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ABSTRACT Lung cancer is one of the leading causes of death over the world. Detecting and identifying
malignant nodules on chest computed tomography (CT) plays an important role in the diagnosis and
treatment of lung cancer. Computer-aided diagnosis (CAD) systems have been developed to identify lung
nodules. However, the problem of a high false positive rate is still not well solved. In this paper, we propose
a novel multi-task convolutional neural network (MT-CNN) framework to identify malignant nodules from
benign nodules on chest CT scans. MT-CNN learns three-dimensional (3-D) lung nodule characteristics
from nine two-dimensional (2-D) views, which are decomposed from different angles of each nodule. Each
of 2-D MT-CNN model consists of two branches, one is the nodule classification branch (main task) and the
other is the image reconstruction branch (auxiliary task). The motivation of the auxiliary task is to preserve
more microscopic information in the hierarchical structure of CNN, which is beneficial to malignant nodule
identification. The final classification result is obtained by integrating nine 2-D models. We test our method
on the benchmark LUNA-16 and LIDC-IDRI datasets and compare it with state-of-the-art models. MT-CNN
achieves the lowest false positive rate (3.2%) and highest AUC (97.3%) in LUNA-16 dataset and achieves
an AUC of 95.59% in LIDC-IDRI. These results demonstrate the advantage of our method.

INDEX TERMS Multi-task learning, lung nodule classification, image reconstruction, computer-aided
diagnosis, convolutional neural network.

I. INTRODUCTION
Lung cancer has the highest morbidity and mortality among
all cancers over the world. About one-quarter of cancer deaths
are lung cancer patients [1]. In the early stage of lung cancer,
the symptoms are mild and difficult to diagnose. Patients
usually have missed the best period of treatment when they
are diagnosed. Early screening is an important approach to
prevent lung cancer. As one of the most important early man-
ifestations of lung cancer [2], lung nodules are radiologically
visible as small structures. Currently, radiologists usually
read chest computed tomography (CT) scans slice by slice
to identify malignant and benign lung nodules. It is time-
consuming, laborious, and subjective.
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Computer-aided diagnosis (CAD) systems have been
developed to assist radiologists in diagnosing lung nodules
[3]–[5]. Generally, an automatic lung nodule diagnosis sys-
tem consists of two stages: 1) candidate nodules detection
and 2) false positive reduction [6]–[8]. In the first stage,
the goal is to detect all suspicious nodules as much as pos-
sible. Candidate nodules inevitably contain a large number of
benign nodules. Therefore, an effective supervised classifier
is usually developed in the second stage to identify malignant
from benign nodules.

The false positive reduction is a key step in automatic
lung nodule diagnosis systems. Researchers have con-
ducted extensive research and proposed many nodule clas-
sifiers using various nodule features extracted by visual
feature descriptors [4], such as histogram of oriented gra-
dients (HOG) [9], local binary pattern (LBP) [10] and
scale-invariant feature transform (SIFT) [11]. It is also
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difficult to accurately describe nodule characteristics by
manual feature engineering since nodule features vary widely
including shape, texture and margin.

With the development of deep learning, convolutional neu-
ral network (CNN) has achieved remarkable success in image
processing [12], [13]. Compared with traditional computer
vision technology, deep learning can automatically learn the
image feature representation and can dig the potential fea-
tures of the data as much as possible. Deep learning can
also more easily adapt to different fields and applications.
Deep learning avoids the subjectivity of feature engineering
and can significantly reduce the workload of radiologists.
Therefore, researchers have applied CNN to automatic lung
nodule diagnosis systems. Ciompi et al. [14] constructed
an ensemble classifier to automatically recognize pulmonary
peri-fissural nodules. They classified nodules based on mul-
tiple 2-D views of the nodules. In order to describe nodule
morphology in 2-D views, the method used the output of a
pre-trained CNN known as OverFeat. This method achieved
an AUC of 86.8%, which was close to radiologists. However,
2-D CNN is unable to detect 3-D spatial information of
nodules. Lung nodule diagnosis from volumetric CT scans is
essentially a 3-D object recognition problem. Zhao et al. [15]
proposed a new agile CNN framework to conquer the chal-
lenges of a small-scale medical image database and the small
size of the nodules based on the hybrid of LeNet andAlexNet.
This method achieved an AUC of 87.7%.

Considering the 3-D characteristic of lung nodules,
researchers have also tried to identify nodules by 3-D
CNN due to the 3-D characteristics of nodules [16]–[18].
Dou et al. [19] developed a 3-D fully convolutional net-
work (FCN) to screen candidates and designed a hybrid-loss
3-D residual network to distinguish malignant from benign
nodules. Experimental results on the public large-scale
LUNA-16 dataset demonstrated superior performance of this
method. Zhu et al. [20] constructed a gradient boosting
machine (GBM) with 3-D dual path network (DPN) features
for nodule classification, and this method achieved an accu-
racy of 90.44% on LIDC-IDRI. Ardila et al. [21] designed
a binary classifier based on the 3-D Inception network. The
model contains two paths: one is used for unrestricted 3-D
global image analysis, and the other is used for specific identi-
fication of local structures containing potential lung nodules.
Finally, the two output values are combined to calculate the
probability of lung cancer.

Although 3-D CNN has achieved good results, the sensi-
tivities of the models have encountered a bottleneck. In this
paper, we propose a novel multi-task CNN (MT-CNN)
to automatically identify malignant from benign nodules.
We decompose each nodule to nine 2-D views from different
angles based on existing researches [18], [22]. In multi-task
learning, sharing parameters between different tasks can pro-
vide better generalization performance for each task [23].
Therefore, we speculate image self-reconstructing auxiliary
task enables the model to preserve more microscopic
information.

Our main contributions are summarized as follows:
(1) In order to take full advantage of microscopic infor-
mation, we design a MT-CNN. MT-CNN includes two
branches, i.e., nodule classification main branch and image
reconstruction auxiliary branch. We also design a loss
penalty to balance the weights of the two branches.
(2) We integrate multiple 2-D models for lung nodule
classification. The proposed architecture can learn the
3-D spatial information of nodules with the fusion of mul-
tiple 2-D models. Compared with 3-D models, the proposed
architecture not only reduces computational complexity but
also learns more discriminative features from diagonal and
flat of nodules. (3) We validate our proposed strategies on
the public benchmark LIDC-IDRI and LUNA-16 dataset. The
results obtained by 2-D MT-CNN with fewer parameters are
comparable to state-of-the-art methods.

In the following, we describe dataset and our method in
Section II and Section III, respectively. Section IV reports
the experimental results. We discuss some key issues in
Section V. Conclusions are drawn in Section VI.

II. DATASET
We train and evaluate the proposed method on
LIDC-IDRI [24] and LUNA-16 [25] dataset. LIDC-IDRI
contains 1,018 CT scans. For each CT scan, two-stage image
annotation is performed by four experienced radiologists.
In the first stage, each radiologist independently reviews
CT scans and marks lesions belonging to one of the three
categories (‘‘nodule ≥ 3.0 mm,’’ ‘‘nodule < 3.0 mm,’’ and
‘‘non-nodule ≥ 3.0 mm’’). In the second stage, each radiol-
ogist independently reviews the anonymized marks from the
three other radiologists to render a final opinion.

In LIDC-IDRI, the slice thickness of CT images varies
from 0.6mm to 5.0mmwith amedian of 2.0mm. In our study,
the thick-slice scans larger than 2.5 mm are not used, as these
are not recommended anymore due to it can easily lead to the
omission of some small nodules [18], [26], [27]. Following
the procedures used in previous studies, we select the nodules
which were annotated by at least three radiologists for this
study, and calculated the median malignancy level of each
nodule as a final malignant score. Therefore, the number of
nodules in our dataset with different malignancy scores is
shown in Fig. 1. According to the malignancy score, we anno-
tated a nodule whose score > 3 as benign, a nodule whose
score = 3 as uncertain, and a nodule whose score < 3 as
malignant. After that, our dataset contains 1,109 candidate
nodules, including 369 benign, 405 uncertain and 335 malig-
nancy nodules. There are 266 benign, 175 malignant and
239 uncertain nodules not included in our dataset. To reduce
the impact of uncertain evaluation, we excluded all uncertain
lung nodules from our dataset.

LUNA-16 dataset is a subset of LIDC-IDRI, and it
includes 888 CT scans. The candidate locations are computed
using three existing candidate detection algorithms [28]–[30].
As lesions can be detected by multiple candidates, those
that are located <=5 mm are merged. Using this method,
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FIGURE 1. The number of nodules with different malignancy scores in
LIDC-IDRI dataset.

1,120 out of 1,186 nodules are detected with 551,065 can-
didates. For convenience, the corresponding class label (0 for
non-nodule and 1 for nodule) for each candidate is provided
on the list. It has to be noted that there can be multiple
candidates per nodule. Therefore, LUNA-16 is an extremely
unbalanced dataset, where the number of non-nodules is
about 500 times the number of nodules.

III. METHOD
In order to achieve automatic benign-malignant lung nodules
classification on chest CT, we propose a MT-CNN architec-
ture, as shown in Fig. 2.We first extract nine 2-D views from a
candidate nodule cube from different projection angles. Then,
for each view, we construct a 2-D MT-CNN model, which
consists of a nodule classification branch and an image recon-
struction branch. Finally, the classification result is obtained
by the weighted fusion of the prediction results of nine 2-D
MT-CNN models.

A. VIEW EXTRACTION
Since chest CT scans have a variable spatial resolution,
we resample resolution to a unified value of 1.0 × 1.0 ×
1.0 mm3 using the spline interpolation [31]. The pixel inten-
sity range is rescaled from (−1000, 400) to (0, 1). In order
to reduce the search space and improve the performance
of the proposed model, we also perform lung parenchyma
segmentation before extracting views.

For each nodule, we first extract a cube of 64 × 64 × 64,
which contains the candidate nodule, as shown in Fig. 2(a).
To improve the generation ability and prediction perfor-
mance, every cube embraces a complete nodule, and the nod-
ule is always located at the center of the cube. For each cube,
we extract nine 2-D views from different angles, as shown
in Fig. 2(b).

B. 2-D MT-CNN MODEL
The architecture of the proposed MT-CNN is shown
in Fig. 2(c). For each view, we construct a 2-D MT-CNN
model, which consists of three parts (see Fig. 3.), i.e., param-
eter sharing network (ShareNet), nodule classification net-
work (ClsNet) and image reconstruction network (ImgNet).

ShareNet contains three convolutional layers and three max-
pooling layers. The images are first fed into three 2-D con-
volution layers with 24, 32, and 64 filters of size 5 × 5,
3 × 3, and 3 × 3, respectively. ClsNet branch contains
three fully connected layers with 256, 16 and 2 neurons,
respectively. ImgNet contains three deconvolutional layers
and three upsampling layers, and it is structurally symmet-
rical to ShareNet. The ShareNet and ImgNet branch form an
autoencoder [32], in which the ShareNet is an encoder and
the ImgNet branch is a decoder.

For each 2-DMT-CNN, the input is a 2-D nodule view (i.e.,
an image of 64 × 64). We get a malignant score by sigmoid
activation function from ClsNet branch. The reconstructed
image is also obtained by sigmoid activation function.We use
rectified linear units (ReLU) activation function [33] except
for the output layers. For the reconstructed image, it has same
size and similar texture feature as the input image.

We update weights during the error back propagation
process by jointly optimizing ClsNet branch and ImgNet
branch. We express the final loss for each 2-D MT-CNN
model as:

Lmt = Lcls + αLimg, (1)

where Lcls and Limg are denoted the loss function of ClsNet
and ImgNet, respectively. α controls the tradeoff between
ClsNet branch and ImgNet branch, and α ∈ (0, 1). If α = 0,
the proposed method becomes a 2-D CNN (ST-CNN) model
that is only used for lung nodule classification.

We train ShareNet by jointly these two branches.
Therefore, the network can force the image feature represen-
tation learned in ShareNet to have both good nodule classifi-
cation capability and strong image reconstruction capability.
We also design a tradeoff α to balance the weight between
ImgNet and ClsNet to prevent the model from focusing on
ImgNet and reducing the nodule classification ability.

We apply the cross-entropy loss function to assess the
model and optimize it to achieve the best nodule classification
performance. For ImgNet, we calculate cross-entropy loss for
each pixel of an image, and appoint the mean value as the
loss of ImgNet branch. The cross-entropy loss function can
be formulated as

L(yi, ŷi) = yilogŷi + (1− yi)log(1− ŷi), (2)

where yi is the real label of the i-th sample. If the nodule is
malignant, yi = 1, otherwise, yi = 0. ŷi is the probability of
predicting the i-th sample as a positive sample. The larger the
prediction probability, the higher the possibility of the nodule
is a malignant nodule.

Finally, the loss of 2-D MT-CNN model is formulated as

Lmt = L(yi, ŷi)+ α
1
N

N∑
i=0

L(zi, ẑi), (3)

whereN is the number of pixels per input image, and zi repre-
sents the i-th pixel of the input image and ẑi is the correspond-
ing predicted value of the pixel. In our work, we process per
input image to 64× 64, therefore, the N = 64× 64.
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FIGURE 2. The framework of MT-CNN. We design a multi-task convolutional neural network to identify malignant and benign nodules.
(a) lung parenchyma segmentation and candidate nodule extraction. (b) extracting 2-D views from nine different angles of a candidate
nodule cube. (c) 2-D MT-CNN. (d) 3-D MT-CNN.

FIGURE 3. The architecture of 2-D MT-CNN model of each view for lung nodule classification. Conv: convolutional layer. FC: fully connected layer. The
architecture of the 2-D MT-CNN model of each view for lung nodule classification: (a) In the first row, it is the parameter sharing network with three
convolutional layers. The input image size is 64 × 64 with one channel. The filter size is 5 × 5, 3 × 3 and 3 × 3, respectively. In the middle row, we show
the nodule classification branch with three fully connected layers. In the bottom, it is the image reconstruction network with three deconvolutional
layers, and it is structurally symmetrical to the parameter sharing network.

C. FUSION APPROACH
The 2-D MT-CNN contains nine 2-D MT-CNN models,
which is shown in Fig. 2(d). The final prediction results are

obtained by fusing these nine 2-D models. The MT-CNN can
learn the 3-D characteristics by fusing the outputs of multiple
2-D MT-CNN. We get the final results by computing the
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weight average prediction scores of the nine 2-D MT-CNN,
which is formulated as

P =
V∑
v=0

ωvpv, (4)

where pv represents the prediction probability of the v-th
model. ωv is the weight of v-th model. Due to the problem of
data imbalance, we use AUC to estimate the weight. In the
training process, we train model for each view separately
without fusion. In the testing process, we get the final result
by fusing the nine views. TheAUCvalue is the result obtained
for each view in the training phase. V is the total number
of views, in our paper, V = 9. P is the final prediction
probability of a nodule obtained by fusing all view results
with weight.

D. TRAINING
To train the proposed network, we adopt the Adam learning
algorithm [34]. The training epochs and batch size are set
as 150 and 64, respectively. Also, we apply early stop-
ping to monitor the training process with a patience of ten.
In order to avoid overfitting, dropout with the probability
of 0.5 is implemented on the first and second fully con-
nected layer in ClsNet. The initial learning rate is 1e-4, and
turns to 1e-5 after half of epochs, and finally 5e-6 for the
last one-quarter of the epochs. For parameter initialization,
the sets of Kaiming’s [35] is used for the weights, and bias is
set to 0. The initialization method that particularly considers
the rectifier nonlinearities, and it enables us to train rectified
models directly from scratch. The training processing is
shown in algorithm 1.

Algorithm 1 Multi-Task CNN for Lung Nodule
Classification
Input: dataset Dv = {(X, y)i}Ni=1, hyper-parameter α.;
Output: P, the prediction probability of a nodule is a malig-

nant nodule.;
1: Training:
2: for v = 1 to 9:
3: Train the multi-task CNN for view v by minimizing

equation 3.
4: Calculate AUCv and Pv for view v.
5: end for
6: Validation:
7: Wv = AUCv/ sum (AUCv)9v=1
8: Calculate P for each lung nodule by equation 4.
9: Repeat training and validation to search parameter α by

maximizing equation 4.
10: return P;

Since data augmentation alleviates the overfitting by
adding variants to the dataset [36], as well as the limitation
of the data, we generated four augmented data using random
image translation, rotation, and flip. The translation step
was selected from [6, 6] pixels, and the rotation angle was

randomly selected from {90◦, 180◦, 270◦}. For flip, we also
randomly flip the image horizontally or vertically. For LIDC-
IDRI, we apply these transformations to positive and negative
samples, and for LUNA-16 dataset, we only apply these
transformations to positive samples.

E. EVALUATION
To yield more reliable results, we apply ten times 10-fold
cross-validation to the benchmark LIDC-IDRI. The area
under the receiver operating characteristic curve (AUC),
sensitivity, and specificity are used to evaluate our proposed
method. Sensitivity represents the proportion of malignant
nodules that are correctly predicted. Specificity measures the
proportion of benign nodules that are correctly detected. AUC
is a comprehensive indicator describing the classification
results of benign and malignant nodules. In evaluating this
method, we do not use any data augmentation.

IV. EXPERIMENTS
A. COMPARISONS IN BENIGN-MALIGNANT
CLASSIFICATION
We compare the proposed approach with existing lung nod-
ule classification approaches in the recent five years on
LUNA-16 and LIDC-IDRI, and results are summarized
in Table 1. LUNA-16 dataset evaluated in our method is
highly unbalanced, the ratio of positive and negative samples
is approximately 1: 500, but for LIDC-IDRI, the ratio is
approximately 1:1. In order to fairly compare all the methods,
we should evaluate all methods in the same environment.
Therefore, we repeated all the experiments under exact con-
ditions. We rewrite the code of all the methods except for that
of Xie et al. [22], where the public codes are available. For all
the methods, we performed 10-times 10-fold cross-validation
under the same dataset partition. As we can see, our method
has the highest AUC (95.59%) in the LIDC-IDRI dataset, and
has the highest AUC (97.30%) and specificity (96.80%) in the
LUNA-16 dataset.

For method Xie et al. [22], they also extract nine views
from a nodule cube. And for each view, they construct a
knowledge-based collaborative (KBC) model, where three
types of image patches are designed to fine-tune three
pre-trained ResNet-50 network that characterize the nodule
characteristics, including overall appearance, voxel and shape
heterogeneity. Finally, the nine KBC models are jointly used
to classify lung nodules. They constructed twenty-sevenKBC
models and achieve the AUC of 94.04% with a sensitivity
of 89.67%. Our method only uses nine models and achieves
an AUC of 95.59% with a sensitivity of 87.74%.

For method Dou (2017) [44], they propose a novel method
employing three-dimensional (3-D) CNN for false positive
reduction. The proposed framework has been extensively
validated in the LUNA-16 challenge held in conjunction with
ISBI 2016, where they achieved the highest competition per-
formance metric (CPM) score in the false positive reduction
track. Compared with their method, our MT-CNN has higher
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TABLE 1. Performance of Ours Proposed Model and Other Lung Nodule Classification Methods.

AUC and fewer parameters, which proves the effectiveness of
our method.

To evaluate the effectiveness of auxiliary task, we also
compare MT-CNN with single-task convolutional neural net-
work (ST-CNN). ST-CNN has the same network architec-
ture as MT-CNN except that it does not have an ImgNet
branch. Compared with ST-CNN, MT-CNN has an obvious
advantage in the two datasets. Although the specificity of
MT-CNN is slightly lower than ST-CNN in LIDC-IDRI,
the AUC of MT-CNN is higher than ST-CNN in the two
datasets. These results indicate that the auxiliary task can
improve the performance of the lung nodule classification
system.

Compared with other methods, our method has the highest
AUC (97.3%) and specificity (96.8%) in LUNA-16, and high-
est UAC (95.59%) in LIDC-IDRI. These results demonstrate
the robustness of our approach.

B. IMAGE RECONSTRUCTION
We randomly select a malignant nodule image and a benign
nodule image from each view in LIDC-IDRI dataset and
visualize the input image and reconstructed image in Fig. 4.
The Fig. 4 (a) and Fig. 4 (b) are the visualizations of malig-
nant nodule images and benign nodule images, respectively.
In each subfigure, the top row depicts original CT images, and
themiddle row depicts reconstructed images. The bottom row
is the probability of the nodule belonging to the malignant
class.

In Fig. 4, all reconstructed images are very similar to the
original images. We can clearly see the margin and texture
features of the nodules from the reconstructed image. This
shows that the auxiliary branch can well complete the task
of image reconstruction and most microscopic information
has been preserved. The image reconstruction auxiliary task
enables ShareNet to preserve pixel-level nodule information,
which is beneficial to classification results. Therefore, we can

retain as much information as possible to help identify malig-
nant from benign nodules.

In general, our proposed MT-CNN method includes two
branches (i.e. ClsNet branch and ImgNet branch), and the
ImgNet branch is used as an auxiliary task. In this way, we can
prevent the architecture from mechanically copying the input
to the output, and force it to learn more valid image feature
representations for nodule classification. If the encoded data
can be easily restored to the original data through a decoder,
we can retain more image detail features. As shown in Fig. 4,
the reconstructed image is of high quality. This shows that
the image reconstruction branch has a positive effect. It is
successful to improve the performance of lung nodule clas-
sification system.

C. REGULARIZATION IMPACTS
Regularization is an effective way to avoid overfitting by
actively discarding some information. Especially for com-
puter visual task, model is easy to overfit due to the large
amount of image data and parameters. For the branch of
image reconstruction, the purpose is to improve the nod-
ule classification performance by learning more microscopic
information of nodules. And for multi-task learning, it also
has the effect of regularization [23]. If regularization is still
applied to the ImgNet branch, we will not be able to recon-
struct the image with high quality because too many image
features are lost. In Fig. 5, we conduct experiments to verify
the impact of regularization on image reconstruction. And we
compare the performance of our proposed models with and
without l2 regularization, respectively.

As shown in Fig. 5, MT-CNN model without l2 regular-
ization has the best AUC. However, MT-CNN model with
l2 regularization shows the lowest AUC in all considered
models. From the result of MT-CNN model, the ImgNet
branch without l2 regularization can greatly improve the
performance of nodule classification. Therefore, if we select
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FIGURE 4. Images reconstructed by the proposed methods. (a) malignant nodule images. (b) benign nodule images. In (a) and (b), we list one original
input image and the corresponding reconstructed image for each view. The top row is the original input images, the middle row is the reconstructed
images, and the bottom row is the probability of predicting the nodule is a malignant nodule.

FIGURE 5. ROC of the proposed model with or without regularization in
LUNA-16 dataset.

a proper parameter for auxiliary task, the performance of
the model can be greatly improved. On the contrary, if the
auxiliary task with improper parameters, auxiliary task may
have the opposite effect and reduce the overall performance
of MT-CNN model.

For image classification model, the performance of mod-
els with regularization will be better than models without

regularization due to overfitting. In the proposed ST-CNN
model, we have used dropout in the first fully connected layer.
Dropout plays the same role as l2 regularization, they can
reduce the complexity of the model and solve the overfitting
problem. If we continue to apply regularization to a model,
the number of model parameters will continue to decrease,
and the learning ability of model will be discounted. But in
our proposed ST-CNN model, we only apply dropout to the
first fully connected layer, so the impact on the model will
not be too great even if we use regularization in other layers.
Therefore, regularization does not have too much impact on
ST-CNNmodel, and the performance of model does not drop
by a large scale.

Although we did not apply regularization to our proposed
model, severe overfitting does not occur. This is because not
only we apply dropout to the first fully connected layer in
ClsNet branch, but multi-task learning has a regularization
effect. Multi-task learning acts as a regularizer by introducing
an inductive bias. In this way, it reduces the risk of overfitting
as well as the ability to fit random noise of the model.

D. MODELS WITH DIFFERENT CONVOLUTIONAL LAYERS
In MT-CNN, we apply several convolutional layers to imple-
ment ShareNet. Our purpose is to verify the ability of
multi-task learning and the effect of fusing multiple views.
The basic network in our proposed approach is depicted
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FIGURE 6. AUC of the proposed MT-CNN model and ST-CNN model with
different number of convolutional layers in LUNA-16 dataset.

in Fig. 2. We use three convolutional layers and three
max-pooling layers in ShareNet. Fig. 6 shows the effective-
ness of exploiting different number of convolutional layers
and deconvolutional layers. We vary the size of the convolu-
tional layer from 1 to 4. When the number of convolutional
layer equal to five, the size of the obtained feature map is
64×1×1, it is equivalent to the first fully connected layer in
the nodule classification branch. The value of α is manually
defined. We design five parameters (0.2, 0.4, 0.6, 0.8, 1.0)
with 0.2 as the step size. When α = 0.2 and α = 0.4, we get
the same result. Therefore, we make α equal to 0.3 and rerun
experiment, and we get the best result. Therefore, we finally
set α = 0.3.
As shown in Fig. 6, for the MT-CNN model, the better

the performance, the more the number of the convolutional
layer in ShareNet. And the performance of the model with
more than two convolutional layers is much better than the
performance of model with no more than two convolutional
layers. It is effective to improve the performance by adding
the number of convolutional layers for MT-CNN model.

For the ST-CNNmodel, it has better performance when the
model has two or three convolutional layers. If we increase
the number of convolutional layers, the problem of overfitting
may occur and the model performance will decrease. On the
contrary, for theMT-CNNmodel, even if it has a large number
of parameters, the model does not have the problem of over-
fitting due to the regularization effect of multi-task learning.

Compared MT-CNN model with ST-CNN model, the per-
formance of the former is no worse than the performance of
the latter when they have the same number of convolutional
layers. The performance difference also increases as the num-
ber of convolutional layers increases.

For the MT-CNN model, the AUC score with four con-
volutional layers is higher than three convolutional layers.
Because the difference is too small, there is no difference
between the two models from statistical significance. But
training a model with four convolutional layers takes much

more time and memory than training a model with three
convolutional layers. In order to balance various factors,
no matter for multi-task learning or single-task learning,
three convolutional layers are one of the best choices for our
proposed model.

E. IMAGE RECONSTRUCTION LOSS WEIGHT
In our proposed approach, we use the mean binary
cross-entropy loss function for ImgNet branch. In the pro-
posed MT-CNN model, the nodule classification task is the
main task, and the effect of ImgNet branch is to improve
the performance of nodule classification. Therefore, in order
to train a predictive model with superior classification per-
formance, it is necessary to ensure that the two losses have
appropriate weights in the combined loss. In order to con-
straint the effect of ImgNet branch, we set a threshold α for
ImgNet loss in Equ. (1). And the α is the ratio of the nodule
classification loss weight to the ImgNet loss weight. But for
ST-CNN model, it has the classification task, we do not need
to consider the impact of auxiliary task.

To determine the threshold for image reconstruction loss,
we perform experiments among the interval [0, 1]. If the
threshold equals to 0, the MT-CNN model cannot obtain any
information from ImgNet branch, so the model is equivalent
to ST-CNN model. If the threshold equals to 1, this means
that there is no difference between the primary task and the
auxiliary task for MT-CNN, and the importance between
these two tasks is equal.

As shown in Fig. 7, when the threshold is in a certain
range, the performance of MT-CNN will be improved as
the threshold increases. When the threshold is greater than
a certain value, the performance of MT-CNN will decrease.
It can be seen from these results that the performance of the
ImgNet branch can greatly affect the final performance of the
MT-CNN model.

FIGURE 7. ROC curves of the proposed model with different image
reconstruction loss weight in LUNA-16 dataset. If the weight equals to 0,
the MT-CNN model is equivalent to ST-CNN model.
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ComparedMT-CNNmodel with ST-CNNmodel, although
the MT-CNN model has more parameters and it can learn
more characteristics due to the ImgNet branch, not all models
perform better than ST-CNN model. Like threshold equals
to 1, the performance of MT-CNN model much worse than
ST-CNN model and it has the worst performance in all mod-
els. When the threshold equals to 1, the image reconstruction
loss is greater than nodule classification loss, although we
use mean binary cross-entropy loss function. And dropout
only was applied to the first fully connect layer of nodule
classification branch, there is no regularization in other parts.
As a result, the model learns more features about image
reconstruction and has an overfitting problem when training
this model. But if we select a proper threshold for image
reconstruction, the trained model learns more features used to
identifymalignant and benign nodules, and do not occur over-
fitting. Therefore, the performance of the MT-CNN model
with proper image reconstruction loss threshold is far better
than ST-CNN model.

V. DISCUSSION
In this paper, a novel approach for lung nodule classifica-
tion using multi-task learning convolutional neural network
is proposed. We use an image reconstruction task as the
auxiliary task to improve classification performance of lung
nodules. We conduct our experiments on PyTorch (the ver-
sion is 1.3) and Tesla V100 GPU. Python 3.7 is used to
implement this method. Compared with published methods
that use 3-D CNN or multi-view for lung nodule classifica-
tion, our proposed approach achieves the best performance
on LIDC-IDRI dataset (see Table 1). These results indicate
that a proper auxiliary task can improve the performance of
the main task. Image reconstruction task allows the model
to remember more microscopic information, such as shape,
size and texture. Therefore, the image reconstruction task is
suitable to solve the problem of identifying malignant and
benign nodules. And these results suggest that it is important
forMT-CNNmethods to design an appropriate auxiliary task.

We applied a multi-task learning method to identify malig-
nant and benign nodules. The advantages of the proposed
approach mainly have two aspects: a suitable auxiliary
task and multiple views extracted from candidate nodules.
Compared with ST-CNN model, MT-CNN model can share
features obtained from each task among multiple tasks. For
each task, they learn different features from the same input
images, due to their output and network structure are dif-
ferent. For example, the nodule classification model may
learn more margin features of nodules. But for image recon-
struction, model may learn more texture features of images.
Therefore, we can learn more detailed features from an input
image by integrating multiple related tasks.

In this paper, we extract nine views from different planes of
a candidate nodule cube. And we construct a 2-D MT-CNN
model for each view. We learn 3-D spatial information of
nodules by fusing the nine 2-D models. Compared with
2-D images, although 3-D images include more spatial

information, we need more computation and time to train a
3-D model. We solve the problem by fusing multiple 2-D
models. Since we reduce the information that is not related
to nodules, the fusion model produces representations with
higher discriminative ability while reducing the amount of
calculation and time. In our paper, the main contribution is
image reconstruction branch to improve nodule classification
performance. For different views, the prediction ability of the
model is different, and we are able to get better prediction
results by fusing different models. However, our aim is to
compare the classification ability between single-task CNN
model and multi-task CNN model, and the comparison of
ensemble approach has been studied [18], [45]. Therefore we
only use a weighted integration approach by assigning a big
weight to the model with a strong classification ability, and
we use AUC to represent the weight of each view.

CNN has been increasingly applied to medical image pro-
cessing and many methods have shown excellent effects [46].
Numerous researches have demonstrated that the perfor-
mance of 3-D CNNmodels is far better than the performance
of 2-D CNN models. However, training a 3-D model is more
difficult than train a 2-D model especially when high quality
training samples are absent. It is difficult to train a 3-D
model to handle the problem of lung nodule classification.
In LUNA-16, we have 1,186 positive samples, but the number
of negative samples is more than 500 times that of posi-
tive samples. Although we have used data augmentation to
balance the number of positive and negative samples, it is
difficult to obtain a high-quality balanced dataset.

In multi-task learning network, the sharing of low-level
semantic information helps reduce the amount of computa-
tion. At the same time, the shared presentation layer enables
several related tasks to better combine related information.
Multi-task learning models must learn information that can
represent all tasks, and therefore can help reduce overfitting
problems of single task. Althoughwe have used data augmen-
tation methods to increase positive samples, positive samples
are still far fewer than negative samples. For multi-task
learning, it provides implicit data augmentation since differ-
ent tasks have different noise patterns. A multi-task learn-
ing model that learns two tasks simultaneously can learn
more general representations. Therefore, it is an effective
way to reduce the impact of data imbalance by multi-task
learning [23], [47].

In this paper, we focus on reducing false positives rather
than developing a whole automatic lung nodule detection sys-
tem. We assumed that candidate nodules have been detected.
This means that we can combine our proposed approach with
any candidate nodule detector by simply setting the output
size of the detector to our input size. Therefore, the final
results of our proposed method will depend on the perfor-
mance of a candidate nodule detector. The proposed approach
will achieve a better result if the provided candidate detector
with higher performance. In contrast, the proposed approach
will obtain a worse result if the provided candidate detector
has low sensitivity.
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To summarize, our proposed approach has achieved a
good performance for lung nodule classification by using
multi-task learning and combining multiple views. For each
view, we train one MT-CNN model and finally obtain the
final result by integrating the prediction probability from
all views. There is no information communication between
different views before fusion. According to our proposed
approach, one interesting direction that might also improve
performance is to share parameters and features among all
the 2-D MT-CNN models.

VI. CONCLUSION
In this work, we present a multi-task learning convolutional
neural networkmodel formalignant and benign nodule classi-
fication on chest CT. In this method, an image reconstruction
auxiliary task is exploited to improve the performance of
nodule classification (main task) by learning more chest CT
image detailed characteristics. The experiments results man-
ifest the effectiveness of the proposed model. In the future,
we plan to improve the proposed method in two aspects:
(1) we will continue to improve the performance of lung
classification system by exploring the relationships among
different views. (2) We will try to evaluate the proposed
approach to clinical data, and apply it to the clinic.
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