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ABSTRACT Machine learning algorithms have been applied to numerous transcript datasets to identify
Long non-coding RNAs (lncRNAs). Nevertheless, before these algorithms are applied to RNA data, features
must be extracted from the original sequences. As many of these features can be redundant or irrelevant,
the predictive performance of the algorithms can be improved by performing feature selection. However,
the most current approaches usually select features independently, ignoring possible relations. In this paper,
we propose a new model, which identifies the best subsets, removing unnecessary, irrelevant, and redundant
predictive features, taking the importance of their co-occurrence into account. The proposed model is based
on decomposing solutions and is called k-rounds of decomposition features. In this model, the least relevant
features are suppressed according to their contribution to a classification task. To evaluate our proposal,
we extract from 5 plant species datasets, a set of features based on sequence structures, using GC content,
k-mer (1-6), sequence length, and Open Reading Frame. Next, we apply 5 metaheuristics approaches
(Genetic Algorithm, (µ + λ) Evolutionary Algorithm, Artificial Bee Colony, Ant Colony Optimization,
and Particle Swarm Optimization) to select the best feature subsets. The main contribution of this work was
to include in each metaheuristic a decomposition model that uses round and voting scheme. To investigate
its relevance, we select the REPTree classifier to assess the predictive capacity of each subset of features
selected in 8 plant species.We identified that the inclusion of the proposed decompositionmodel significantly
reduces the dimensions of the datasets and improves predictive performance, regardless of the metaheuristic.
Furthermore, the resulting pipeline has been compared with five approaches in the literature, for lncRNA,
when it also showed superior predictive performance. Finally, this study generated a new pipeline to find a
minimum number of features in lncRNAs and biological sequences.

INDEX TERMS Feature selection, machine learning, metaheuristic, bioinformatics, lncRNAs.

I. BACKGROUND
In recent years, the power to process and analyze
biological data has advanced significantly [1]. Compu-
tational approaches have been widely used in protein
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structure prediction, genomics, proteomics, gene networks
and protein-coding genes detection [2], [3]. Many of these
approaches are based on Machine Learning (ML) and have
been applied in predictive tasks. In these tasks, as data
classification, ML algorithms induce predictive models able
to associate predictive features from an instance to its
class. Consequently, these approaches have contributed to
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applications in new problems, as is the case of the Long
non-coding RNAs (lncRNAs). Fundamentally, lncRNAs are
a type of Non-Coding RNA (ncRNA) with a length larger
than 200 nucleotides [4], and according to recent studies,
play essential roles in several critical biological processes
[5]–[7], including transcriptional regulation [8], epigenet-
ics [9] and cellular differentiation [10]. They are correlated
with some complex human diseases, such as cancer and
neurodegenerative diseases [11], [12]. According to Wang
and Chekanova [13], in plants, the lncRNAs act in flowering
time control, organogenesis in roots, gene silencing, stress
responses [14], [15], photomorphogenesis in seedlings, and
reproduction [16]. Essentially, they are observed in almost
all living beings, not only in animals and plants, but also in
yeasts, prokaryotes, and even viruses [17], [18].

However, according to [19], several challenges arise when
ML approaches are used to integrate biological and biomedi-
cal datasets, because these datasets have inherent complexity
beyond their large sizes. Biological datasets are also high-
dimensional, incomplete, biased, heterogeneous, dynamic,
and noisy [19]. Another problem is that several applications
in bioinformatics apply ML algorithms to sequence data, and
as many ML algorithms can deal only with numerical data,
sequences need to be translated into sequences of numbers.
Early applications transformed each letter in the sequence
to binary vector [20]. These transformations resulted in very
long sequences with sparse data [19]. This difficulty grows
as the size of the sequences grow. A more straightforward,
and more efficient approach, adopted by most current appli-
cations of ML algorithms, extracts relevant features from
the sequences. These features are based on several proper-
ties, e.g., physicochemical, ORF-based, usage frequency of
adjoining nucleotide triplets, and sequence-based.

Thereby, ML algorithms have been used in several
tools to predict lncRNAs, such as: CPC [21], CPC2 [22],
CPAT [23], CNCI [24], PLEK [25], lncRNA-MFDL [26],
LncRNA-ID [27], lncRScan-SVM [28], LncRNApred [29],
DeepLNC [30], TERIUS [31], BASiNET [32], LncFinder
[33], PLncPRO [34], PlantRNA_Sniffer [35] and RNAplonc
[36]. In these tools, ML algorithms were applied to data
from more than one species or specifically to plant, animal,
and human systems. These approaches allowed access to
more information about lncRNAs due to using different fea-
tures and ML algorithms [28]. However, many studies have
investigated the use of several features to extract significant
information from lncRNAs, generating highly dimensional
feature vectors.

Fundamentally, a high ratio between the number of
instances and predictive features is behind the curse of dimen-
sionality problem. In this problem, as the ratio increases,
samples become so similar that it is challenging to induce
models with high predictive precision. Thereby, when the
number of characteristics increases substantially, the pre-
dictive performance of models induced by ML algorithms
decreases. An alternative to mitigate this problem is to reduce
the number of features, removing irrelevant and redundant

features [37]. According to Xue et al. [38], the feature selec-
tion is an essential process in ML, as it reduces the feature
extraction and model induction computational costs. Addi-
tionally, it can increase predictive performance. Finally, as the
extraction of each feature also has an economical cost, it can
reduce the financial cost of an ML-based predictive tool,
making it available to a higher number of users.

The high dimensional nature of many molecular biology
datasets hasmotivated us to look for efficient feature selection
techniques [39]–[41]. In the literature, several approaches
have been used in the biological data classification. In par-
ticular, feature selection techniques have been applied in
the study of ncRNA, for instance, e.g., Wang et al. [5]
(reduced from 74 to 26 - lincRNA) and Lertampaiporn et al.
[41] (reduced from 369 to 20 - ncRNA) report experiments
using metaheuristics. Pian et al. [29] (reduced from 89 to
30 - lncRNA) and Negri et al. [36] (reduced from 5,468 to
16 - lncRNA) described the use of conventional feature
selection techniques, respectively: feature score criterion,
WrapperSubsetEval, InfoGainAttribute, GainRatioAttribu-
teEval. Even so, we noticed a lack of studies related to feature
selection with metaheuristic techniques for lncRNAs.

Several studies have shown robust results when using
metaheuristics for feature selection and other applications,
such as Genetic Algorithm (GA) [5], [42]–[45], Evolu-
tionary Algorithm ((µ + λ)EA) [46]–[48], Bat algorithm
(BA) [49]–[52], Artificial Bee Colony (ABC) [53]–[56],
Ant Colony Optimization (ACO) [57], [58], and Particle
Swarm Optimization (PSO) [44], [47], [59]–[61]. Further-
more, the literature presents several other representational
EA-based feature selection methods, such as variable-size
cooperative co-evolutionary PSO for feature selection on
high-dimensional data [62], multi-objective PSO approach
for cost-based feature selection in classification [63], binary
differential evolution with self-learning for multi-objective
feature selection [64], cost-sensitive feature selection using
two-archive multi-objective ABC algorithm [65], and return-
cost-based binary firefly algorithm for feature selection [66].
These metaheuristics, also known as nature-inspired algo-
rithms [67], are suitable for feature selection, since they
can easily represent features and efficiently search for a
good feature subset in high dimensional datasets [68], [69].
Moreover, these metaheuristics are an efficient alternative
to exact methods, which usually have high computational
costs [70]. Furthermore, metaheuristics are able to avoid
getting stuck in local optima, which often occurs in feature
selection problems, selecting relevant features and improving
predictive performance.

Therefore, based on the successful use of metaheuris-
tics, we propose a novel way to identify the best features,
removing unneeded, irrelevant, and redundant content from
datasets. Our approach is based on a decomposing model,
using a rounds and voting schema, which is inserted in the
metaheuristics. Essentially, this study proposes an innova-
tive procedure for feature selection (Feature Selection stage
(see Figure 1)), where we consider each round as a subset of
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features that are near-optimal. This permits a reduction of the
search space, i.e., features that must be visited to find a global
optimum, when compared to the original form of the meta-
heuristics. Based on this, to assess the proposed approach,
we used five metaheuristics (GA, (µ + λ)EA, ABC, ACO,
and PSO). Furthermore, we investigated how the features
selected by the decomposing model affected the predictive
performance of three ML algorithms, i.e., J48, REPTree and
Random Forest in the lncRNAs classification task. We chose
these ML algorithms because they induce interpretable pre-
dictive models, allowing the understanding of the internal
decision-making process. Thus, domain experts can validate
the knowledge used by the models to classify new sequences.
Finally, our approach focuses on the minimal optimal
problem (defined by Nilsson et al. [71]), whose purpose is
to find the smallest subset of features that contains all infor-
mation. This study contributes to the area of computer sci-
ence and bioinformatics, introducing a new approach for the
feature selection problem in biological sequences. Thereby,
we present five main contributions:
• Application of a new approach based on a decomposi-
tionmodel for the feature selection problem in biological
sequences

• Decomposition model does not depend on the
metaheuristic used;

• An in-depth analysis of 5,467 features extracted from
lncRNA sequences;

• A new pipeline to find a minimum number of features in
lncRNAs and biological sequences;

• A new tool able to select relevant features, with compet-
itive classification performance.

The remainder of this article presents our methodology
in Section II, proposed approach in Section III, results in
Section IV, and our final considerations in Section V.

II. MATERIALS AND METHODS
In this section, we describe our methodological approach
designed to achieve the proposed objectives. Figure 1 sum-
marizes the pipeline developed in this study. Basically,
we divided the process into seven stages: (1) preprocessing of
FASTA files; (2) Split sequences into training (see Table 1)
and test (see Table 2); (3) Features extraction; (4) Feature
Selection; (5) Training; (6) Test; (7) Performance analysis.
Nevertheless, it is necessary to emphasize that we denote a
sequence w over the alphabet β = {A,C,G,T } by w =
w1,w2, . . . ,w|w|, where |w| is the sequence length wl ∈ β.
Furthermore, we denoted by |w|σ the number of symbols σ ∈
β inw. Therefore, a substring of length k > 0 starting at posi-
tion l in w is given by wl,k = wl,wl+1, . . . ,wl+k−1. Finally,
we denote all sequences of our dataset (mRNA/lncRNA) by
SeqRNA.

A. TRAINING SET CONSTRUCTION
We built a training set with 5 plant species (Arabidop-
sis thaliana, Cucumis sativus, Glycine max, Oryza sativa
and Populus trichocarpa - see Table 1), adopting the

data representation used in Negri et al. [36]. Two classes
were defined for the datasets: positive class, lncRNAs, and
negative class, protein-coding genes (mRNAs). The
lncRNA data were extracted from two public databases,
PLNlncRbase (defined by BPLN ) [72] and GreeNC
(version 1.12 - defined by BGree) [73].

TABLE 1. Species used to create the training set. The ‘‘#used’’
demonstrates the total number of sequences used after filtering steps.

The mRNA data were downloaded from Phytozome
(defined by BPhy) [74] database version 11. The datasets
were chosen considering the publicly available annota-
tion and its phylogenetic diversity [36]. As preprocess-
ing, we removed sequence redundancy at 80% of identity
using the CD-HIT-EST tool (v4.6.1) [75] and we selected
only sequences longer than 200nt [41], [76]. Furthermore,
we are faced with the imbalanced data problem. Therefore,
we applied random sampling, selecting 1,804 sequences
for each species. After preprocessing, we used a total
of 9,020 lncRNA sequences and 9,020 mRNA sequences.

B. TEST SET CONSTRUCTION
To assess the proposed approach, we created eight datasets
of plant species (Amborella trichopoda, Brachypodium dis-
tachyon, Citrus sinensis, Manihot esculenta, Ricinus commu-
nis, Solanum tuberosum, Sorghum bicolor and Zea mays),
summarized in Table 2.

TABLE 2. Species used to create the test set. The ‘‘#used’’ reports the
total number of sequences selected in each species.

The test sets were treated in the same way as the training
set. The lncRNA sequences were extracted from GreeNC,
and mRNA sequences from Phytozome.

C. FEATURE EXTRACTION
The feature vector has a strong effect on the performance of
predictivemodels. Thereby, the extraction of relevant features
plays an essential role, being one of the most critical steps
in the induction of a robust predictor/classifier [26]. This
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FIGURE 1. Proposed Pipeline for the Feature Selection Problem in lncRNAs data. The FASTA
format files (lncRNA - positive dataset and mRNA - negative dataset) were filtered to find
sequences larger than 200 nucleotides (size > 200), and redundant sequences with 80% of
identity (CD-HIT-EST) were removed. This dataset was divided into training (9020 lncRNA and
9020 mRNA) and test (40299 lncRNA and 40299 mRNA). Features were extracted from each
sequence. Filters were applied to the training set to select a subset of features. Next, for each
selected feature set, ML algorithms were applied to the data to induce predictive models. The
models induced for each filter were applied to the test set, using the same selected features
in the training set. Finally, the predictions of the model induced for each filter were evaluated.

study used four descriptor groups to distinguish lncRNA from
mRNA. That is, four sets of values were extracted from the
sequences, creating four vectors, described next.

1) GC CONTENT DESCRIPTOR
According to the literature, when we compare lncRNAs with
mRNAs, the lncRNAs have low GC content [77]. The cal-
culus of the GC content (guanine-cytosine content - denoted
by fGC ) is illustrated by Equation (1).

fGC (w) =
|w|G + |w|C∑
σ∈β

|w|σ
. (1)

where the sum of symbols |w|G and |w|C is divided by the
total length of the sequence (sum of |w|A, |w|T , |w|C , |w|G).

2) K-MER DESCRIPTOR
The frequency of neighboring bases k (k-mer) may contain
statistical information to distinguish lncRNAs from mRNAs.
We denoted k-mer by fkmer , according to Equation (2).

fkmer (w) =
(

c11
|w| − 1+ 1

, . . . ,
c14

|w| − 1+ 1
,

c24+1
|w| − 2+ 1

, . . . ,
c65460

|w| − 6+ 1

)
. (2)
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This Equation was applied to the transcription sequences
with frequencies of k = 1, 2, 3, 4, 5, 6. In this equation, cki is
the amount occurrences of substrings with length k in w,
in which the index i ∈ {1, 2, . . . , 41 + . . . + 4k} represents
the analyzed substring.

3) SEQUENCE LENGTH DESCRIPTOR
Because the lncRNAs were shown to be considerably shorter
than the mRNAs, the sequence length (denoted by fSL in
Equation (3)) was also adopted [77], [78].

fSL (w) =
∑
σ∈β

|w|σ . (3)

4) OPEN READING FRAME (ORF) DESCRIPTOR
Identifying candidate ORFs in the transcripts is an extremely
relevant guideline for distinguishing lncRNAs from mRNA
[77], [79], [80]. For such, we analyze the three frames in the
forward strand of our sequences using the txCdsPredict
program from the UCSC genome browser [81].1 Thereby,
we applied this software, which predicts potential ORFs from
a given sequence w, to extract the features: txCdsPredict
Score, cdsStarts, cdsStop, cdsSizes, and cdsPercent. The fea-
tures were represented as a vector for the function that we
denote by fORF , corresponding to Equation (4).

fORF (w)

= (Score, cdsStarts, cdsStop, cdsSizes, cdsPercent). (4)

The txCdsPredict has been used in several stud-
ies ( [28], [82], [83]) to determine whether a transcript is
protein-coding and, if so, the locations of the start and stop
codons. The algorithm uses ORF length, the presence of
a Kozak consensus sequence at the start codon, the pres-
ence of upstream ORFs, homology in other species, and
nonsense-mediated decay [81]. Furthermore, several tools
have used ORF features, among them: [21], [23], [26]–[29],
[33], [36].

5) CONCATENATE FEATURE VECTORS
According to Fan & Zhan [26], a concatenated feature vec-
tor can keep the discriminatory information from original
multi-feature sets and eliminate the redundant information
from the correlation between distinct feature sets, resulting
in models with robust predictive performance. To denote each
transcribed sequence in the dataset, we concatenate the pre-
viously mentioned features in a new feature vector, defined
as follows (Equation (5)):

Vf = {(Xi,Yi)| ∀wi ∈ SeqRNA,

Xi = (fGC (wi), fkmer (wi), fSL(wi), fORF (wi)),

Yi = Label(wi)}. (5)

where, feature vector Vf contains the elements Xi and Yi
for every sequence wi belonging to SeqRNA, such that

1(https://genome.ucsc.edu/ [81])

Xi is formed by the functions (fGC (wi), fkmer (wi), fSL(wi),
fORF (wi)) and Yi by labels 0 (mRNA); 1 (lncRNA). Therefore,
we extracted 5,467 genomic characteristics for each sequence
relative to the training set (see Table 1): GC content (1 fea-
ture), k-mer (1-6 k-mer length = 5, 460 features), Sequence
length (1 feature), and ORF metrics (5 features).

D. DATA NORMALIZATION
In this work, we used the min-max normalization method,
which reduces the data range to 0 and 1 (or -1 to 1,
if there are negative values). The general formula is given as
(Equation (6)) [84]:

x ′ij =
xij −Min(j)

Max(j)−Min(j)
. (6)

where x is the original value and x ′ij is its normalized version.
Further,Min(j) andMax(j) the smallest and the largest values
of a feature j, respectively [84].

E. FEATURE SELECTION TECHNIQUES
Feature selection techniques are typically categorized as
filters, wrappers, or embedded approaches [85]. Filters are
applied independent of the ML algorithm used [86], consid-
ered as a preprocessing stage for a subsequent learning [87].
They exploit the information present in the predictive features
of a dataset, assessing their relevance using measures such as
information gain, entropy, and consistency [85], [86]. Wrap-
pers evaluate the relevance of subsets of predictive features
using an ML algorithm as an oracle [88], i.e., they use the
accuracy of predictive models to guide the selection of an
optimal subset of features [87]. The embedded approach is
implemented as part of an ML algorithm that has an internal
feature selection mechanism [39], [89].

In this paper, we applied Filters to select subsets of features
in a preprocessing step, independently of the ML algorithm
used. According to Guyon et al. [39], there are several justi-
fications for the use of filters, among them: (1) filters were
successfully reported in several previous works. (2) Com-
pared to wrappers, filters are faster. (3) Filters provide a
generic selection of variables, i.e., the choice of features is
not adjusted to a particular ML algorithm.

F. EVALUATION METRICS
The algorithms were assessed with seven measures [26],
[90]: Sensitivity (SE), Specificity (SPC), Accuracy (ACC),
F1-score, Positive Predictive Value (PPV), Negative Pre-
dictive Value (NPV), and Matthews Correlation Coefficient
(MCC). These measures were used to evaluate the models’
predictive performance. These measures use True Positive
(TP), True Negative (TN), False Positive (FP) and False Neg-
ative (FN) values, where: TPmeasures the correctly predicted
lncRNAs; TN represents the correctly classified mRNAs;
FP describes all those negative entities that are incorrectly
classified as lncRNAs and; FN represents the true lncRNAs
that are incorrectly classified as mRNAs.
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G. METAHEURISTICS
For the experiments, we chose five metaheuristics, among
them: GA [5], [42], (µ + λ)EA [46]–[48], ABC [54]–[56],
ACO [57], [58], PSO [44], [47], [59]–[61]. These meta-
heuristics were based on successful applications for feature
selection and other areas of applications, such as: Engineer-
ing, Computer Science, Manufacturing, and so on. Moreover,
they are considered state-of-art in Evolutionary Algorithms.
Thereby, these metaheuristics are briefly described next.

1) GENETIC ALGORITHM (GA)
GA is a general stochastic search algorithm that effectively
exploits large search spaces, which is generally required in
selection cases. Moreover, GAs conduct global search and
are based on the mechanics of natural selection. Essentially,
GAs simulate the processes in natural systems for evolutions
based on the principle of the ‘‘survival of the fittest’’ (Charles
Darwin) [91]. Moreover, they work with the coding of the
parameter set and use reward information (objective func-
tion). Therefore, GA applied in this paper comprises three
basic operators: reproduction, crossing, and mutation.

2) (µ+ λ)EVOLUTIONARY ALGORITHM (EA)
The (µ + λ)EA used in this work applies the fitness rank-
ing selection procedure. In other words, at the end of each
evolution cycle, the whole population is renewed according
to generational substitution scheme. Furthermore, elitism and
tournament are applied, in which the fittest individual of the
population is kept in the new generation. The chromosomes
(Binary encoding) are manipulated using standard genetic
operators of mutation and crossover (single-point crossover,
bit flip mutation). However, the (µ+λ)EA has an extra com-
ponent (a) that represents the interval width of the mutation,
where the modification has a uniform probability [−a, a].
Thus, for each individual, the parameter is adjusted adaptively
through random mutation events [47], [48].

3) ARTIFICIAL BEE COLONY (ABC)
TheABC is bio-inspired in the food foraging behavior of bees
to seek the best solution to an optimization problem. Each
point in the search space is considered as a food source. The
‘‘Scout Bees’’ randomly sampled the space and through the
fitness function, they report the quality of the visited places.
The solutions are then ranked, and other ‘‘bees’’ are recruited
to search the fitness landscape in the neighborhood of the
highest ranking locations. The neighborhood of a solution is
called a ‘‘flower patch’’. Therefore, the algorithm searches
the most promising solutions and selectively explores its
neighborhoods looking for the global minimum of the objec-
tive function [92].

4) ANT COLONY OPTIMIZATION (ACO)
The ACO is a bio-inspired algorithm by the foraging behav-
ior of some species of ants, developed by [93]. This tech-
nique applies the pheromone method that ants deposit to

demarcate a more favorable path, which must be followed
by other members of the colony [93], [94]. Fundamentally,
each agent (ants) initially follows a random way, and after
some time they tend to follow a single way, considered sig-
nificant. They use indirect communication to indicate the best
route for the other members of the colony. To do this, they
spread a substance called pheromone. That is, computation-
ally, the algorithm presents a graph with n vertices and places
an artificial ant in each of these. Thereby, each ant traces
a path following a probabilistic equation in function of the
‘‘deposited’’ pheromone at each edge of the graph. Finally,
after constructing all routes, the pheromone intensity in each
edge is increased according to the quality of the generated
solution.

5) PARTICLE SWARM OPTIMIZATION (PSO)
It is a bio-inspired computational algorithm in the social
behavior metaphor about the interaction between individu-
als (particles) of a group (swarm), developed in 1995 by
Kennedy and Eberhart. This algorithm was implemented
based on the observation of flocks of birds and shoals of
fish in search of food in a certain region [95]. The PSO
is a population-based stochastic global optimization algo-
rithm [96]. The version applied in this research uses the
geometric framework, where it presents a close relationship
between a simplified form of PSO (without the inertia term)
and evolutionary algorithms. This framework enables us to
generalize, in a natural, rigorous, and automatic way, PSO
for any search space for which a geometric crossover is
known [95]. This algorithm was developed using theoretical
tools of evolutionary algorithms, that is, geometric cross-
ing and geometric mutation. Basically, there is no velocity,
the equation of position update is the convex combination,
there is mutation and the parameters w1, w2, and w3 are
non-negative and add up to one [97].

III. DECOMPOSING MODEL FOR FEATURE SELECTION
In this study, we propose a new approach based on a decom-
posing model for feature selection, which uses a specific
metaheuristic to search the best feature setN times, findingN
reasonable solutions (i.e., feature subsets less redundant and
irrelevant than the whole set) and selects the best subset with
the fitness function used in the metaheuristic search. Features
from the best subset remain in the dataset, with the others
being discarded (backward elimination), reducing the origi-
nal dataset. This step is called the first round. Next, the algo-
rithm starts the second round, updating the individuals in the
population. In this case, the metaheuristic used will perform
the search process in the reduced feature space (feature subset
obtained in the first round).

The iterative process (number of rounds) finishes when:
1) the best solution is evaluated by the fitness function as
being worse than the whole set, 2) the best solution has
not been improved for a given number of rounds or 3) the
maximum round is reached. Notice that with these conditions,
the algorithm can execute some rounds, just one (as a base
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metaheuristic) or none (no reduction) automatically, based
on the fitness. This paper also includes an additional step
for decomposing model using voting scheme, called voted
solutions. Instead of selecting the best solution from the
population, i.e. the best fitness value, the algorithm generates
solutions with the most frequently selected features.

In this case, the procedure called voted solutions, verify
all solutions in the population and highlight each feature
from the dataset that appears with a specific frequency (e.g.,
a feature frequency is 2 if it appears twice in the population).
A voted solution comprises only the features that appear
more than a given frequency called minimal frequency. The
frequency is a percentage that features occurs in the popula-
tion. In that case, the frequency is obtained by multiplying
the population size and a specific rate, called voting rate.
To better understand this process, Algorithm 1 introduces
a pseudo code of round steps and Algorithm 2 shows the
generation of voted solutions.

Algorithm 1 Decomposing Model for Feature Selection
Input : dataset
Output: reduced_dataset

Define max_round parameter;
Initialize counter stagnant_round as 0;
Define max_stagnant_round parameter;
Define metaheuristic for the search process;
Define population_size parameter;
for round ← 1 to max_round do

Initialize population;
for h← 1 to population_size do

individual ← get solution passing dataset and
parameters to fitness function;
Append individual in population;

voted_solutions← Generate_voted_solutions();
if Round_stagnation() == True then

Break round loop;
dataset ← Reduce dataset keeping features from
voted_solutions;

Export dataset;

A. ENCODING SCHEME
For the experiments performed in this study, the candidate
solutions in all fivemetaheuristics were represented by binary
encoding (each solution as a N -bit binary string), where the
individuals/particles are vectors of zeros and ones, represent-
ing a feature subset, as shown in Figure 2. For instance,
the value 0 in the first position means that the feature does
not belong to the subset. The opposite happens if the value
is 1, i.e., the feature belongs to the subset.

B. METAHEURISTICS AND FITNESS FUNCTION
We defined the CFS (Correlation-based Feature Selection)
function [98] (see Equation 7) to evaluate the feature subsets

Algorithm 2 Generate_Voted_Solutions()
Output: voted_solutions

Define voting_rate parameter;
Initialize vector voted_solutions;
minimal_frequency← voting_rate ∗ population_size;
for feature in population_size do

feature_frequency← how many times feature
appears in population;
if feature_frequency ≥ minimal_frequency then

Append feature to voted_solutions;

Return voted_solutions;

FIGURE 2. An illustration of our encoding scheme for all metaheuristics.

selected by each metaheuristic. This function assesses the
degree of redundancy and predictive capacity of a subset.
It seeks a subset highly correlated with the target class and
with low correlation with other features [99], [100]. The
probability that a feature will be selected depends on how
well it can predict the correct class, when compared to other
features [98].

MS =
krcf√

k + k(k − 1)rff
(7)

where MS is the ‘‘merit’’ of a feature subset S containing k
features, rcf is the mean feature-class correlation (f ∈ S),
and rff is the average feature-feature inter-correlation [98].
In short, we investigate the performance of five metaheuris-
tics using CFS algorithm as the fitness function. Moreover,
at this point of the paper, we will name GA, (µ + λ)EA,
ABC, ACO, PSO with a decomposing model and CFS algo-
rithm as M1-GA, M2-EA, M3-ABC, M4-ACO andM5-PSO,
respectively.

IV. RESULTS AND DISCUSSION
This section presents the main experimental results using a
decomposing model proposed for feature selection.
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A. EXPERIMENTAL SETUP
For the experiments reported in this section, we worked with
Perl (Version 5.24.1) and Python (Version 3.7.4). The follow-
ing hyper-parameters values were empirically defined:
• Problem dimension: N. of features
• Search domain: {0, 1}
• Number of rounds: k = 5;
• Voting rate: defined with 100%;
• M1-GA: Crossover Operator (single-point), Crossover
Probability (0.6), Generations (20), Mutation Opera-
tor (bit-flip), Mutation Probability (0.033), Population
Size (20), Selection Operator (roulette wheel);

• M2-EA: Generations (20), Crossover Operator (single-
point), Crossover Probability (0.6), Mutation Opera-
tor (bit-flip), Mutation Probability (0.1), Population
Size (20), Selection Operator (tournament);

• M3-ABC: Iterations (20), Population Size (30), Number
of Selected Sites (15), Number of Elite Sites (8), Number
of Selected Site Bee (15), Number of Elite Site Bee (30);

• M4-ACO: Evaporation (rho = 0.9), Pheromone
(α = 2.0), Heuristic (β = 0.7), Q (30), tau0 (0.1),
Iterations (20), Population Size (20);

• M5-PSO: Iterations (20), Social Weight (0.33),
Population Size (20), Mutation Operator (bit-flip),
Mutation Probability (0.01), Individual Weight (0.34),
Inertia Weight (0.30).

B. FEATURE SELECTION PROCESS
In this step, M1-GA, M2-EA, M3-ABC, M4-ACO and
M5-PSO were applied to the training set with the purpose
of reducing the dimensional space of the extracted features,
as shown in Table 3. For each one of the k rounds defined
as a parameter, each metaheuristic selected a feature subset
of decreasing size (for algorithm details, see section III),
as illustrated by Table 3. When the number of features was
not reduced, we put the symbol ‘‘−’’. Considering Table 4,
we can observe that the algorithms M2-EA and M3-ABC
returned a subset with 5 features, while M4-ACO, M5-PSO
and M1-GA found 6,7 and 10, respectively.

TABLE 3. Execution Rounds (R) with k = 5.

It is important to highlight that two resources intersected
in all algorithms (txCdsPredict score and cdsSizes). Further-
more, all metaheuristics found one or two different intersec-
tions, such as M1-GA ∩M2-EA (CCGGCA), and M1-GA ∩
M5-PSO (GGGGGG, TGACGG). Finally, we can observe
that considering only R1 (Table 3), i.e., the metaheuristic
without decomposition, it can drop in a stagnation far from
an ideal solution. However, when we apply our decomposing

TABLE 4. Optimal feature subsets selected by each algorithm.

model, there is a significant improvement in the subset of
features, especially from R3.

C. TRAINING PHASE
In order to validate the knowledge extracted by machine
learning models, it is increasingly important to use ML
algorithms able to induce models that can be understood.
This is one of the goals of explainable artificial intelli-
gence [101]. To induce predictive models that can be inter-
preted, we selected two decision tree induction algorithms
(J48, REPTree) and one algorithm that has presented very
good predictive performance inducing a forest of decision
trees (Random Forest). We used these algorithms to per-
form several experiments to assess the predictive perfor-
mance obtained using selected features at each round of each
metaheuristic. These experiments investigated whether the
predictive performance was maintained, as the size of the
feature subsets was reduced (see Table 5).

As can be seen, the REPTree and J48 algorithms pre-
sented a similar performance, 92.77% and 92.76% (ACC),
respectively. On the other hand, Random Forest had the worst
performance 91.19% (ACC). Given these results, we decided
to apply the same algorithm used in [36], REPTree.
Furthermore, it was observed that the ML algorithms kept
their predictive performance as the number of features was
reduced. Thus, the optimal feature subsets selected by the
metaheuristics (see Table 4) were applied to induce the
predictive models.

D. PERFORMANCE TEST
The predictive models induced by REPTree were applied to
the test sets (see Test Set Construction Method), producing
the results shown in Table 6. As can be seen, the results
obtained using the selected feature subsets were similar. The
best predictive performance regarding SE and ACC were
obtained by using the feature subset selected by M1-GA
(SE: 100% and ACC: 91.29%), followed by M3-ABC
(SE: 99.95% and ACC: 91.27%), and M4-ACO (SE: 99.94%
and ACC: 91.27%). Regarding specificity, the best methods
were M2-EA (82.61%) and M4-ACO (82.61%).

In summary, considering this preliminary experimental
analysis, we observed that our decomposing model with
rounds and voting scheme led to better solutions, in terms of
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TABLE 5. Training accuracy in each execution round of Table 4. The ‘‘−’’ means that the algorithm obtained the same result.

TABLE 6. Performance of all models applied to the test sets. Each predictive model was induced using the feature subsets selected by the metaheuristics
(see Table 4).
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higher accuracy and lower number of attributes, regardless of
the metaheuristic used within the model. In addition, Figure 3
illustrates the ROC curve considering only the best model,
i.e., M1-GA.

FIGURE 3. ROC curve of all species in the Performance Test, using our
best model (M1-GA).

Assessing the individual performance of each meta-
heuristic for different species, we observed that several
models obtained high ACC in six datasets, among them:
C. sinensis (ACC: 94.09% - M2-EA), M. esculenta (ACC:
93.30% - M2-EA), B. distachyon (ACC: 92.60% - M1-GA),
S. bicolor (ACC: 92.47% - M1-GA), R. communis (ACC:
90.74% - M1-GA, M3-ABC and M4-ACO), and Z. mays
(ACC: 90.73% - M1-GA). Regarding the individual sensi-
tivity (to detect lncRNA), we achieved the best results with
all species and methods. On the other hand, we reduced
the specificity (to detect mRNA), especially in two datasets
(A. trichopoda and S. tuberosum). In addition, we assessed
the statistical significance of the metaheuristics with the
Friedman’s statistical test, as follow:

• Null hypothesis: (H0 : M (1) = M (2) = . . . = M (k))
• Alternative hypothesis (HA): Metaheuristic has statisti-
cal significance (p < 0.05)

According to the statistical test, χ2(4) = 14.577,
p-value= 0.005664, we can reject H0, since p < 0.01. Also,
Conover statistics p-values are presented in Table 7.

TABLE 7. Conover statistics p-values for M1-GA, M2-EA, M3-ABC,
M4-ACO, and M5-PSO.

The Conover statistics p-values show that most meta-
heuristics do not have a significant difference. For that
reason, we can highlight that the proposed decomposition
model does not depend on any of the metaheuristics used in
the study.

E. DECOMPOSING MODEL COMPARED WITH ALL
FEATURES IN THE DATASET
In this section, we compare M1-GA and M5-PSO (the best
and the worst models shown in Table 6), with a model with-
out feature selection (see Table 8 - Full features (5,467)).
In the overall average, our approach represented a gain
of 4.68% (M1-GA) and 4.62% (M2-PSO) in the ACC. How-
ever, in some species, we achieved an improvement (ACC)
of 6.40% (S. bicolor), 5.92% (B. distachyon), and 4.85%
(C. sinensis).

TABLE 8. Our approach against all features.

Furthermore, the results demonstrated that our decompos-
ing model, regardless of the metaheuristic, can be better than
a model without feature selection, even considering the worst
performance with the PSO algorithm (M5-PSO).

F. EVALUATION WITH OTHER CLASSIFIER TOOLS
Finally, we investigated the best model in the performance
test (see Table 6), respectively, M1-GA, with five litera-
ture pipelines, i.e., the most cited: CPC [21] (6 features),
CPC2 [22] (4 features), CNCI [24] (5 features), PLEK [25]
(1, 364 features), and RNAplonc [36] (16 features), as shown
in Table 9. We randomly chose 5 species for evalua-
tion. In these experiments, our model (M1-GA) had the
best performance for ACC (and several metrics) for four
species, A. trichopoda = 88.50%, B. distachyon = 92.60%,
M. esculenta = 93.29%, and S. bicolor = 92.47%.
It is important to mention that RNAplonc reached the

best performance (ACC) in A. trichopoda (88.50%) and
C. sinensis (94.13%) with only a difference of 0.02% from
our model (in the C. sinensis). On the other hand, with
M1-GA, we obtained a reduction of 37.5% in the number of
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TABLE 9. Comparative performance between M1-GA, CPC, CPC2, CNCI, PLEK, and RNAplonc for five plant species.

features. Concerning SE (to predict lncRNAs), M1-GA was
the best alternative in four species, except for A. trichopoda
(RNAplonc, CPC, PLEK also achieved the best result). Nev-
ertheless, in SPC (to predict mRNA), the best pipeline was
CPC2 (A. trichopoda, C. sinensis, M. esculenta) and CNCI
(B. distachyon, S. bicolor). In the overall average, our model
had an ACC of 92.19% across all datasets, that is, 0.39%,
10.19%, 7.30%, 18.09%, and 17.48% more than RNAplonc
(91.80%), CPC (82.00%), CPC2 (84.89%), CNCI (74.10%),
and PLEK (74.71%), respectively. Finally, we have also
assessed the statistical significance using the Friedman’s sta-
tistical test (following same idea in section IV-D), as follow:
• Null hypothesis: (H0 : P(1) = P(2) = . . . = P(k))
• Alternative hypothesis (HA): Some pipeline has statisti-
cal significance (p < 0.05).

According to the statistical test, χ2(5) = 23.39,
p-value = 0.0002842, we can reject H0, since p < 0.01.
Next, we applied a post-hoc statistical analysis. The Conover
statistics p-values are presented in Table 10.
As reported in Table 10, Conover statistics show that

M1-GA predictive performance was statistically better

TABLE 10. Conover statistics p-values for M1-GA, CPC, CPC2, CNCI, PLEK,
and RNAplonc.

(p < 0.01) than the CPC, CPC2, CNCI, and PLEK tools.
However, there was no statistically significant difference
(p > 0.05) when compared with the RNAplonc tool.
Although in this last comparison, there are no significant
differences in the statistical test, our pipeline achieved gains
in ACC. Besides, we significantly reduced the features set,
using only 10 features withM1-GA, a difference of 6 features,
not considering RNAplonc. These results, again, confirm
the effectiveness of our approach in removing unnecessary,
irrelevant, and redundant predictive features.

G. LIMITATIONS OF THE PROPOSED APPROACH
In this paper, we have investigated the significance of features
in the lncRNA classification task. For that reason, we pro-
posed a new approach based on a decomposing model and
metaheuristics. However, we investigated the influence of
each feature considering only the frequency metric. On the
other hand, we believe in an alternative way to select fea-
ture dependencies based on Bayesian network models and
their variations. Furthermore, our study focuses on a filter
approach to find the smallest subset that contains all informa-
tion, preserving the interpretability of the model, i.e., select-
ing features from a dataset independently of any machine
learning algorithm. Nevertheless, our proposed method could
be applied effectively to other approaches, e.g., wrapper and
hybrid.

V. CONCLUSION
Understanding the significance of features in the lncRNA
identification is the next challenge in computational
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biology [31]. Fundamentally, the large number of features let
to a high dimensionality problem, requiring the application
of feature selection techniques and the investigation of the
influence and contribution of the selected features to the
biological sequences classification (e.g., lncRNA). Although
previous works have proposed feature selection techniques
for similar problems, they select features independently,
without taking into account possible dependencies. To deal
with this limitation, we proposed a new approach based on a
decomposing model, which uses a novel way to identify the
best set of attributes by removing unneeded, irrelevant, and
redundant features.

To validate the decomposing model, we applied 5 widely
studied metaheuristics algorithms (Genetic Algorithm,
(µ+λ)EA, Artificial Bee Colony, Ant Colony Optimization,
and Particle Swarm Optimization) for feature selection and
analysis in plant lncRNAs. According to the experimen-
tal results, two algorithms selected the minimum number
of features, M2-EA and M3-ABC, with 5 features each,
followed by M4-ACO (6 features), M5-PSO (7 features),
and M1-GA (10 features). Regarding the performance tests,
M1-GA reported the best result of SE (100%) and ACC
(91.29%), followed by M3-ABC (SE: 99.95% and ACC:
91.27%), and M4-ACO (SE: 99.94% and ACC: 91.27%).
In addition, we have evaluated all metaheuristics with Fried-
man’s statistical test, and it was observed that most algorithms
do not have a significant difference. For that reason, we can
highlight that the proposed decomposition model does not
depend on any of the metaheuristics used in the paper.

Also, considering the number of rounds obtained by each
algorithm, we realized that metaheuristics without decompo-
sition model (with just one round), it can drop in a stagna-
tion far from an ideal solution. However, when applying the
decomposing model, there is a significant improvement in
the subset of features, in special with three (or more) rounds.
Moreover, these results suggest that our decomposing model
for feature selection is an effective way to overcome some
limitations of simple metaheuristics, such as premature con-
vergence and poor ability of fine-tuning near local optimum
points.

AVAILABILITY OF DATA AND MATERIALS
The tool and datasets generated are available in the
Github repository: https://github.com/Bonidia/Feature
Selection-FSRV.
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