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ABSTRACT Pathway-specific protein domain (PSPD) are associated with specific pathways. Many protein
domains are pervasive in various biological processes, whereas other domains are linked to specific
pathways. Many human disease pathways, such as cancer pathways and signaling pathway-related diseases,
have caused the loss of functional PSPD. Therefore, the creation of an accurate method to predict its roles is
a critical step toward human disease and pathways. In this study, we proposed a deep learning model based
on a two-dimensional neural network (2D-CNN-PSPD) with a pathway-specific protein domain association
prediction. In terms of the purposes of a sub-pathway, its parent pathway and its super pathway are linked to
the Uni-Pathway. We also proposed a dipeptide composition (DPC) model and a dipeptide deviation (DDE)
model of feature extraction profiles as PSSM. Then, we predicted the proteins associated with the same
sub-pathway or with the same organism. The DDE model and DPC model of the PSSM feature profile
input was associated with our proposed 2D-CNN method. We deployed several parameters to optimize the
model’s output performance and used the hyperparameter optimization approach to find the best model for
our dataset based on the 10-fold cross-validation results. Ultimately, we assessed the predictive performance
of the current model by using independent datasets and cross-validation datasets. Therefore, we enhanced the
efficiency of deep learning methods. PSPD is involved in any known pathway and then follow the association
in different stages of the pathway hierarchy with other proteins. Our proposed method could identify 2D-
CNN-PSPD with 0.83% sensitivity, 0.92% specificity, 87.27% accuracy, and 0.75% accuracy. We provided
an important method for the analysis of PSPD proteins in the proposed research, and our achievements
might promote computational biological research. We concluded our proposed model architecture in the
future, the use of the latest features, and the multi-one structure to predict different types of molecules, such
as DNA, RNA, and disease-pathway specific proteins associations.

INDEX TERMS Molecular structure prediction, deep learning, convolutional neural network, deep learning,
evolutionary knowledge, multiple features, features extraction.

I. INTRODUCTION

The awareness on the spatial approach of different residue
pairs in two-dimensional protein data strictly restricts the fea-
tures for possible topologies of expected protein structures,
which makes it useful in the predictive settings of De novo [1]
and the similar recognition of fold, irrespective of eventual
application, depends on its importance. The prediction of
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high-principled contact remains challenging, especially for
small groups of proteins. In particular, similarities between
amino acid substitution patterns on a couple of locations
suggest the interaction of residues in a structure [2]. The
structural, evolutionary, and functional units of proteins con-
stitute pathway-specific protein domains (PSPDs). PSPDs
are crucial elements in complex human disease. Therefore,
the domain-based annotation of pathways requires a quanti-
tative method that can incorporate not only sequence simi-
larities but also domain pathway association specificity [3].
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PSPD are preserved that can develop, function, and exist
independently of the remaining parts of a protein chain in
each protein sequence and tertiary structure. Each specific
pathway domain is a compact, three-dimensional structure
that can be stable and folded independently. Various structural
domains consist of several proteins. In a variety of proteins,
one domain can appear. PSPD proteins can be recombined to
produce proteins that have different roles in various arrange-
ments. In general, the length of domains varies from approxi-
mately 50 amino acids to 250 amino acids [4]. Consequently,
protein folding must be guided along a certain folding path.
The forces that drive this examination are probably a group-
ing of local and global factors, and their consequences are
encountered in different phases [5]. The combined sequence,
structure, and feature analysis also help us recommend a TIM
barrel phylogeny. Based on these results, we can explore dif-
ferent pathway theories and enzyme production by mapping
known TIM barrels in major metabolic pathways [6].
PSPDs are used as a common absorption by a variety
of hybrid feature extraction molecules, such as protections,
brain receptors, and ion channels. The cellular large uptake
of DNA—chitosan nanoparticles is also one of the principal
scaffolded proteins. It contains many cholesterol-rich path-
ways, e.g., the caveolae pathway [7]. Several studies have
found that a lack of function of PSPDs likely affects a wide
variety of human diseases, such as cancer, cancer pathways,
Alzheimer’s disease, and others [8]. PSPD proteins have
attracted many researchers because of their essential role
in human diseases. We chose (HPV) L1 as the carrier of
a new peptide subunit vaccine and inserted it into sites of
natural variation in the L1 proteins of several HPV strains
by inserting coding sequences of the desired epitopes. The
original compatibility of these epitopes is maintained with
disulfide, which combines their endpoints with molecular
models and may contribute to the preservation of the direction
of the folding of L1 [9]. In this section, we add the opening
bar of GeoFold and use experimental data to verify the effects
of pathway simulation. If seam motions are used without
applying the preceding procedure, the results of GeoFold are
consistent with experimental data. To improve the kinetic and
thermodynamic stability of proteins, we understand the new
protein development model in terms of how disulfide link-
ages can be used for engineering [10]. In view of high-order
3D genome conformation, the DNA loci of these mutations.
Yi Shi et al. presented the details on the 3D genome may be
much more prosperous compared to the current neoantigen
prediction processes for the amino acid sequence. This study,
therefore, explores in retrospect the neoantigens’ DNA origin
in the sense of the 3D conformation, both immune-positive
and negative, and reveals some results that are worthy of con-
sideration. Yi Shi et al., have integrated 3D genome data into
a collection of peptide coding schemes, and have developed
a group of deep sparse, neural network selection (DNN-GFS)
model which is tailored and customized for the prediction
task of neoantigen. The proposed DNN-GFS method, along
with other machine-learning methods, and generates priority
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antigens, as well as useful intermediate functions such as
vcf annotation, neoantigen-enumeration of candidates [11].
The advancement of DNA sequencing technology and a wide
range of sequencing data have been provided over the last
few years, providing unparalleled possibilities for advanced
association studies among somatic point mutations and types
and subtypes of cancer that can lead to a more accurate SMCC
classification. However, the current SMCC processes present
major obstacles to improving classification efficiency, such
as high data sparsity, limited volumes of sample size and the
implementation of simple linear classifications. The benefits
and capabilities of the DeepGene model for gene process-
ing based on somatic point mutation and suggest that the
model can be applied to other complex genotype-phenotype
interaction studies that believe support several related areas.
For future research, DeepGene model deploy for other broad
and complex data, and expand our training data collection,
in order to further develop the classification result [12].
Accurate association with high order spatial chromatin fold-
ing, somatic co-mutations were important in protein coding
genes. As per SCH regions are also enriched the preserved
mutational signatures and sequences of DNA flanking these
co-mutations as well as CTCF binding sites. The genetic
variations in the same SCH appear to disrupt genes that drive
cancer that participate in the signaling pathways. The present
paper shows that high-quality spatial chromatin organisation,
during tumor growth, can lead to the somatic mutations
of certain cancer genes. These SCHs share some common
characteristics such as identical transformational signatures,
preserved neighboring sequences flanking points of mutation
and capable of perturbing genes involved in various molec-
ular pathways. We also characterized SCHs from various
cancer forms, including point-mutation signatures, conserva-
tion of flank sequences of point mutations and interruptions
in driver mutations signaling pathways [13]. Protein devel-
opment is modeled as a series of pathways through which
one possible degree of conformational freedom is applied to
each step in each direction. The cuts represent a network of
simultaneous equilibrium and are a directed acyclic diagram.
Finite simulations of differences in this map simulate native
unfolding pathways [14].

Machine-based diagnostic systems may be useful to help
clinicians recognize patients with PD. In this work, the per-
formance of PD-based machine-learning techniques are
assessed based on the symptoms of dysphony [15]. CNN
models are trained using these images as inputs and train-
ing groups as outputs. In addition, were different classifiers
trained with the pathologist-estimated fibrosis score (PEFS)
as inputs and training classes as outputs [16]. Empirical
studies on current methods have been conducted, but none
of them have found a solution to avoid the loss of infor-
mation about amino acid sequences in PSSM profiles. Here,
to address this issue, we present a revolutionary approach by
utilizing a recurrent neural network (RNN) architecture [17].
Most PSPD proteins have been published, but PSPD proteins
have yet to be identified using machine training technology.
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Doing so is difficult; as such, we are motivated to develop
a precise model. Other researchers used low neural net-
works in earlier years to resolve computer biology prob-
lems. For example, our [18] developed QuickRBF to create
radial basis (RBF) networks and applied this package to a
range of biological problems, including the classification of
membrane proteins. Some researchers used a deep learner
in molecular research, such as pathological prediction [19],
pathway cancer prediction, cancer disease prediction [20], or
secondary protein sequence based structures [21], because
deep learning has been successfully applied in a variety
of fields. Although these studies have very good findings,
we assure that some biological applications by using 2D
CNN.

Based on the advantages of deep learning, we suggested
that a 2D convolutional neural network (CNN) could be used
to identify PSPD proteins based on feature extraction models,
such as DDE, DPC. The basic theory has been successfully
applied to detect proteins in electron transport [22] and exam-
ine the relationship of diseases, pathways, and human variants
based on the ModSNP database material [23] and HumanCyc
(Romero et al., 2004), which is a computerized metabolic
network database for humans [24]. Therefore, the present
study extends this approach to the molecular functioning of
PSPD proteins. The contributions of this paper are as follows.

(i) We establish a deep learning system for recognizing

the PSPD functions in protein sequences, which have
significantly improved beyond conventional machine
learning algorithms in our model.

(i) We conduct the first computer-based research to clas-
sify PSPD proteins and provide biologists with useful
knowledge.

(iii) We also perform cross-validation and independent tests
for high-precision PSPD proteins that form the founda-
tion for future research on PSPD proteins.

(iv) We propose PSPD sources and methods for additional
research on the application of the 2D CNN framework
design in protein prediction.

Il. MATERIALS AND METHODS

A. DATASETS COLLECTION

In this study, an approach was employed to investigate the
datasets obtained from the NCBI respiratory, which is one
of the biotechnology information’s extensive tools. First,
with the keyword “‘pathway-specific proteins,” and second,
the query “‘non pathway-specific cancer proteins” from the
NCBI non-redundant protein database (https://www.ncbi.
nlm. nih.gov /protein/https://www.ncbi.nlm.nih.gov/protein/)
was set, and PSPD proteins were collected [25] as shown
in Table 1.

A sequence of a pathway-specific protein was suggested
as a positive test sample, and the sequence was referred
to as a negative sequence with no known site for path-
way association. They were randomly chosen to achieve a
balance between positive and negative samples for training
datasets and independent test datasets. UniProt/Swiss-Prot
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TABLE 1. Our experimental data collected as PSPDS and non-PSPDS
sequences.

Collected Non- Cross- Independent
Redundancy Validation
PSPDs 1763 1612 400 103
Non-PSPDs 2251 1200 1323 448

online database, which contains multiple species, was used,
but only human-related proteins specially involved in human
pathways were considered in this research study. In step one,
217 PSPD proteins were downloaded and uploaded on the
CD-HIT for similarity measurements; after CD-HIT [26],
105 proteins associated with pathway-specific proteins were
received. In step two, 283 other proteins were downloaded
and uploaded on the CD-HIT for similarity measurements;
then, 140 non-PSPDs were received. According to this pre-
processing approach, 245 proteins were finalized after the
removal of redundancy. In step three, the query “‘cancer
pathway-specific proteins” was set, and 1,104 proteins were
found in FASTA format and uploaded on the CD-HIT for
similarity. Redundancy was reduced, and 532 proteins con-
taining 224 PSPD proteins and 308 non-PSPD proteins were
received.

B. FEATURES EXTRACTION FOR IDENTIFYING
PATHWAY-SPECIFIC PROTEIN ASSOCIATION

Another problem of the current hypothesis is that the extrac-
tion of features is an important step in the classification
process; that is, protein sequence information is translated
into numerical data. In this study, knowledge about protein
sequences was chosen based on structure, physicochemical
characteristics, and evolutionary-related characteristics. They
could be further broken down into two subtypes: dipep-
tide deviation from the expected mean (DDE) and dipep-
tide composition (DPC). A sparse matrix of two dimensions
consisting of 20 x 20 was obtained and extended into a
single-dimensional vector. Instead, for the vector to achieve a
compact functionality set via random projection, an effective
measuring matrix was chosen. Therefore, new technology
has been introduced to the extraction of compressive sensing
functionality.
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FIGURE 1. Proposed framework model of 2D-CNN PSPD.
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The subjects of this study consisted of the 2D CNN and the
DDE and DPC feature profiles, and an important method was
developed to classify pathway-specific proteins. The system
involves four procedures: data collection, feature extraction,
CNN generation, and model assessment. Figure 1 shows our
system flowchart and explains its specifics as follows. The
subjects of this study consisted of the 2D CNN and the
PSPD PSSM matrix feature extraction profiles. An impor-
tant method was developed to identify and classify pathway-
specific proteins involved in human pathways. The PSSM
matrix feature extraction profile was treated on the basis of
encoding based on DDE for physicochemical property-based
features. Peptides of equal length were encoded using DPC
descriptor for evolutionary-derived features.

1) DIPEPTIDE DEVIATION FROM THE

EXPECTED MEAN (DDE)

DDE-PSSM was used to collect physicochemical data,
sequence information, and evolutionary information. There-
fore, the DDE, a new amino acid composition-based descrip-
tor, was proposed and developed in this study to efficiently
recognize PSSPD and PSSM from non-PSPDs. The effi-
ciency of the DDE characteristic vector in enhancing the
particular linear proteins associated with pathway prevention
was demonstrated and compared with other characteristic
representations. In comparison with other amino acid-derived
features on different datasets, DDE function vectors had bet-
ter performance (with accurate differential cross-validation
and independent datasets) different datasets. The amino acid
frequencies are divergent [27] to extract the features and their
protein relation with a feature vector widely employed in
various protein function prediction methods DDE of their
respective median predicted levels of acid [27].

In this analysis, dipeptide composition aspects were used
to measure the dipeptide frequency deviations from the pre-
dicted average values in accordance with previous studies
[28]. Three important computer parameters were built to cre-
ate the DDE feature vector: theoretical mean (7},), theoretical
variance (7,), and dipeptide composition (C;). The three
parameters and DDE are calculated as follows, and DC(,-),
an indicator of the Cc of dipeptide i in peptide P is given by

n;

Dciy = N ()

The features with a length of 400 dipeptide properties
(20 x 20 regular amino acids) were extracted, but not all of
them were going on in any sequence. Nor is the occurrence of
dipeptide I and N is L-1 (i.e., potential quantity in P). Ty, ;)

the theoretical mean
TM(i) = @ X 2 (2)

Cyv Cy

For the first amino acid, C;1 is the number of codons, and
Cip number and for the second amino acid of C;2 codons for
the specified dipeptide 'i.”. CN is the total number of codons
available except the three stop codons. Ty ;) does not depend
on peptide P, so the features with a length of 400 dipeptides
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were extracted and precomputed. Ty ;) is given by dipeptide
i theoretical variance as follows:

T (1 = Tua)
N

The theoretical average of i is Tj;(;) determined with
Equation (2). The number of dipeptides in peptide P is again
and N is L-1. DDE ;) is finally determined as

T4 = 3)

Dy = Tini)
VIva
Finally, DDE was calculated for each feature of the 400

dipeptides, and the 400-dimensional characteristic vector was
employed:

DDE() = )

DDE,={DDEy....,...DDEy)}, where,i=1,2,...,400
®)

2) FEATURES EXTRACTION USING DIPEPTIDE
COMPOSITION(DPC)

Two consecutive residues consist of dipeptide composition
(DPC). The sequence lengths are set to 400. This commonly
used representation of the sequence includes details on the
amino acid fraction and their local order. We applied to this
model with a protocol of feature extraction DPC-PSSM for
the optimal feature’s foundations. We developed by utilizing
the next DPC model of the sequence feature extraction model.
The DPC represents the occurrence of an amino acid in two
adjacent positions in a protein sequence that represents the
number of amino acid incidents. In the series, for exam-
ple, MALMAC and CC dipeptide frequencies: 2, 1, 1, 1,
1, and 1, respectively, MA, AL, LM, AC, and CC. A total
of 400 dipeptides were used, i.e., the number of feature
elements. By dividing the frequencies by (N-1), while N is the
sequence length, the DPC characteristics were standardized
and multiplied by 100 [29]. Dipeptides capture the amino
acid composition a new meaning as some local details can be
obtained in terms of the frequency of two contiguous amino
acids [29]. Thus, for cases that need localized information,
such as homologic information, the dipeptide composition is
appropriate.

# of dipeptide;
fi= % x 100 ©6)
C. PROPOSED 2D CONVOLUTIONAL NEURAL
NETWORK FRAMEWORK
TensorFlow structures were introduced and distinguished
from matrices. The 2D-CNN PSPDs were commonly used to
define images with each input image converted into the input
window so that the size of the image contain on window size
and the feature-length was the distance. All input features of
a scalar and two-dimensional information were converted to
two-dimensional features (channels) to create an input win-
dow for each protein of any length so that all features, includ-
ing those already expressed in 2D, were two dimensional and
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could be viewed as individual channels. However, each two-
dimensional function, such as the solvent accessibility clause,
was duplicated across the line and across the column to
generate two channels, while scalars such as sequential length
were duplicated into a two-dimensional matrix (one channel).
The size of the protein features channels was determined on
the basis of the window length. Each filter in a convolution
layer that converted the entry window to each filter had access
to all input functions and could learn the connections across
the channels by having all of its properties in separate input
channels [30] and feature extraction of the secondary struc-
ture of proteins [31]. The underside of Figure 1 demonstrates
the simplified framework model of 2D-CNN PSPD.

Kera’s library with the TensorFlow backend [32], [33] was
used to implement our deep learning architecture. The 2D-
CNN PSPDs is generally composed of numerous layers with
a particular function, causing each layer to transform its input
into useful representation. The architecture of our 2D-CNN
PSPDs model was coupled with a particular order. Opti-
mization should be applied to find the correct architecture
and hyperparameter and to construct an effective model, as
revealed by several studies in this field [34], [35]. A various
set of layers and hyperparameters was required for various
problems and datasets. In this review, this procedure was
carried out and described as follows in accordance with this
law.

1) CNN PREDICTION MODEL
A best computational model and protein feature represen-
tation can quickly annotate the functions of the enzymes
in chemical reactions in the prediction of enzyme proteins,
which is a specific pathway function. CNN module 2D struc-
ture information into the window as a figure convenient
for convolutional neural networks (CNNs) and discard a
large amount of related information. We, therefore, proposed
a method that would directly predict the function of the
pathway-specific enzyme proteins using the relation between
amino acids. First, we have introduced a new structural fea-
ture, the relative angle of amino acid, in addition to standard
structural features. A variety of applications were undertaken
to identify the type of protein, predict binding sites, pre-
diction of protein-protein interactions based on knowledge
from sequences in the bioinformatics area of the CNN model.
For example, classification of pathway-specific proteins and
transportation proteins, prediction of electron transport pro-
teins, secondary protein structure prevention, DNA-protein
binding site prediction, and protein-protein interaction pre-
vision are used by many researchers in the field of bioinfor-
matics. The main advantage of this method is that data will be
processed in an appropriate image format after the automatic
use of features. 1D convolution is used on features associated
with the sequence of amino acids, whereas 2D convolution is
associated with the specific position marking matrix or any
additional map function.

CNNs are ideally suited for these problems because the
main concept in convolutional layers, regardless of the spatial
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location of their input, is to identify local patterns. If this
concept is taken into account in enzyme related pathway
protein predictions, using convolutional filters for an amino
acid covariance matrix, say, the pattern allows to detection
interactions between locally separated sequence patterns by
an arbitrary amount of residues that match well with observed
structural patterns.

2) 2D CNN OPTIMIZATION PROCESS

The advantage of this 2D-CNN method is end-to-end dif-
ferentiability, which means that all parts of the organization
can be optimized simultaneously through independent and
cross-validation, from acquiring input features to predicting
two-dimensional coordinates. We have optimized our method
based on deep learning (DL) models.

3) INPUT LAYER

Throughout the analysis, the parameters of the input layer
were translated to 20 x 20 matrices throughout the DPC
model as for dipeptide feature profiles. With our input data,
these matrices could be applied as a method to distin-
guish PSPD proteins in the binding pathways. Furthermore,
the dipeptide composition PSSM was used as an input in the
2D-CNN model. The same points were used as a pathway-
specific protein family and inserted into independent sets.
Then, the training performance was assessed with a 10-fold
cross-validation process. This research was carried out using
2D-CNN, the largest deep neural network. CNN has been
used in many fields, and impressive results have been
obtained through computational vision, especially if the input
is normally a 2D image pixel density matrix. A 2D structure
of CNN architecture input image was utilized on the basis of
these results, and 2D inputs of 20 x 20 size window PSSM
matrices were conveniently generated. The 2D CNN models
rather than 1D models were preferred to capture the hidden
figures confidential the PSSM matrix profiles. PSSM profiles
were connected from the input layer to the output layer via the
2D CNN design architecture.

4) ZERO PADDING LAYER

The block of a CNN was a pooling layer that could slowly
decrease the representation’s spatial size, the number of net-
work parameters, and measurements. In each function dia-
gram, the pooling layer operated separately. The function
of this layer is also known as ‘“down-sampling” because
it eliminates certain values that lead to fewer systems and
overfit operations while preserving essential characteristics.
We set datapoints window, or any region that moves through
the input matrix is often required for the grouping layer to
become a representative of all values. In the top, bottom left,
and right of the features profile matrix, you can add columns
and rows of zero values. When 2 x 2 strokes were used,
the frequency of the production was 22 x 22 strokes in a
20 x 20 matrix. After the filters were applied to the input
data, our model did not have different output dimensions.

VOLUME 8, 2020



A. Ghulam et al.: Identification of PSPD by Incorporating Hyperparameter Optimization Based on 2D CNN

IEEE Access

5) CONVOLUTIONAL LAYER

The features in the 2D input matrix were extracted through
convolution by using a coding layer. A sliding window was
used to transform the values into representative values and
moved in step across the input. The convolution activity
maintained the spatial relationship between numerical inputs
in hybrid feature profiles by learning useful functionality
through small input squares. When our model was designed
by using a 3 x 3 sliding window. Each neuron was obtained,
and inputs from the previous layer were trained with weights
and biases.

6) ACTIVATION LAYER

The important contextual information about the carrying
function as the activation mechanism used in the creation
of 2D-CNN for the classification of PSPD proteins was per-
formed with a rectified linear unit (ReLU). ReLU has been
commonly used as the most important triggering function of
all deep neural networks. The ReL U function is defined by the
following formula, where x is the input number of the neural
network.

J (x) = max (0, x) N

7) POOLING LAYER

A pooling layer is normally placed in convolution layers to
reduce the size of the matrix measurement for the next con-
volutional layer. The block of a CNN is a pooling layer. This
has a feature of slowly decreasing the representation’s spatial
size and reducing the number of network parameters and
measurements. On each function diagram, the pooling layer
operates separately. The function of this layer is also known
as the “down-sampling” because it eliminates certain values
that lead to fewer systems and overfit operations, while still
preserving essential characteristics. When we set a sliding
window or any region that moves through the input matrix
is often required for a grouping layer to become representa-
tive of the values. Transformation either takes the maximum
value (max pooling) or the mean of the values (average
pooling). In this analysis, two pooling phases with three
or three filters were planned with a commonly recognized
method.

8) DROPOUT LAYER

In this step, the key factors of the dropout layer were iden-
tified and introduced to strengthen the current model’s pre-
dictive performance and avoid overfitting [36], [37]. The
model was randomly deactivated in the dropout layer with a
certain probability P. The neural network ignored the selected
neurons in the training if the dropout value was introduced to
a layer and if the training time was extended. Dropout is often
used to regularize deep neural networks; however, applying
dropout to fully connected layers and convolutional layers
is radically different. As well as being dropout in the deep
learning community. As such, the dropout function with only
0.02 value was applied to the fully connected layers.

VOLUME 8, 2020

9) FLATTEN LAYER

Data are transformed into a one-dimensional array to the next
level through flattening. The contribution from convolutional
layers is flattened to create a single long vector. The final
classification model, called a completely connected layer,
is related to the model. All classes should be distributed to
evaluate the output layers, and the input matrix should be
converted to a vector by using the flattened layers.

10) FULLY CONNECTED LAYER

The layers in which all inputs of one layer are linked to each
activation unit of the next layer are fully connected into neural
networks. Neurons in a completely linked system, as seen
in normal neural networks, are completely connected to all
activations in the previous layer. Their activations can thus
be determined by multiplying the matrix by an offset of the
bias. For more details, see the Neural Network (NN) section
of the notes. Implementation of dense layer, fixed that is a
standard and completely connected NN, can be seen [38].
The characteristics of convolution and pooling layers are
described in this section. The use of a completely connected
layer is a popular approach to nonlinear hybrids.

11) LOSS FUNCTION

Binary cross-entropy was used to train a model and simulta-
neously overcome many classification problems if any clas-
sification could be reduced to a binary choice (e.g., yes or
no, A or B, and 0 or 1). Binary cross-entropy is a loss
function used in binary tasks. Tasks that answer a question
by two options alone (e.g., yes or no, A or B, 0 or 1, and
right or left). For a variety of binary classification problems,
the loss function has been demonstrated [39]. As described
above, the SoftMax output can be compared with the target
value and minimization of (produced by one-hot encoding).
We use cross-entropy to distinguish between them. Entropy
is a loss function that maximizes the likelihood value as a
target of the appropriate class mark. It is easy to see that an
overtrained model will be very small to zero and could be
accomplished by minimizing the loss function in a relatively
simple manner. A variety of regularization strategies may be
employed to prevent overfitting (e.g. protein 1 or protein 2
penalties, typically employed in proposed models), such as
the inclusion of penalties in the loss function.

12) SOFTMAX UTILIZATION

The model output was assessed in terms of a SoftMax func-
tion, which reduces the probability of any output [40]. This
function is a formula-defined logistic function and feature
form used in ANN in the output layer and multiclass cat-
egorization problems. Inactivation, the value production is
converted to values between O and 1 (distribution of the
probability), where z in the formula above is a K-dimensional
vector o(z)j entry, and j-th is the expected probability of
sample vector x. Then, (0, I), j-th is a true value of the
range (0, 1) and j-th. In the model, trainable params with
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TABLE 2. Parameters used as a trainable in 2d CNN model.

Layer(type) Remarks Output Shape Parame
ters#
Zeropadding2d_1 Padding = (2,2) (None, 22,22, 1) 0
conv2d_329 (Conv2D) Filters=32, (None, 1, 20, 32) 5792
kernels= (3,3)

max_pooling2d_346
(MaxPooling)

Pool Size= (2,2) (None, 1, 10, 16) 0

zero_padding2d_330 Padding = (2,2) (None, 3, 12, 16) 0

(ZeroPadding)

conv2d 330 (Conv2D) Filters=64, (None, 3, 12, 64) 9280
kernels= (3,3)

max_pooling2d 330
(MaxPooling)

Pool Size = (2, 2) (None, 3, 12, 64) 0

Zeropadding2d 3 Padding= (2,2) (None, 9, 12, 32) 0
conv2d_329 (Conv2D) Filter=128, (None, 7, 10, 128) 36992
kernels

max_pooling2d 346
(MaxPooling

Pool Size = (2,2) (None, 7, 5, 64) 0

Zeropadding2d_3 Padding= (2,2) (None, 160) 0
Flatten_1 Flatten (None, 160) 0
dropout_213 (Dropout) P=0.4 (None, 160) 0
dense_227 (Dense) Units=128 (None, 128) 286848
dense_216 (Dense) Unit=2 (None, 2) 258
Activation (Activation) SoftMax (None, 2) 0

Total params: 339,170 Total params: 339,170

339,170 data points were established, as shown in Table 2.
eZi
0= 3
Zk:l ez’

13) HYPERPARAMETER

Deep neural networks are highly responsive and successful
in terms of choosing the hyperparameters that character-
ize a network structure and a learning process. As such,
these hyperparameters need to be measured automatically.
Derivative-free optimization is an area in which methods are
developed to optimize functions without relying on deriva-
tives. The hyperparameters tuning for a deep neural network
is a vital process, but it consumes time and computational
resources, mostly manually based on expert knowledge. Nev-
ertheless, the growing popularity and use of deep neural
networks for various applications called for the automation of
the process to adapt to each problem. Two groups may be used
to distinguish the hyperparameters forming a deep neural net-
work: the one representing the network architecture and the
other influencing the training process optimization. Hyper-
parameters vary from the parameters of a model trained via
backpropagation at an architectural level. In the construction
of a profound learning model, the choice of such hyperpa-
rameters is decided by a variety of factors. The performance
of the model has a remarkable effect. To improve the training
and prevent overfitting, many parameters should be chosen,
as suggested by Chollet [41]. For instance, the question of
HPO can be seen as strengthening learning through which the
key difference between each approach relies on the descrip-
tion and care of agents. A neural network can build other
neural networks by observing potential settings.

o Set hyperparameters for selection
o Create the appropriate model
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o Put on a model the training data and measure on a
validation dataset the final formative data.

« Use the hyperparameter range of the next set time.

« Return/repeat

« Quantify or assess the output execution on an indepen-
dent dataset

14) PERFORMANCE EVALUATION OF MODEL

This analysis mainly aims to identify pathway-specific pro-
tein sequence is a PSPD protein or not; thus, the definition
of PSPD proteins is ‘“‘positive,” and the definition of the
non-PSPD protein is “‘negative”. For each dataset, a 10-fold
cross-validation technique is first applied to the model in the
training dataset. Hyperparameter optimization is used to find
the best model for each dataset based on the 10-fold cross-
validation findings. Finally, the predictive potential of the
current model is tested using an independent data collection.
The following results are considered: sensitivity, precision,
accuracy, and Mathews’ correlation coefficient (MCC) as the
measurements used to assess the prediction performance of
our proposed model. TP, FP, TN, and FN are referred to as
genuine or true positive, false positive, and false negative. The
evaluation metrics are then specified accordingly.

Sensitivity
TP
= ©
TP + FN
Specificity
TN
= — (10)
TN + FP
Accuracy
_ TP + TN (11
~ TP+ FP+1TN +FN
McCC
TP*TN — FP*FN
(12)

~ J{TP+ FP)(IP + FN) (IN t FP) (IN 1 FN)

IIl. RESULTS

Our findings can be compared with previous results in terms
of the proposed performance and reliability of research mod-
eling techniques that are essential to the analysis. Primarily,
experimentation is developed by evaluating data, calculating,
and comparing numerous results and consultations. Accord-
ing to our two models, which contain DPC, and then used the
DDE model.

A. PSPDS AND NON-PSPDS SEQUENCE FOR THE AMINO
ACID COMPOSITION

In PSPD and non-PSPD sequences, the amino acid composi-
tion was analyzed by calculating its frequency. A compilation
of (ARNDCQEGHILKMFPSTWY V-) 20 numerical values
representing the various physicochemical and biological fea-
tures of amino acids is an index of amino acids that were
submitted to content analysis. The 20 amino acids that con-
tribute to two separate datasets at a considerably higher level.
The two types of data do not considerably different, but some
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exceptions are noted. C and P amino acids are located at the
maximum concentration frequencies throughout the proteins.
Therefore, the discovery of PSPD proteins in these amino
acids is important. Thus, our model can reliably predict PSPD
proteins based on the different characteristics of these amino
acids.

B. 2D-CNN TRAIN THE MODEL

A related idea may explain the training of the features of
the model. In our proposed model, 150 epochs are used
as model trains. Features are fit to return an object from
a history, which can be used to history accuracy and loss
function plots between training and validation by history the
results of this function in 2d-CNN, which allows the visual
measurement of the model’s performance. Lastly, the model
in 150 epochs with 2D-CNN PSPDs is trained, and the model
is good because the precision of the training after 150 epochs
is 0.95%, and the loss of training score is 0.17%, which is
very small. However, as the validation loss is 0.22% and the
validation precision is 0.91%, the model seems overfitted.
Overfitting provides an assumption that the network has an
excellent memory of the training data but does not see the
hidden data; thus, the quality of training and validation varies.
We resolved to deal with this possibility. In the following
section, our model is developed by incorporating a dropout
rate in the network, and the other layers are kept unchanged.
Next, the efficiency of the model is analyzed before our
conclusion is presented.

A. DPC model with dropout B.

Training and validation accuracy

Training and validation loss

o 2 4 & ® 10 120 10 © 2 4 @ B 100 120 10

FIGURE 2. DPC model test and loss plot: (a) Validation accuracy and
(b) validation loss.

A. DDE model with dropout B.

Training and validation accuracy Training and validation loss
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FIGURE 3. DDE model test and loss plot: (a) Validation accuracy and
(b) validation loss.

C. TEST SET MODEL EVALUATION
Our proposed DDE model test accuracy of 0.9541 and test
loss of 0.1704 are shown in Figure 2. The accuracy of the
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TABLE 3. DDE model predicted performance of PSPDS with different
filters.

Filter

numbers Cross-Validation Independent
Sens Spec Acc MCC Sens Spec Acc MCC
32 0.758 0.664 0.711 0.427 0.734 0.825 0.788 0.564
32-64 0.770 0.672 0.721 0.446 0.731 0.851 0.790 0.589

test is impressive. The model also compares well with the
deep learning models. In our other model named DPC model,
the predicted test accuracy is 0.9106 and the test loss is
0.2233. This model is examined to evaluate and plot the
accuracy and loss between training and validation data as
shown in Figure 3. We solved the overfitting issue to some
extent; these findings are less surprising if we consider adding
a dropout rate as a layer. Dropout turns a fraction of neurons
off randomly during the training process, thereby reducing
the dependency on the training set by a certain amount. The
hyperparameter that can be modified accordingly defines how
many fractions of neurons want to dropout. This step prevents
the network from memorizing training data by shutting off
certain neurons because not all neurons are active at the same
time, and inactive neurons learn anything. Then, we develop,
compile, and train the network again, but dropout is disre-
garded at this time. We run the network with a batch size
of 10 and 150 epochs.

D. PERFORMANCE RESULT FOR IDENTIFYING PSPD
PROTEINS WITH 2D-CNN
Previous results indicated that the use of the Tensorflow
backend Keras package is consistent with the findings. Our
2D-CNN architecture is implemented. Next, the best config-
uration for hidden layers is determined with the two separate
convolutional layers 32, 64. The DDE model results of the
cross-validation data collection of the various filter numbers
used are shown in Table 3. We identify PSPDs and detect
the sequences with a 10-fold average cross-validation accu-
racy of 0.7212% and independent set accuracy of 0.7909%.
The results are higher than the average with other filter
numbers from other metric calculations involving various
filters. We achieved the cross-validation set performance
of sensitivity of 0.7700%, the specificity of 0.6724%, and
MCC of 0.4275%. The results consist of independent datasets
by using various filter numbers. We achieved the perfor-
mance of independent set accuracy of 0.7909%, sensitivity of
0.7310%, the specificity of 0.8511%, and MCC of 0.5894%
as shown in Table 3. In this way, we used our model with
this evolutionary structure of the layer. We implemented five
hyperparameter optimization model to build our concluding
model with Adadelta, a robust performance optimizer. Fur-
ther DPC model results of the cross-validation datasets and
Independent sets of the various filter numbers used are shown
in Table 4.

Therefore, in these hidden layers, our model was built by
using this convolutional layer structure. Afterward, the neu-
ral networks were optimized with different optimizers:
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TABLE 4. DPC model predicted performance of PSPDS with different
filters.

Filter
Cross-Validation

Independent
numbers

Sens Spec Acc McCC Sens Spec Acc MCC
32 0.753 0.694 0.724 0.450 0.723 0.824 0.774 0.555
32-64 0.749 0.699 0.724 0.451 0.742 0.824 0.783 0.571
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FIGURE 4. DPC model performance of the training and validation
accuracy of various optimizers in this analysis (from 0 to 150).
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FIGURE 5. DDE model performance of the training and validation
accuracy of various optimizers in this analysis (from 0 to 150).

RMSprop, Adam, Nadam, SGD, and Adadelta. After each
optimization in each round, the model was reset, that is,
a new network was created so that the different optimizers
were comparable. The results are displayed in Figure 4. Our
final model was created by choosing Adam, an optimizer
with a robust performance. The best optimizer for our pro-
posed model was chosen for Adam. During the experiment,
the default learning rate (float, default = 0.001 steps), batch
size = 10, and dropout rates = 0.2 were used, and the different
iterations from 100 to 150 were run. Moreover, the accuracy
of our model in terms of predicting new sample data was
checked with independent testing data, and the results were
compared with the other performance. In Figure 5, our model
validation accuracy was improved after the 150th epoch based
on training accuracy. Therefore, our training was completed
at the 150th level to reduce training time and prevent over-
fitting were modified (Table 5) to obtain the best result in
the performance of the dataset. After this overfitting point,
the main problem of all the problems of machine learning is
that our classification can only function well in our training
method. Still, it can be worse in a different invisible dataset.
An independent test was conducted to make sure our model
still fit well in a blind dataset.

Our independent dataset included 103 PSPDs and
848 PSPDs, as defined in the previous section. None of these
samples occurred in the training set. Two confusing matrices
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TABLE 5. Optimal hyperparameters used in our proposed method.

Used Hyperparameter Vales
Number of epochs 80
Learning Rate 0.001
Batch size 10
Kernel size 3
Dropout rate 0.4
Optimizer Adam

A. DPC cross-validation test

B. DPC independent test

Confusion matrix Confusion matrix
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FIGURE 6. DPC model confusing matrices of (a) cross-validation test and
(b) independent test.

A. DDE cross-validation test

B. DDE independent test
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FIGURE 7. DEE model confusing matrices of (a) cross-validation test and
(b) independent test.

are shown in Figures 6 and 7, with more detailed results.
In Figure 5, which was consistent with the result from cross-
validation with our independent test dataset result. In partic-
ular, our model achieved 85.8% precision, 82.2% sensitivity,
69.2% specificity, and 0.70% MCC in independent testing.
The discrepancies were not too high compared with the cross-
validation result and might demonstrate that our model was
not overfitted. Another explanation was the use of dropouts,
and the duplication of our CNN program was effectively
prevented.

E. FURTHER STUDIES ON CNN SIGNIFICANT FUNCTION

The hypothesis that deep learning methods need further
support. The extracted features vary from local to abstract
hierarchical, so the essential feature of our model of CNN
can be difficult to identify. We tried to resolve the issue to
provide more valuable knowledge to readers and biologists.
Considering that we inserted 20 x 20 hybrid feature profiles
into our CNN system, we analyzed the core features of these
matrices. To classify the most relevant features in the creation
of the problem result, we used the F-score. Our research
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aimed to determine which sequences of PSPDs and non-
PSPDs would rely on our model to produce better results. All
our feature’s functionality in F-scores, and variations between
the two datasets are observed. In summary, our model could
classify amino acids as important hidden features, help us
learn the most important protein characteristics, and achieve
the best result for each of them.

TABLE 6. DDE model predicted performance of PSPDS with different
optimizers.

Optimizers Cross-Validation Independent

Sens Spec Acc MCC Sens Spec Acc MCC
Adam 0.770 0.684 0.727 0.457  0.730 0.865 0.798 0.603
Adadelta 0.755 0.711 0.733 0.469  0.727 0.850 0.789 0.585

RMSprop 0.744 0.681 0.713 0427  0.715 0.825 0.770 0.547

Nadam 0.752 0.679 0.715 0433 0.694 0.832 0.763 0.535
SGD 0.729 0.704 0.717 0.435  0.695 0.745 0.720 0.444

F. DDE MODEL RESULT OF IDENTIFICATION PSPD WITH
DIFFERENT OPTIMIZERS

In the content analysis, the optimization of hyperparameters
was calculated, or it is hard to determine the best hyperpa-
rameter optimizer for our model. Most researchers usually
aim to optimize their algorithm performance based on an
independent dataset. Several findings from this study war-
rant further discussion, for example, in algorithms for learn-
ing. One possible reason for this discrepancy could be that
this simplification performance is evaluated through cross-
validation. The hypothesis that the optimization of the hyper-
parameters differences with real learning problems, which
are often considered optimization issues, optimizes a loss
function alone. In addition, the learning algorithms learn that
they can reconstruct their inputs. At the same time, the opti-
mization of the hyperparameter ensures that the model does
not overfit its data by tuning, for example, regularization,
as shown in table 6 and table 7. Being part of the deep learning
and the convolutional networks, we can readily modify and
play hundreds of different parameters (although we seek to
reduce the number of variables to just a few in practice), each
influencing some (possibly unknown) degree of our overall
classification. Our results indicate that Adam, Adadelta opti-
mizer gives the best performance to estimate. Our research
was establishing pathways and predicting their roles with
a certain protein. The analysis of the findings was based
on 10-fold cross-validations of cross-validation datasets and
independent datasets. When used on the DDE model and
calculation based on 5 optimizers, we achieved superior per-
formance of Adam optimizer with the DDE model as shown
in table 6 and Figure 8.

G. DPC MODEL RESULT OF IDENTIFICATION PSPD’s WITH
DIFFERENT OPTIMIZERS

The usage of deep learning technology was analyzed with five
different optimization models. The comparison was then per-
formed to determine the most appropriate optimizer. In this
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TABLE 7. DPC model predicted performance of PSPDS with different
optimizers.

Optimizes Cross-Validation Independent
Sens Spec Acc MCC Sens Spec Acc MCC
Adam 0.754 0.688 0.721 0.446 0.712 0.804 0.758 0.522

Adadelta 0.764 0.668 0.716 0.436 0.734 0.836 0.785 0.577
RMSprop 0.738 0.681 0.710 0.421 0.669 0.854 0.761 0.536
Nadam 0.738 0.681 0.710 0.421 0.717 0.832 0.774 0.558
SGD 0.758 0.680 0.719 0.441 0.688 0.731 0.709 0.421

'DDE model performance of PSPDs with differentoptimizers
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FIGURE 8. Comparison of performance between 5 optimizers with a DDE
model based on 10-fold cross-validation on cross-validation datasets and
Independent datasets.

situation, it is a difficult job to select an optimizer for train-
ing the network of CNN. To compare and classify the best
optimizer for estimating PSPD functions 5 best optimizers
were selected. Based on their processing times, prediction
accuracy, and error, the five optimizers, Adadelta, RMSprop,
Adam, Nadam, and SGD were compared. When we mea-
sured the prediction results of the DPC model. We also
measure the sensitivity, specificity, accuracy values, F-score,
and Matthews correlation coefficient values, which repre-
sent the best overall performance of the Adadelta optimizer
with the DPC model as shown in Table 7 and Figure 9,

DPC model performance of PSPDs with different optimizers

o8
07
s
0s = Adam
Adadslta
= RMtsprop
04 = Nadam
56D
03
0z
01
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Ace e Acc e

Sens Spec sens Spec

Cross-validation Independent

FIGURE 9. Comparison of performance between 5 optimizers with the
DPC model based on 10-fold cross-validation on cross-validation datasets
and Independent datasets.
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TABLE 8. DPC model performance results of identifying PSPDS with other
ML classifiers.

ML Cross-Validation
classifiers

Independent

Sens Spec Acc Mmcc Sens Spec Acc mcc

AdaBoost 0.755 0.848 0.802 0.607 0.599 0.832 0.711 0.453

Random 0.580 0.898 0.739 0.493 0.731 0.843 0.780 0.584
Forest

LSTM 0.704 0.758 0.731 0.466 0.706 0.881 0.762 0.547
CNN 0.802 0.755 0.779 0.558 0.785 0.925 0.855 0.600

to better investigate the predictive capacity of the hyperpa-
rameter optimizer.

H. PSPD’s BETWEEN 2D CNN AND SHALLOW NEURAL
NETWORKS WITH A COMPAREABLE EFFICIENCY

A possible interpretation of this finding is that it examined the
performance of various machine learning techniques for the
identification of proteins from PSPDs. We used four machine
learning classifiers (e.g., AdaBoost, Random -Forest, and
LSTM). To test the model, CNN Long Short-Term Mem-
ory Networks architecture implemented convolutional neural
network (LSTM) perceptions, and 1D CNNs compared the
effects of our 2D CNNs to those of them. We used the
optimum parameters in all the experiments for equal com-
parisons with all the classifiers, as shown in Table 8. We
demonstrated that the performance of our 2D CNN with the
same experimental structure was better than that of other con-
ventional machine learning techniques. In particular, by using
a separate dataset, our 2D CNN implemented specific
algorithms.

A. DPC model B.

DPC Cross-Validation sets opPC s

ROC curve of DPC Cross Validation sets(area = 0.79) ROC curve of DPC Independent setsfarea = 0.82)

o 02 04 06 oa 10 00 02 04 06 08 10
False Positive Rate False Positive Rate

FIGURE 10. DPC ROC-AUC model of (a) cross-validation test and
(b) independent test.

I. COMPARATIVE PERFORMANCE OF THE IDENTIFICATION
OF PSPD’s BY USING ROC-AUC CALCULATION

In this section, our findings could be compared with the
results of earlier studies that compared the performance of
the binary classification problem of this study. Our data were
consistent with most machine learning classification mod-
els used. Researchers deploy the ROC curve plot and the
AUC, along with other metrics, such as the accuracy of the
algorithm or the confusion matrix. In this section, the ROC
curve and AUC were used to analyze the 2D CNN output via
multiple classifications, as seen in Figures 10 and 11. Dis-
plays the 2D CNN PSPD Multilink ROC curve. The results

180150

are somewhat but slightly similar to those of binary classi-
fication, indicating that our deep neural network architec-
ture could perform highly even with the multiclassification
method, but more data were needed to explore this finding
further. Therefore, our proposed 2D-CNN model showed the
best performance and had no overfitting because the 2D-
CNN model cross-validation accuracy score was 0.87% and
the independent accuracy score was 0.86%. The comparison
of the same data points revealed that the DPC model cross-
validation datasets had ROC and ACU score of 0.79%, and
independent datasets achieved RCO-AUC score of 0.82%.

A. DDE model B.

DDE Cross-valistaion DDE Independent sets

- ROC curve o f DDE Cross-Valistaion(area = 0.80) Kol ROC curve of DDE Independent sets(ares = 0.80)

o8 10 00 02 o8 10

04 05 o4 06
False Positive Rate False Fositive Rate

FIGURE 11. DDE ROC-AUC model of (a) cross-validation test and
(b) independent test.

The ROC curves were derived from cross-validating results
and used to further evaluate the CNN model’s efficiency.
Figures. 11 display the value for each protein association
with the pathway class of the roc curves and the area under
the curve (AUC). The ordinate is the true positive (TPR),
and the abscissa is the false positive rate (FPR). The com-
parison of the DDE with the same data points revealed that
the DPC model cross-validation datasets had an ROC and
AUC score of 0.80%, and independent datasets achieved
RCO-AUC score of 0.80%.

Our findings could be compared with the results of earlier
studies with 10-fold cross-validation checks, and ROC (AUC)
of 0.79% and 0.82% were achieved, and they were similar
to our proposed model of 2D-CNN for both DDE and DPC
composition. This result suggested the efficacy of the func-
tionality protocol. The output of 2D CNN PSPD was also
tested with a different dataset, and the results showed the
2D-CNN PSPD relation. Additionally, three machine learn-
ing classifiers were deployed to compare the results with
AdaBoost ROC-AUC values of 0.76%, which was closely
related to our method. The ROC-AUC value is the Random
forest of 0.79%, and the LSTM classifier achieved a score
of 0.81%.

IV. CASE STUDY

A. PROTEIN-PATHWAY ASSOCIATION

G protein pathway suppressor 2 (GPS2): In two human
DNAs, including an Arabidopsis FUS6 homolog (COP11),
the G protein- and mitogen-activated protein-kinase-
mediated signal transduction is blocked [42], [43].
“G-protein pathway suppressor arginine differential methyla-
tion recognized in melanoma by tumor-specific T cells’ [44].
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The data provide convincing evidence of a strong association
between proteins and pathways, such as the Uni-ProtKB
database-associated protein ID of Q13227 (GPS2_HUMAN),
which is involved in GPS2. The protein Q13227 acts as
a B-cell production regulator that inhibits UBE2N/Ubc13,
thus limiting the activation of the signaling pathway of Toll-
like receptors (TLRs) and B-cell antigen receptors (BCRs).
In response to depolarization, the role of a central medi-
ator in the mitochondrial stress response relocates from
the mitochondria to the nucleus. It disinfects the expres-
sion of mitochondrial-encoded genes in the nuclear field
[45]. GPS2 is identified as a mediating retrograde mito-
chondrial signal and transcription activator encoded in the
nuclear mitochondrial gene. These findings indicate an addi-
tional mitochondrial gene transcription regulation, a guided
mitochondrial-nuclear communication pathway, and suggest
that the key part of the mammalian mitochondrial stress
response is retrograde GPS2 signalization shown in Table 9.

TABLE 9. Provided protein-pathway association evidence.

Entry Entry name Gene Name Organism Pathway Ids

Q13227 GPS2_HUMAN GPS2 Homo R-HSA-1989781
sapiens

Q13098 CSN1_HUMAN GPS1, COPS1,  Homo R-HSA-5697010

CSN1 sapiens

Q9Y618 NCOR2_HUMAN NCOR2 Homo R-HSA-383280
sapiens

QINQS5  GPR84_HUMAN GPR84, EX33 Homo R-HSA-418555

sapiens
GPS1,1987516 ~ Homo
sapiens

C9JFE4 C9JFE4_HUMAN PTHR14145:SF2

A8KO070 A8K070_HUMAN  GPSI1 Homo PTHR14145:SF2
sapiens

I3L3Y9 I3L3Y9_HUMAN GPS2 Homo PTHR22654
sapiens

I3L1H4 I3L1H4_HUMAN GPS2 Homo PTHR22654
sapiens

131242 13242 HUMAN GPS2 Homo PTHR22654
sapiens

13L4X7 I3L4X7_HUMAN GPS2 Homo PTHR22654

sapiens

FIGURE 12. Protein-pathway involvement in the Fanconi anemia
pathway with DNA damage repair [48].

B. PROTEIN-PATHWAY FUNCTIONS

The Uni-ProtKB database protein entry is Q13098
(CSN1_HUMAN), as shown in Table 3, provide convincing
evidence about the COP9 signalosome complex subunit 1,
which is associated with R-HSA-5697010 reactome pathway,
such as the one associated with the inner part of two sub-
pathways. In Figure 12, the Fanconi Pathway for Anemia
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and Nucleotide Excision Repair. The main component of
the COP9 signalosome complex (CSN), a multi-cellular and
developmental complex [46]. CSN is a significant regulator
of the ubiquitin conjugation route (Ubl) via deneddylation
in E-3 complex subunits, resulting in a reduction in ligase-
like Ubl activities of SCF complexes, such as SCF, CSA,
and DDB2. SCN is an essential regulator in this field.
A complicated external ICL repair system, along with other
repair processes, such as homologous recombination, nuclear
cure, translational synthesis, and alternative terminal joints,
is designed to repair different DNA injuries by Fanconi
anemia pathways. Proteins of Fanconi anemia (FA) are used
for retaining genomic constancy. Their primary function is to
repair the interconnected DNA strands, which impede repli-
cation and transcription due to the covalent bonding of the
Watson and Crick strands of DNA [47]. We have introduced a
graph database, enhanced performance of data analysis tools,
and developed new data structures and strategies to enhance
diagram viewer performance.

C. FANCONI ANEMIA PATHWAY ASSOCIATED WITH THE
OCCURRENCE OF CANCER DISEASE

DNA repair, an active cellular system reacting to constant
damage to DNAs, is important in the preservation of genome
integrity. Inherited DNA gene repair mutations are identified
to prevent the carriers of genetic dysfunctional conditions
from developing cancer. For example, DNA double-strand
breaks recruit and activate ATM serine/threonine kinase,
leading to the arrest of cells. ATM mutation causes ataxia-
telangiectasia disorder. Bloom-protein syndrome exhibits a
BLM mutation causing the Bloom syndrome, as well as
DNA-stimulated ATPase and DNA-dependent helicase activ-
ities [49]. This section discusses the mechanisms of the Fan-
coni anemia pathway involved in ICL damage repair and the
appropriate mutations causing genomic integrity deficits and
supporting tumorigenesis [50], as shown in Figure 13.

1 pathviay diagram:
F. Neddylation

il
1

FIGURE 13. Protein-pathway involvement in Fanconi anaemia pathway
with cancer disease.

D. PATHWAY ASSOCIATED WITH PROTEINS
TRANSCRIPTION-COUPLED

To react to the interstrand crosslink (ICL) DNA lesions,
the Fanconi anemia pathway is connected to many repair
procedures. It has many roles other than ICL repair.
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Fanconi anemic proteins, especially FANCD?2, participate
in the defense and cytokinesis of replication. The pathway
forms a complicated network outside core ICL repair compo-
nents to repair diverse DNA injuries, along with other repair
processes, such as homologous recombination, nuclear repa-
ration, and translational synthesis. These functions include
fork stabilization and cytokinesis regulation. As such, fanconi
anemia proteins emerge as master genomic integrity regula-
tors that coordinate various repair processes. Here, a detailed
overview of the functions of the Fanconi anemia pathway in
ICL repair, its relationship with other repair pathways, and
its evolving role in the maintenance of genomes is presented
in Figure 14. DNA repair proteins can be used to repair post-
replication or control the function of the cell cycle. May be
involved in the cross-strand repair of DNA and in preserving
the normal stability of the chromosome.

FIGURE 14. Protein-pathway involvement in transcription-coupled
nucleotide excision repair.

The tumor suppressor gene candidate. The disorder is
caused by gene-related mutations in this section. Description
of disease a disorder that affects all the elements of the bone
marrow, leading to anaemia, leukopenia, and thrombopenia.
It is concerned with malformations of the heart, kidneys,
and legs, dermal pigmentation, and malignancies. At a cel-
lular level, hypersensitivity to DNA-damaging substances,
chromosomal instability, and deficient DNA repair are
associated with this—Fanconi anemia group G protein
association with enzyme and pathway databases such as
R-HSA-6783310 Fanconi anemia pathway. The essential
component of the COP9 signalosome complex (CSN), a com-
plex, and G protein pathway suppressor 1 (GPS1) are
involved in various cellular and developmental processes,
as shown in Figure 14.

V. IMBALANCE DATA PROBLEM

We consider our datasets to be unbalanced, affecting the
classification process and, thus, significantly. The data set
for cross-validation against independent is the same with a
ratio of positive-negative rating. Mostly two methods are
popular to fix training data imbalance. The first approach
is data processing, and the second one is algorithmic. For
this analysis, we used the method of data processing by sam-
pling in the training data the minority class. Previous inves-
tigators have made substantial progress in over-sampling
procedures. In selecting the over-sample approach over the
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under-sampling approach in resolving the imbalance prob-
lem, we have two advantages that have been achieved: data
are sufficient to construct a robust model, and useful loss
value has been avoided. Keeping this in mind, the num-
ber of minority class instances was slowly increased during
the experiment, and the performance was reported at every
move. With consideration for a balance between flexibility
and specificity, the final selected model achieves the best
efficiency.

VI. DISCUSSION

Our findings suggest that the computational method can be
utilized to classify the biological functions of PSPD pro-
teins. Furthermore, our research is necessary so that our
molecular-based studies on functions in signaling pathways,
G-protein pathways, and metabolic pathways can be better
understood. Our research fills the gap with deep-learning
techniques to complete PSPD sequences. This research is also
the first to establish a computational method that provides
biologists with much useful knowledge for understanding
2D-CNN-PSPD molecular functions and for creating a com-
plex disease pathway based on their application in human
diseases. For protein sequences, we also develop a broad
and high-performance deep learning architecture. We validate
the results with tuned hyperparameters to select the best
parameters for efficient optimization. We use the extracted
hybrid feature profiles as a vector only when they come into
a network, and our findings are a different way of treating
and adapting feature profiles to CNN networks. In addition,
our two-dimensional CNN models employ many measuring
methods to outstrip other approaches at the same level and
collect data.

Our approach involving real-time systems is suitable.
We can build a retrieval and analytical, biological information
system based on computational model protein sequences.
This intelligent device is more capable of finding variants or
mutations of human diseases based on protein functions. This
knowledge is used by biologists to develop drug targets in
pharmaceutical studies. Our efforts contribute to our progress
with this work, and this success is the key to treating descrip-
tors for evolutionarily derived features as images. However,
the proposed approach still has some limitations, and alterna-
tive methods are available to enhance the proposed technique
in the future. First, a large number of datasets will increase
profound learning efficiency, so future research and further
information are needed to improve performance. Second,
further studies should explore how all descriptors for evolu-
tionarily derived feature information can be entered in CNN
networks. We have also encouraged biological researchers to
use our model and to suggest interactive experiences in addi-
tion to the showing of experimental precision findings. They
thought that the model for machine learning plays an impor-
tant role in understanding proteins with unknown functions
and that our deep understanding of the model of amino acid
interaction is a groundbreaking approach for future research
using structural protein knowledge.
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VIi. CONCLUSION

In this study, the relationship between human proteins and
the human pathway was analyzed on the basis of 2D-
CNN-PSPDs architectures. An effective deep learning model
was developed to classify PSPD proteins by turning the
DDE and DPC descriptor physicochemical characteristics
for derived features into matrices for evolutionary features.
These matrices were then used as an optimized framework
for 2D-CNN-PSPDs. The proposed 2D-CNN-PSPD model
with PSSM matrix feature profile prediction based on 10-fold
cross-validation and a separate research dataset was used to
investigate our model. In contrast to other state-of-the-art
neural networks, our approach provided superior efficiency
and major improvements in all traditional measuring meth-
ods. Over the past decade, traditional methods have not been
able to understand better the function of newly discovered
DNA damage replication proteins associated with pathways.
New PSPD proteins could be precisely defined and used
to produce human disease pathways, drugs pathway, DNA
repairing pathways via our model.

This study also promoted the use of 2D-CNN-PSPD in bio-
chemical research and bioinformatics, especially in related
proteomic and genomic directions for predicting protein
sequence functions associated with human pathways. How-
ever, our hypothesis was complicated by the approach for
mapping the human proteins UniProtKB/Swiss-Prot on four
pathway databases. We verified the cross-reference knowl-
edge route via a preliminary web interface. Future implemen-
tation will promote research on various biological pathways.

The conclusion of our proposed method for optimizing
hyperparameters is provided to improve the prediction effi-
ciency. In order to identify pathway association proteins
within repair DNA, we carried out all the analyses that were
proposed using 2D-CNN approaches constructed from PSSM
matrix profiles. The output was analyzed using a 10-fold
cross-validation method and separate radial network data sets.
Our method demonstrated the precision of 10-fold cross-
validation of 92.5% and 82.26%, respectively for the detec-
tion of DNA damage pathway proteins. We provided protein
sequence model-independent sets on unlabeled Swiss-Prot
protein sequences and finalized fine-tuned in the tasks of pro-
tein hyperparameter optimization. New pathway proteins can
be reliably identified using our model and are used for DNA-
based pathways, such as repair of DNA or production of repli-
cation. The contribution of this study may also lead to further
work to encourage the use of 2D-CNN in the field of bioin-
formatics, especially in the prediction of protein functions.

This research focuses on the design of successful and
deep learning models for the classification of PSPD/non-
PSPD. In the future, we will discuss this concept of pathway
adaptive weighting. Pathway-specific proteins are associated
with disease, chemicals, and proteins (e.g., genes, drugs, and
enzymes). Some pathways are believed to be directly related
to diseases. Their incorporation helps increase access to
highlight the available pathway tools and provides a context
for a particular chemical or target.
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