algorithms such as IBK, SMO, SVM, Random
Forest, XGBoost, and Extra Trees on MMIF data, using
different fusion techniques. (Section V)

2)

3)
4)

)

Il. METHODS

The technological advancements in UAV mechanisms, wire-
less sensing, and Al-based computing have put forth new
opportunities for the deployment of possible real-time intel-
ligent inspection of outdoor electrical insulators. Surveying,
based on UAV imaging, has been successfully applied to
diverse applications, such as agriculture [13], military [14],
industrial plants [15], etc. Visual monitoring of the power
transmission systems can also be efficiently carried out
using UAVs, owing to their high mobility, low operating cost,
and ability to access obscure, intricate, and remote areas.
Airborne inspection of high-voltage lines will also save the
personnel from potential hazards and inconvenience. Various
methods used in this research are discussed in the following
subsections.
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A. IMAGE DATA ACQUISITION

For image data acquisition, the UAV equipped, with a camera
sensor, was flown over the high voltage insulators inside the
Nazarbayev University campus. The initial database, consist-
ing of aerial images of a glass insulator, was acquired from
the UAV during the winter season. The insulator creepage
surface was artificially contaminated using dust, snow, sea-
salt, and water and captured using a UAV mounted sensor.
The database was further augmented using four types of
noise such as the Gaussian, the Salt and Pepper, the Pois-
son, and the Speckle noise. While the Gaussian noise was
used to mimic several independent environmental factors
occurring naturally, the Salt and Pepper noise was added to
represent the sharp and sudden disturbances in the image
signal. The Speckle noise, on the other hand, characterizes an
inherent granular interference that degrades the images cap-
tured. The augmented datasets, composed of 1000 initial and
4000 filtered images of the glass insulator, was labelled with
five classes. The four labelled classes were, dust, snow, sea-
salt, and water on the insulator surface, whereas the fifth
class was for images of clean insulator surface. Each class
consisted of 1000 images with 254 x 103 pixels resolution.
The database was further split into train and testing databases.
Samples of the filtered images are shown in Figure 2.

FIGURE 2. Image samples of a glass insulator: (a) original image
(b) Gaussian, (c) Poisson, (d) Salt and Pepper, and (e) Speckle noise.

B. IMAGE CLASSIFICATION USING ML ALGORITHMS
Visual monitoring of high voltage insulators was carried out
to classify various surface contaminations such as water,
snow, metal dust, and salt. Conventional Machine learn-
ing algorithms were implemented for this purpose. The
algorithms employed are namely, Naive Bayes, Sequential
Minimal Optimization (SMO), IBk or k-NN, and J48.
Insulator evaluation using these shallow classifiers shows
moderate performance, reportedly reaching up to 90.05%
accuracy [17], [18] on fault detection tasks. Later,
more advanced classifiers, namely, SVM, Random Forest,
XGBoost, and Extra Trees were also implemented, and
improved accuracy was recorded. However, the use of these
classifiers is criticized for being time and memory con-
suming and calls for optimization of algorithms and data
processing [19].

C. CONVOLUTIONAL NEURAL NETWORKS
Convolutional Neural Network (CNN) is a biologically
inspired neural network widely used for image processing
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and has shown to be valuable particularly for vision-based
applications. The benefits of using CNN are derived from its
structure, which is robust to translation, scaling, and tilting
transformations. Given the fact that such transformations
were presented in the present training dataset, CNN can be
a suitable candidate for data analytics. CNN also allows the
sharing of weights for both feature extraction and classifi-
cation within a single architecture. A typical CNN architec-
ture comprises of multiple convolutions and pooling layers
for feature extraction, followed by fully connected dense
layers for classification. Convolution refers to the process
of sliding a filter mask (weights) or kernel over the input
images by executing simple matrix multiplication resulting
in a feature map as an output. Multiple filters are trained to
learn and detect specific patterns in the images. The main
purpose of applying pooling layers is to reduce the size of
feature maps preserving meaningful information and increase
the robustness of the model to affine and perspective trans-
formations. The fully connected layer or the dense layer,
on the other hand, performs simple classification on feature
maps.

CNN, therefore, are state-of-the-art models for all image
tasks including, image generation, classification, recognition,
object detection, and segmentation. There are modern deep
CNN architectures such as, InceptionV4 [20], MobileNet
version 3 [21], VGG [22], and ResNet50 [23], that are proven
to be effective techniques for image data analytics. These net-
works provide high classification accuracy on large datasets,
such as ImageNet, and are known for their complex struc-
tures. A comparison of popular modern CNN structures is
provided in Table 1, indicating the number of convolution lay-
ers, dense layers, number of kernels, and trainable parameters
(weights).

In the present research, UAV based image processing for
the insulator localization and its surface detection has been
carried out using state-of-the-art CNN algorithms such as
SSD [24], Yolo9000 [25], Faster RCNN VGG16 [26], Faster
RCNN [27] and detection problems [5], [28], [29].

D. INSULATOR INSPECTION AND INFORMATION FUSION

Machine learning algorithms may not be the best candi-
dates to provide higher accuracies in the present case of
insulator inspection owing to certain limitations. Some of
these constraints are the small size of training data, data
imbalance (disproportionate instances of the classes), clut-
tered backgrounds, and non-uniform illumination. Therefore,
it is proposed to consider the integration of multimodal
information fusion to enhance the accuracy of classifica-
tion. Multimodal information fusion (MMIF) methods are
applied to facilitate decision making from different types of
data obtained from multiple distributed sources. Information
fusion techniques are used in different multisensory applica-
tions such as image fusion for detection and recognition [30],
smart city domains [31], biometric systems [32], UAV sys-
tems [33], etc. There are a few studies that report the use of
fusion approaches applied to the insulator pollution detection
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TABLE 1. Comparison of state-of-the-art CNN architectures.

Metric InceptionV3 MobileNet VGG16 ResNet50 ResNeXt101 proposed CNN
Input size 3x103%254 3% 103x254 3x103%254 3x103%254 3x224x224 3x103%254
# of CN layers 12 13 5 53 5 (32 groups) 5
Depth in # of CN layers 2 5 13 49 101 32
Filter sizes in CN layers 3,5,1 3,511 3 1,3,7 7,1,3 3
# of channels in CN layers 1,20 3-256 3-512 3-2048 44,256 3
# of filters in CN layers 32,64,80, 192 96-384 64-512 64-2048 128,256,512 32,32,32,32,64
Parameters in CN layers 2.6K 2.3M 14.7M 23.5M 48.96M 472K
Total parameters 24.1M 3.4M 15.4M 21.4M 87M 72.1K

tasks. During previous such studies [34], [35], multispectral
fusion using visible light, infrared and ultraviolet images of
insulators was proposed to improve the accuracy of image
detection of the contaminated insulators and discriminate
insulator contamination grades. However, the fusion of mul-
tisource images [36] was not able to improve the detection
accuracy rate beyond 90%. In the present work, the leakage
current data is proposed to be combined with the insulator
image data to increase the inspection accuracy of outdoor
insulators.

IIl. EXPERIMENTAL SETUP AND DATASET

A. INSULATOR IMAGES

The image dataset was captured using DIJI Mavic II,
powered by a mirrorless camera system of 1/2.3-inch
(6.17 x 4.55mm), a 12-megapixel sensor. The insulator sur-
face, artificially contaminated with dust, snow, sea-salt, and
water was captured, and the image data (Figure 2) was
augmented as discussed in the previous section. The data
is divided into training and testing datasets in a proportion
of 90% and 10% respectively. Later, the training dataset was
subjected to ten-fold cross-validation, whereby, nine subsets
were used for training, and the remaining one was used
for validation purposes. A generalization capability of the
model was evaluated on the test sample by implementing the
L2 regularization approach.

B. LEAKAGE CURRENT MEASUREMENT

Leakage current (LC) from the insulators is an indicative sign
of the unsatisfactory performance of insulators. The leakage
of current, from insulators, adversely affects the stability and
the reliability of the power grid [37]. Therefore, leakage
current values are considered as crucial information, that
can be used to monitor the performance of contaminated
insulators [38].

In the present work, surface leakage current values of
insulators are obtained in the laboratory conditions using an
injection test system called CPC100-Omicron®. Multiple
leakage current measurements were conducted applying 5 kV
across the glass insulators with different types of contam-
ination: water, salt, snow, and metallic dust. For each of

VOLUME 8, 2020

the contamination types, 20 experiments were performed,
and 18 leakage current values were recorded (after removing
noise). Leakage current values, for various contaminations on
the insulator surface, are provided in Fig. 3.
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FIGURE 3. Leakage current values for different contaminations
conditions.

IV. FUSION CONVOLUTIONAL NETWORK (FCN)

The novel Fusion Convolutional Network (FCN) architec-
ture for classification of contamination types on electrical
insulators is proposed in this research. The classification is
performed on five surface conditions of the insulator, namely,
clean and contaminated with water, snow, metal dust, and salt.
In the proposed FCN architecture, a deep convolutional neu-
ral network (CNN) and multilayer neural networks (MNN)
are combined to achieve higher classification accuracy. The
architecture of this algorithm is implemented in two-stages.
During the first stage, the aerial images of insulators and leak-
age current values (LCVs) are encoded to the same modality.
In the second stage, a fusion of this data is used as a series
of inputs to the network of sub-classifiers. The architecture
of the proposed FCN is shown in Figure 4, whereby it is
seen that the images are fed to CNN, while the set of LCV
measurements is encoded with MNN. The fusion of CNN
and MNN outputs (Xcyy and x; respectively) is used as
the input to the network of independent MNN subclassifies
(MNN 1_s). Sub-classifiers are responsible for the final image
classification.
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FIGURE 4. Information fusion for electrical insulator inspection based on
fusion convolution network.

A. PROPOSED FCN ARCHITECTURE

The proposed network scheme evaluates insulator surface
conditions in two stages. First, the visual information is
processed with a CNN and then the results from CNN are
improved employing the FCN. The enhancement of the CNN
accuracy is achieved using the fusion of probability spaces
resulting from two types of information, namely, the visual
classification and encoded leakage current information as
shown in Figure 4. The implementation of the proposed FCN
scheme is further explained using pseudocode in Table 2.
Lines 3 to 11, in the Pseudocode, present the training of
CNN to classify the contamination type on detected insulator
images (explained further in the next subsection). Concur-
rently, the online measurements of LCVS, from the insu-
lator, are required to be fed to the MNN which is trained
to recognize the contamination type using LCVs. However,
online translation of surface leakage current measurements
of insulators is still open to research [39], [40]. Therefore,
in the present work, pre-measured LCVs (experimental mea-
surements, 18 x 5 = 90) were used and encoded with the
MNN. In other words, instead of online encoding of LCVs,
the dataset of pre-encoded LCVs, (x1—99) were combined
with the current output of CNN (X¢cyn ) (lines 18-20 in pseu-
docode, Table 2). As a result, all samples of the encoded
LCV dataset will be combined with the present CNN output
to construct the series of fusion samples, i.e. (Xcyy | x;i) or
F[f1—90]. The series of fused data F' will be the common input
for all the five sub-classifiers of the FCN (MNN_s).

Each sub-classifier is trained to recognize one of the insu-
lator contamination types, in such a manner, that MNN |
recognizes clean insulator surface while, MNN,_s, rec-
ognize water, snow, metal dust, and salt contaminations,
respectively.

During the second stage (lines 23-29 in pseudocode,
Table 2), the MNN sub-classifiers perform binary classifica-
tion on each sample [f;_gp] in F'. Sub-classifier that accumu-
lates the greatest number of positive predictions in the fusion
series determines the final class of the fusion (explained in
the next subsection).

184490

TABLE 2. FCN Algorithm Pseudocode.

Fusion Convolutional Network

: Stage I: Convolutional Neural Network (CNN)
A Feature extraction:
for all j input image matrix, size (103, 254) do
: Convolution with kernel filter (32, 3 X 3)
: Activation with ReLU
: Max-pooling (2 X 2)
: Convolution with kernel filter (64, 3 X 3)
: Activation with ReLU
9: Max-pooling (2 X 2)
10:  end for
11:  Output: Feature maps
12: B Classification:
13: Input layer: Flatten (Feature map)
14: Hidden layer: (64, Activation [ReLU, Softplus])
15: Output: Xoyn
16: Information fusion:
17:  for all x; in X: do
18:  F = CONCAT (Xcyn » Xi)
19: end for
20:  Output: F of the size [90 X 10]
21: Stage 11: Fusion network:
22: foralliinF

0N U AW —

23: yi = MNN,(
24: y2 = MNN,()
25: y? = MNN;()
26: vy = MNN,(
27: y? = MNN;()
28: end for

29:  Output: Predicted class of
yi=max(Xy:, XYz, X Y3, 55, 2 Ys)

1) CNN ARCHITECTURE

The architecture of the CNN, used here, comprises an
input layer, five convolutional layers, and two Dense layers
(Figure 1). The first layer of the network takes the image
of size 254 x 103 x 3 as an input vector. The following
layers are the sequence of multiple convolutional and pooling
layers that reduce the input size to 64 x 6. The kernel size of
convolutions was kept as 3 x 3 throughout the network and
the pooling size was kept as 2 x 2. Table 1 provides input
and output sizes of each layer, the number of the kernel, and
trainable parameters of the CNN implemented.

During this research, different combinations of activation
functions and optimization routines were tested in order to
achieve the best performance of CNN. Using Adadelta as an
optimizer, Softplus as an activation function for the dense
layer, and mean squared error (MSE) as a loss function,
resulted in the highest validation accuracy of the proposed
CNN. A brief introduction of these tools is given here for a
quick reference.

o Adadelta is an optimizer, based on the adaptive learning
rate per dimension, widely used to modify the weights
and minimize the loss during the network training. It uti-
lizes different learning rates n at each time step ¢ for
every parameter 6. It restricts the window of previous
gradients to a fixed size. The formulation for Adadelta
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used here is defined as (1).
_RMSI[6]i—1

Aet ==
RMS|gl:

8t ey
where A6, is the parameter update vector; RMS refers to
the root mean squared error; 6; is the updated parameter
variation; g; is the gradient of the stochastic gradient
descent algorithm.

o The activation function used for the last dense layer is
SoftPlus, which is a smooth approximation to ReLU (2).

fx)=log(1+¢") @

o Mean square error (MSE) is one of the most widely used
loss functions, which averages the squared differences
between the actual value and predicted value (3).

Loss (x.y) = 1/ny Ixi =yl 3)

2) MULTI-MODAL INFORMATION FUSION OF CNN-MNN
OUTPUTS

In order to combine the CNN predictions Xcyy, with the pre-
measured LCVs (x;), into MMIF dataset of F fusion series,
a set of pre-encoded LCVs X[x1_gp] was created using the
MNN algorithm. We use three consequent data points from
each class of leakage current measurements to form a single
sample of encoded LCV (x;). There are 18 encoded samples
for LCVs per class and therefore all the given measurements
were encoded into 90 vectors. Encoding operation was per-
formed with the simple three-layer MNN. This MNN con-
tains an input layer with the size 1 x 3, hidden layer dimension
is 1 x 12 and an output layer of 1 x 5 size which is equal to
the number of classes. To preserve the information modality
with Xcnw, the last layer of MNN is activated with Softplus,
and the hidden layer is activated with ReLU. The MNN was
trained to map the contamination type of the insulator to five
classes of pre-measured LCVs and was used to encode them
into vectors X [x]_gg] compatible with Xcyy modality.

3) FCN AND VOTING

Fusion Convolutional Network consists of 5 independent
MNN sub-classifiers (MNN |_s) as shown in Figure 4. The
input of the FCN is a 10-dimensional vector which comprises
of two vectors, the CNN output Xcny , and pre-encoded LCV
(x;). All the sub-classifiers are of the same size, and each of
these is responsible to recognize only one class, making this
a binary classification problem. While the input for all sub-
networks is common, each (MNN;) is trained separately.

As the proposed CNN is already trained on training sets of
images, the validation set of images is used to collect CNN
predictions that were further fused with pre-encoded LCVs to
train FCN. Thus, the training dataset of MNN sub-classifiers
includes a fusion of CNN predictions on unseen images
with pre-encoded LCVs. Each of the training MMIF dataset
samples consists of fusion series F[f]_gp] that has the size of
90 x 10, where each f; is the concatenated Xcyy and x; from
X[x1-90] (lines 18-20 in pseudocode, Table 2).
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While sub-classifiers are trained on common inputs, each
sub-classifier has its own set of labels to be used for super-
vised learning. The network of sub-classifiers (MNN 1_5) has
to classify all fij_gg in sample F' to output the classification
result. The output of the FCN, therefore, will be the class
of MNN ; that has the highest number of positive predictions
on F[fi_op]. This process can be referred to as the majority
voting since we predict the final class label with the class label
of MNN ; that gave the positive prediction most frequently.

About the structure of the sub-classifiers, each MNN has
layers of the size 1 x 10, 1 x 15,1 x 7 and 1 x 1. During
training, the MNN sub-classifiers were examined for dif-
ferent activation functions. The activation functions finally
selected were, Sigmoid, Softmax, and Relu for first, sec-
ond, and output layers. The activation functions of the first
layer of subnetwork MNN 4 was altered to ReLU to enhance
its performance. The higher accuracy was achieved using
Stochastic Gradient Descent (SGD) optimization and MSE
loss function. Activation functions and voting used are further
explained here.

« A Sigmoid function is the special case of a logistic func-
tion that have of all real numbers between 0 and 1, and
known in statistics as cumulative distribution function:

1 e* 4
fO =1 = w @)

o The standard (unit) softmax function, o : RK — RK
also known as annmmfyftygftgwstge3gfveg normalized
exponential function, is defined by (5).

et
X); = 5
S )i Z,’-‘e"f (%)
Fori=1,...,K andx = (x1, .., xg) € RK

The FCN outputs can be defined as below.

Y, = L, ifmax.(f D), f (2) 5., f(xs)) ©)
0, otherwise

B. FEATURE EXTRACTION FOR FCN ARCHITECTURE

To test the majority voting classification method on conven-
tional classifiers, besides FCN, additional feature extraction
approaches were applied. The Wavelet transform and the
Principal Component Analysis (PCA) were selected to reduce
the dimensions of the image and LCV datasets for the classi-
fication process.

C. ENCODING WITH WAVELET TRANSFORM

The Wavelet transform (WT) is a widely applied feature
extraction technique used for the reduction of dimensionality
of data by selecting a band of wavelet coefficients [41].
There are several functions that can be used for Wavelet
Transformation. In the present work, the Haar wavelet func-
tion was chosen, owing to its wide applications in image
processing [42]. Haar wavelet uses a sequence of rescaled
square-shaped functions to form a wavelet family. This anal-
ysis is quite similar to the Fourier analysis whereby a target

184491



IEEE Access

D. Mussina et al.: Multi-Modal Data Fusion Using Deep Neural Network for Condition Monitoring

function is represented in terms of an orthonormal basis over
a given interval. Three-level Haar transforms were performed
on each of the images and 5 data-points from LCV mea-
surements. Standard deviation, and mean values for each
extracted vector were calculated, resulting in 8 coefficients
from image pixels and 2 coefficients from LCV measure-
ments. Fusion of this data into a 10-dimensional input vector
is performed as instructed in lines 18-20 in the pseudocode
in Table 2.

1) ENCODING WITH PCA COEFFICIENTS

Principal component analysis [43] is a technique for reducing
the dimensionality of data preserving the meaningful infor-
mation. The selection of principal components is performed
using singular decomposition of the covariance matrix of
the original data. In the present work, as a consequence of
PCA analysis, 8 principal components were chosen from the
image matrix, while 2 components were selected from the
LCV measurements (5 data-points each). Later, this data was
fused into the 10-dimensional input vector.

V. RESULTS AND DISCUSSION
To begin with, the results of the experiments with shallow
classifiers and CNN models on the insulator images are pro-
vided in this section. Subsequently, classification results of
the MMIF data, as a consequence of the implementations of
CNN and FCN, respectively, are also provided here. Image
classification performances of competing CNN architectures
such as VGG16, MobileNet, ResNet, ResNext101 and Incep-
tion are included for the sake of complete discussion (Fig. 6a).
MobileNet and Inception architectures exhibit good efficien-
cies than the accuracies and are deserving candidates for
real-time applications owing to the use of an optimal number
of parameters. However, in the present application of the
condition monitoring of insulators, where an on-line analysis
may not be warranted, accuracy is preferred over efficiency.
Classification accuracies of various shallow algorithms,
namely, SVM, Random Forest, XGBoost, and Extra Trees are
provided in Figure 6b. Performances of classifiers were tested
on the image data, extracting features via wavelet transform,
principal component analysis techniques, and through the
information fusion based on the CNN and MNN models.

A. IMAGE CLASSIFICATION

Proposed CNN was trained to classify the 5 types of insulator
conditions with different optimization algorithms using the
images from the training dataset. The best performance on
the validation dataset, achieved with Adadelta optimizer and
MSE loss function, was 92.12% of the classification accu-
racy. CNN performance is shown using a Receiver operating
characteristic (ROC) plot in Figure 5. ROC curve shows a
possible trade-off between accuracy and error rates for the
given class and provides a single-value summary (ranging
from O to 1). As it can be seen from the plot, that the misclassi-
fication is observed mostly in 2-salt and 4-metal dust classes
with fewer recognition rates. To compare the performance
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FIGURE 5. Receiver operating characteristic (ROC) curve of CNN
categorical classification performance.

of proposed CNN with competing architectures, we further
trained VGG16, MobileNet, InceptionV3, ResNeXt101 and
ResNETS50 using transfer learning that resulted in lower accu-
racy after 50 training epochs. Figure 6a shows the validation
and training accuracy of the CNN architectures, indicating a
possible over-fitting, which can be avoided employing suit-
able optimizers. On the other hand, less complex architecture
structures used in the proposed CNN show faster training and
less over-fitting. The performance of conventional machine
learning algorithms with the varying success of classification
on the validation data is shown in Figure 6b. IBK stands out
with the highest accuracy at the validation stage, but at the
same time, shows the highest memory and time usage for
the same operation compared to the rest (Table 3). Table 3
further shows that IBK has the most significant memory
allocation compared to the conventional ML algorithms and
MobileNet from CNN architectures, while VGG16 and IBK
are the slowest to perform predictions. It can be concluded
here that the proposed CNN uses less memory and operates
faster at the inference stage.

B. CLASSIFICATION OF MMIF

The memory and time usage for fusion classification and
voting stages for conventional ML algorithms and FCN are
also shown in Table 3. For the three types of fusion instances
(CNN-MNN outputs, WT, and PCA), maximum memory
allocation was required during feature extraction and while
fusing with PCA. Similarly, the least memory was allocated
during WT. The fastest feature extraction and fusion pro-
cesses were recorded during WT and CNN-MNN feature
fusions. At the classification level, SMO and FCN provided
the fastest predictions, while the voting stage required the
same memory and time allocation for each classifier. Overall,
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TABLE 3. Memory usage and Time consumption of implemented classifiers.

Sub-Classifiers

Features Fusion IBk J48 IE\;IZ;\;;: SMO FCN VGG16 ResNet50 MobileNet Inception Voting
PCA mem. usage, MiB 99.8 269.89 644.7 578.9 1381.9 - - - - - 1.43
PCA time consumed, 0.042 0.56 0.002 0.0025 0.002 - - - - - 0.026
Sec/sample
WT (haar), mem. 0.20 302.32 430.12 502.59 342.37 - - - - - 1.43
usage, MiB
WT (haar), time 0.171 0.53 0.004 0.01 0.024 - - - - - 0.026
consumed, Sec/sample
CNN-MNN, mem. 4.29 254.63 158.31 262.26 189.78 0.4297 - - - - 1.43
usage, MiB
CNN-MNN, time 0.04 0.009 0.008 0.016 0.009 0.001 - - - - 0.026
consumed, Sec/sample
Classifiers
Raw Image Fusion IBk J48 EZ;\;:: SMO CNN VGGI16 ResNet50 MobileNet Inception -
Mem. usage, MiB - 1286 1193.05 655.174 765.8 0.41796919.2 19.2 36.8 19.2 -
Time consumed, - 0.96 0.0064 0.026 0.009 2.4e-06 0.55 0.10 0.45 0.38 -
Sec/sample
M Training M Validation o
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FIGURE 6. Classification accuracy based on images pixels employing (a)
state-of-the-art CNN models vs. proposed CNN and (b) ML classifiers.

FCN classification shows the least time consumption and
memory usage for a single prediction.

The accuracy of the trained FCN was observed to be
99.76%, enhancing the performance of CNN (92.12%) con-
siderably. Figure 7 shows the low performance of classifiers
(from 20-38%) that used the decisions of networks based
on MMIF. The reason for the low performance could be
that the data was not enough and was sparse for proper
training of the classifiers. Classification accuracy based on
the raw images was high with IBk classifier, while others
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Ibk J48 Naive Bayes SMO

FIGURE 7. Classification accuracy of traditional ML algorithms using
different features: CNN-MNN based decisions, wavelet transform (WT),
principal component analysis (PCA).

performed in the range of 54-80 %. J48 and Naive Bayes
show improvement in accuracy using WT and PCA features.
Although ML classifiers show relatively good classification
accuracy but compared to the deep learning models, they
are computationally expensive and require hand-coded data
preparation and feature extraction. fusing with PCA.

As the system-level simulations of FCN showed high clas-
sification performance, we further analyzed a possible hard-
ware implementation of FCN for an embedded scenario of
airborne imaging.

C. FCN HARDWARE

Since the target of this work is to propose methods for
enhanced CNN classification of insulators with MMIF
approach, there is a perspective of implementing such a sys-
tem on hardware with emerging technologies such as analog
resistive memories, i.e. memristors [44]. The potential imple-
mentation of different architectures such as NN, CNN, and
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FIGURE 8. Hardware implementations of FCN System on digital and
analogue domains.

LSTM was previously proposed successfully [45]. Successful
implementation of such systems depends how best the mem-
ory analog dot product computing scheme can be exploited.
The definition of the memristors suggests a possibility of con-
tinuous analogy memory implementation while the fault rate
of the technology is still high. Figure 8 shows two possible
approaches, digital and analog for the implementation of such
a system hardware. The selection of either approach can be
justified with the benefits of the respective technology.
Recent advances in the digital technology also affects the
potential efficacy of analog architectures. Implementing the
FCN system on mature digital technologies will guarantee
the accuracy of the stored synaptic weights and computing
logic operations. However, this will require more chip areas
with built-in analog to digital conversion blocks, separate
data processing, and data storage blocks that may affect the
communication bandwidth as well. Analog implementation
of neural networks can be integrated on sensor backplanes
to work directly with analog signals for memory dot prod-
uct operation. This will save on-chip area and increase the

speed of the decision-making process. Considering potential
practical aspects of FCN implementation, we have conducted
fault tolerance of digital and analog implementation of FCN
memory. To use emerging memories as binary cells, we also
considered the failure scenario for the digital implementa-
tion of the memory. Three cases of memory faults were
analyzed:

1) The analog value of the stored synaptic weight is up
to, +ol
2|jp*o|

ol = rand (0, =———)

l 3k @

Here, 1 is the average synaptic value of FCN, o stands
for the standard deviation of synaptic values of FCN,
and k is used for the number of analog levels.

2) The analog value of the stored synaptic weight is up
to o2

o? = rand(0, %) (®)

Here, i is the iterator, and w is used for synaptic weight
values.

3) The binary 32 bit representation of the floating synaptic

weight value has random flipped bits (reversed from
0to 1, from 1 to 0) across the FCN.

Figure 9 shows the performance of FCN in the above three
different cases. It can be noticed that the variation in the ana-
log implementation of the FCN memory has less impact on
the accuracy of the system when the number of levels reaches
about 32 and higher. Contrary to this, the digital implementa-
tion of FCN memory starts to fail with only 100 bits flipped
in the system, provided that there are 7542 synapses stored
in 32bit format. It should be noted that the failure of random
memory cells that store synapse bits, may result in extremely
high or low values, depending on the significance of the bit if
not set correctly.

1.00/ ‘-————.— ————————— 1.0 _{____.————— 5
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0.98 Nn _- 2
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FIGURE 9. Three cases of memory faults: (a)The analogue value of the stored synaptic weight has up to +¢! (7); (b) the analogue value of the stored
synaptic weight has up to +o2 (8); (c) the floating synaptic weight value has random flipped bits across the FCN.
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VI. CONCLUSION

A Fusion Convolutional Network (FCN) architecture is pro-
posed in this article for UAV-based remote evaluation of the
contaminated outdoor high-voltage insulators. The proposed
FCN is a multi-modal information fusion system, where the
image data and the leakage current data were combined to
achieve better accuracy for the classification of insulator
surface contaminations. Five types of insulator surfaces were
analyzed, namely, a clean surface, and surfaces contaminated
with water, snow, metal dust, and salt. By employing the
multi-modal information fusion approach, it was possible
to reduce the complexity of the CNN structure, and at the
same time, increase the classification accuracy from 92% to
99.76%. To benchmark, the FCN results with the existing
approaches, traditional machine learning classifiers and com-
petent CNN architectures were implemented and compared.
Results from this comparison revealed that the proposed
FCN system was able to provide higher accuracy of classi-
fication with less time and memory consumption.

Further, to assess the potential future applications of the
proposed FCN in an embedded scenario, a hardware-oriented
analysis was also performed. A fault tolerance analysis was
carried out and the results, for both digital and analog FCN
systems, were obtained and analyzed. It was found that the
accuracy of the FCN system remains invariant to the inex-
orable aberrations, during the analog implementation of the
FCN memory. Therefore, it is recommended that an analog
implementation should be preferred over a digital imple-
mentation. In future research work, further studies shall be
conducted with the perspective of the implementation of an
on-chip FCN system integrated with the UAV camera sensor.
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