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ABSTRACT Underwater Wireless Sensor Networks (UWSNs) offer a huge number of applications, most
of which require tagging the sensed data with location information. This makes localization algorithms
an essential part of UWSN design. This paper presents a comprehensive survey of the recently proposed
literature on localization in UWSNs. The surveyed algorithms are evaluated based on a wide-ranging set
of parameters which constitute the elementary features of a localization algorithm. Moreover, in order to
familiarize the readers with the basic design of the surveyed algorithms, brief description of the mode of
operations of each algorithm is presented alongwith its strengths andweaknesses. The algorithms are divided
into two categories based on their computational design i.e., centralized and distributed. Each category is
further subdivided into the algorithms that consider node mobility, and those that do not. Towards the end,
we present our view on the future research directions in the area of localization in UWSNs.

INDEX TERMS Localization survey, underwater sensor networks, underwater acoustic channel, underwater
optical channel, target tracking.

I. INTRODUCTION
The desire to explore and exploit the potentials of the world’s
waters coupled with the rapid technological growth in the last
few decades has driven the rapid development of Underwa-
ter Wireless Sensor Networks (UWSNs). UWSNs enable a
vast array of applications. The range varies from scientific
applications such as the study of marine life and geological
processes; to disaster prevention such as tsunami and flood
warning systems; to military applications such as intrusion
detection, target detection and mine clearance [1]. Commer-
cial applications include mineral exploration and mining,
monitoring and control of underwater equipment e.g. pipe
lines and marine cables, commercial fisheries and aquacul-
ture. On the environmental front, UWSNs enable applica-
tions such as oil spill damage assessment and water quality
monitoring [1]. Other areas that employ underwater sensor
networks include water sports, treasure hunting etc.

Though the classes of applications are similar, the UWSNs
face certain challenges that are alien to their terrestrial
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counterparts. Firstly, radio waves, which are the predominant
medium of communication for terrestrial networks, are not
a practical solution for UWSNs due to quick absorption in
sea water [2]. Optical waves can achieve high data rates at
short distance under water [3]. However they are subject to
scattering and fast attenuation which makes them suitable
only for short range communication [4]. Acoustic waves,
on the other hand, can propagate longer distance and there-
fore are considered as the preferred medium of choice for
underwater communication [5]. Nonetheless, the underwater
acoustic channel poses its own challenges such as slow and
variable speed of the sound waves (1500 m/s on average),
limited bandwidth which depends on transmission range and
frequency, multipath affect, high bit error rates [6], Doppler’s
shift, channel asymmetry due to moving current [6] and lack
of availability of satellite positioning systems underwater.
The satellite positioning systems communicate using radio
waves which cannot penetrate more than a few meters deep
into water thus rendering these systems useless for underwa-
ter localization [7].

Nevertheless, localization plays a pivotal role in sensor
networks. In most of the sensing applications, the collected
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data can only be meaningful if it can be referenced to a
geographical location [8]. For instance, in case of tsunami
warning systems, location of the sensors recording seismic
activity enable the experts to estimate the intensity and the
time of impact at coastal areas. Similarly, pollution moni-
toring applications such as oil spills use locations of sensor
nodes to determine the spread of the pollutants. Besides
resolving the geographical coordinates of the sensed phe-
nomena, localization may also be an essential component
in the design of other protocols. For instance, geographic
routing protocols rely heavily on the location information
of sensor nodes in order to make smart routing decisions.
Keeping in view the vital importance of node localization
for underwater sensing systems, many localization protocols
have been proposed for UWSNs. These protocols can be
categorized based on different criteria such as mobility (static
nodes, mobile nodes), computational model (centralized or
distributed), medium of communication (acoustic, optical
or magnetic induction), underlying technique (range based
localization, range free localization) etc.

Many surveys have been published to evaluate the local-
ization protocols for UWSNs [9]–[15] However, majority
of these surveys do not focus on the recent work. More-
over, some do not discuss the localization strategies, merits
and demerits of the surveyed schemes. In our view, brief
description of the strategies, merits and demerits of the
considered protocols is important to give the readers basic
understanding of the schemes being reviewed. Therefore
in this work, we survey the recently proposed localization
algorithms (2017-2020) for underwater acoustic and optical
sensor networks while identifying their strengths and weak-
nesses. Moreover, our analysis takes into account a broad set
of parameters which have direct impact on the performance
of a localization protocol. In addition, brief explanation of the
localization tactic of each protocol is presented in order to
acquaint the reader with the basic design of the protocol. The
considered schemes are divided into two main categories
based on whether the actual locations are computed at a
centralized location (the centralized model) or computed by
individual nodes (the distributed model). The protocols are
further categorized based on whether or not node mobility is
taken into consideration.

Figure 1 depicts general architecture of UWSNs. Sen-
sor nodes, equipped with acoustic/optical transceivers, are
deployed underwater. Based on application requirement,
the sensor nodes can be fixed or mobile. As satellite posi-
tioning systems are ineffective in sea water, the underwater
sensor nodes can be localized with the help of reference
nodes with known locations. Reference nodes can be located
on water surface in which case they obtain their absolute
positions through satellite positioning system such as GPS.
Alternatively, fixed underwater anchored nodes with known
location or AutonomousUnderwater Vehicles (AUVs), which
surface periodically to refresh their location estimates, can be
used as references for localization of underwater nodes.

FIGURE 1. Typical architecture of UWSN.

A. PERFORMANCE OBJECTIVES
Following are some of the key performance objectives which
must be considered while designing a localization protocol
for UWSNs.

1) LOCALIZATION ACCURACY
Localization accuracy is the most important performance
metric for a localization protocol [16]. The required local-
ization accuracy varies depending on the application. For
instance, military applications, such as target tracking and
mining clearance, require highly precise location informa-
tion. On the other hand, applications such as pollution mon-
itoring, disaster prevention etc. may tolerate some degree
of error in location estimates. Nevertheless, in order to be
effective, an application must satisfy a minimum accuracy
threshold.

2) LOCALIZATION COVERAGE
Localization coverage refers to the number of unknown nodes
that a positioning scheme can localize on average. As pre-
viously mentioned, meaningful conclusions can be drawn
only if the sensed data can be tallied with its geographical
location. Therefore, higher localization coverage leads to
bringing more meaningful data into decision making process
thus improving the robustness of the system.

3) CONVERGENCE TIME
Mobility of underwater nodes with water currents coupled
with slow propagation speed of acoustic waves (which are
mainly used as medium of communication under water)
increases the significance of the convergence time of a local-
ization routine. If a localization protocol takes too long
to converge, the measurements may go stale resulting into
highly inaccurate location estimates.
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4) ENERGY CONSUMPTION
Energy consumption is a major concern in UWSNs not only
because it is hard to replace and recharge batteries underwater
but also due to the energy hungry nature of the underwater
acoustic channel [17].

5) COMMUNICATION OVERHEAD
Communication overhead is important because it affects all
the above mentioned objectives. High communication over-
head may result in higher contention and thus higher number
of retransmission which not only translates into higher energy
consumption but also prolongs convergence time. Longer
convergence time affects the accuracy of the location esti-
mates adversely thus reducing the localization coverage.

B. EVALUATION PARAMETERS
In this subsection, we briefly explain the evaluation parame-
ters considered in this survey.

1) UNDERLYING LOCALIZATION TECHNIQUE
Localization protocols are categorized as range based or
range free protocols [18]. A range based localization proto-
col operates mainly by measuring distances between known
reference points and unknown nodes. For instance, trilat-
eration [19] is a range based localization method which
can localize an unknown point in 2 dimensional (2D) plane
based on the distance measurements between an unknown
point and three non-collinearly located reference points with
known locations. On the other hand, range free localization
schemes, such as centroid algorithm [20], distance vector hop
localization [21] etc., do not need distance and bearing mea-
surements. Range free algorithms use topology and location
information of the neighboring reference nodes to estimate
locations of unknown nodes [22]. It was reported in [22] that
range based schemes can achieve more accurate positioning
estimates compared to range free schemes.

2) RANGING METHOD
Range based localization schemes can choose from many
ranging schemes based on their performance requirements.
Time of Arrival (ToA), Time Difference of Arrival (TDoA),
Angle of Arrival (AoA) [23], [24] and Received Signal
Strength Indicator (RSSI) are some ranging methods that
offer different levels of ranging accuracy and have different
system requirements. For instance, TDoA can achieve better
ranging accuracy as compared to RSSI, however the former
requires time synchronization which is hard to achieve under
water.

3) TIME SYNCHRONIZATION
Time synchronization is an important underlying require-
ment for certain ranging techniques, such as ToA, which
uses time difference between synchronized clocks of
senders and receivers to estimate distances between them.

Synchronization error in such schemes translates directly into
localization error [25].

4) CENTRALIZED/DISTRIBUTED DESIGN
Based on where the location of an unknown node is resolved,
localization algorithms can be classified mainly into two
categories, i.e., centralized and distributed localization algo-
rithms [9]. In the former case, locations are resolved at a
centralized location such as sink node, whereas in the latter
case, each unlocalized node gathers localization information
and carries out location estimation procedure individually.

5) ESTIMATION BASED/PREDICTION BASED
Based on location resolution in terms of time, localization
algorithms can be divided into two categories i.e. estima-
tion based algorithms which utilize current measurements to
estimate locations at the current time instant; and prediction
based algorithms which use past and current measurements
to predict locations in a future time instant [9].

6) MOBILITY CONSIDERATION
Underwater sensor nodes move passively with water cur-
rents [26]. Node mobility coupled with the slow speed
of acoustic waves results in inaccurate location estimates.
Therefore localization protocols must consider mobility
in order to achieve more accurate and reliable location
estimates.

7) NUMBER OF REFERENCE NODES
Reference nodes refer to the nodes with known locations.
Unknown nodes can be localized using the locations of the
reference nodes in conjunction with the positions of the
unknown nodes relative to the reference nodes. In case of
lateration, at least three reference points are required to local-
ize an unknown node in 2D plane, where as in case of 3D
at least 4 reference points are required. However the number
of reference nodes may be increased based on the network
sparsity and other considerations such as convergence time
and accuracy.

8) COMMUNICATION PARADIGM
A localization algorithm may have active or passive com-
munication paradigm based on whether or not the unknown
nodes transmit during the localization process [27]. In case
of passive algorithms, the unknown nodes only listen to the
transmissions from neighboring nodes and do not transmit.
Whereas the algorithms that require the unknown nodes to
participate in the localization process by transmitting packets
are said to have active communication paradigm.

9) PERFORMANCE OBJECTIVE
As mentioned previously, a localization protocol should be
designed targeting certain performance objectives, such as
accuracy, convergence time, localization coverage etc. The
performance objectives of each of the protocols surveyed in
this paper are presented in Table 1 and 2 in pp 6 and 10.
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In our evaluation parameters tables, the double hyphen
symbol ‘‘−−’’ means that the value of the corresponding
parameter cannot be determined based on the available infor-
mation and/or the proposed localization method is open to
any suitable value of the parameter.

II. CHARACTERISTICS OF THE UNDERWATER ACOUSTIC
CHANNEL
A. THE SPEED OF SOUND IN WATER
The propagation speed of acoustic waves in water is influ-
enced mainly by three factors namely depth (D), tempera-
ture (T) and salinity (S). Considering these factors, different
empirical formulations have been presented to accurately
estimate the speed of sound in water. One such formulation
that achieves reasonable accuracy is known as Mackenzie
empirical equation (1) [28].

c = 1449+ 4.591T − 5.304 ∗ 10−2T 2
+2.374∗10−4T 3

+ 1.34 (S − 35)+1.63∗102D+ 1.675∗10−7D2
+1.025

∗ 10−2T (S − 35)−7.139∗10−3TD3 (1)

B. ATTENUATION
The attenuation of the sound signals in the underwater acous-
tic channel can be represented as a function of distance d in
km and frequency f in kHz (2)[29]:

A(d, f ) = dS .α(f )d (2)

where d, α (f ) and S represent distance, absorption coeffi-
cient and the spreading factor, respectively. The signal atten-
uation in dB is given by (3):

10logA (d, f ) = S.10 log+d .10 logα (f ) (3)

The geometrical spread of an acoustic signal is given by its
spreading factor (S). Usual values of S are 1, 1.5 and 2 for
cylindrical, practical and spherical spreading respectively.
The absorption coefficient (α(f )) in dB/km for frequency f
in kilohertz is calculated using Equation 4 [30]

10 logα (f ) = 0.11
f 2

1+ f 2
+ 44

f 2

4100+ f 2

+ 2.75.10−4f 2 + 0.003 (4)

Equation (4) is generally used for frequencies higher than a
few hundred Hertz. However, equation (5) [30] is considered
more effective for lower frequencies.

10log ∝ (f ) = 0.002+ 0.11
f 2

1+ f 2
+ 0.011f 2 (5)

Figure 2 [31] represents α (f ) as a function of frequency f.
α (f ) increases swiftly as the frequency increases, thus result-
ing in a bound on the maximum usable frequency for a link
between nodes with a given distance d between them.

FIGURE 2. Absorption coefficient vs. frequency [31].

C. NOISE
The ambient noise in the underwater acoustic channel has
four constituent factors i.e. thermal noise (6) [29] shipping
activity noise (7) [29], breaking waves (8) [29], and turbu-
lence (9)[29]. Equations (6-9) represent the power spectral
density (PSD) of the constituent factors of ambient noise
in dB re µPa/Hz for frequency f in kHz

10 logNth (f ) = −15+ 20 logf (6)

10 logNs (f ) = 40+ 20 (s− 0.5)+ 26 log f

− 60 log(f + 0.03) (7)

10 logNw (f ) = 50+ 7.5w
1
2 + 20 log f − 40log(f + 0.4)

(8)

10 logNt (f ) = 17− 30 log f (9)

where s in (7) refer to the shipping activity factor. Value of s
ranges between 0 and 1 to account for low to high shipping
activity. w in (8) refers to the wind speed in m/s.

Equation (10) [5] represents the PSD of the overall ambient
noise in underwater acoustic channel:

N (f ) = Ns (f )+ Nt (f )+ Nw (f )+ Nth(f ) (10)

whereas (11) represents the SNR observed at receiver.

SNR = SL − TL − NL + DI ≥ DT (11)

where, SL, TL and NL represent the source level, trans-
mission loss and ambient noise respectively in dB. DI and
DT represents the directivity index and detection threshold
respectively. Source level (SL) is calculated using (12) [32]
as follows:

SL = 10 log
(

It
0.67× 10(−18)

)
(12) (12)

where It denotes the intensity. Equation (13) computes It in
Watts/m2 in shallowwaters whereas (14) can be used for deep
waters.

It =
Pt

2× π × 1m× z
(13)

It =
Pt

4× π × 1m× z
(14)
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III. LOCALIZATION PROTOCOLS FOR UWSNS
In this section we present our analysis of the localization
schemes included in this survey. The basic design, operations,
merits and demerits of each protocol are explained briefly.
The protocols are categorized based on mode of computation
i.e. centralized or distributed. Each category is further divided
based on mobility consideration (figure 3).

FIGURE 3. Classification of localization schemes based on computational
model and mobility.

A. CENTRALIZED LOCALIZATION SCHEMES
Table 1 evaluates centralized localization schemes based on
the parameters explained in section 1. In the centralized local-
ization design,measurement are collected at a central location
such as a sink node which runs a localization algorithm to
compute location estimates based on the collected informa-
tion. Centralized localization schemes can be divided into two
categories based on mobility consideration i.e. centralized
localization schemes with mobility consideration and cen-
tralized localization schemes without mobility consideration.
The following section gives brief explanation of the mode
of operations of each of the centralized localization schemes
considered in this survey.

1) CENTRALIZED LOCALIZATION SCHEMES WITH MOBILITY
CONSIDERATION
In [33], the authors propose a two stage localization scheme
for partitioned UWSNs. Each node is assumed to hosts three
non-collinearly positioned antennae for position estimation
using trilateration. Nodes are divided into n tiers where any
tier n refers to the set of nodes that are within the commu-
nication range of the nodes in the preceding tier i.e. tier n-1.
Tier 0 contains only one reference node with known coordi-
nates. The reference node initiates stage 1 by transmitting a
beacon and by setting up a timer for reception of acknowl-
edgement (ACK). Upon reception of the beacon, each tier 1
node estimates its distance from the sender and respond by
transmitting a packet with transmission range higher than
the calculated distance. The packet acts as acknowledgement
for the sender in the preceding tier i.e. the reference node
and as beacon for the nodes in the next tier i.e. tier 2. Upon
reception of ACK the reference node estimates the positions
of the sender relative to itself using trilateration and saves
it in its table of relative location. Same steps are followed
whenever a node in any tier receives a beacon or an ACK.
Thus every node builds its table of relative locations which is
relayed to the reference node after a certain time threshold.

The tables of relative locations from higher tier nodes arrive
at tier 0 i.e. the reference node after multiple transmissions as
elaborated in figure 4. The reference node can then determine
relative positions of all the node with respect to itself using
the received tables. In stage 2, the absolute positions of all
the nodes are calculated based on their position relative to the
reference node and the absolute position of the reference node
at time instance t. The proposed scheme also introduces a
partition handlingmechanismwhich allows partitioned nodes
to request beacons proactively after a certain threshold time.
The main advantage of the proposed scheme is its ability to
handle partitioned networks. However, the partition handling
mechanism may solicit high number of responses in a dense
network which results in high communication overhead and
energy consumption.

FIGURE 4. Propagation of beacon and Tables of Relative location [33].

In [34], the authors propose a localization algorithm with
movement prediction for passively mobile anchored under-
water sensor nodes. The nodes are divided into primary
and secondary level nodes based on whether they are local-
ized directly by the surface buoys or by the primary nodes
respectively. The proposed scheme works in two stages; Time
of Arrival based ranging, and movement prediction. Firstly,
node positions are estimated based on the range measure-
ments between unknown nodes and at least 3 reference nodes.
Then, based on the estimated position and the node mobility
model, the position and velocity of the nodes are estimated at
each point of time in the prediction window (figure 5). Sec-
ondary level nodes may have higher localization error due to
error accumulation. Therefore, GreyWolf optimizer is used to
minimize the accumulation error in case of secondary nodes.
The protocol improves energy efficiency through reduced
message exchange and by decreasing contention through
backoff strategy. Moreover, error accumulation is minimized
by selecting optimal first level nodes as reference points for
secondary nodes using gray wolf optimizer. Even though the
proposed scheme scales well for larger number of nodes,
it suffers from low localization coverage for smaller number
of nodes.

In [35], the authors propose a localization technique that
takes Doppler’s shift in the underwater acoustic channel
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TABLE 1. Evaluation Parameters (Centralized Localization schemes).

FIGURE 5. Prediction Window [34].

into consideration to calculate accurate location estimates.
The estimates are further improved by employing genetic
algorithm based optimization. The operations of the scheme

can be divided into two distinct stages: In stages 1, upon
detection of an event the respective node broadcasts a ping
message. If the message is received by an anchored node,
the anchored node save the time of reception of the ping
message and responds by sending its ID and depth informa-
tion. As soon as the response is received by the unknown
node, it sends a message to the respective anchored node.
Upon reception of the second message from the unknown
node, the anchored node forwards the reception time of the
two ping messages to the sink node along with its depth
information. In total, for one unknown node the sink node
receives information from four anchored nodes. Based on
the received information, it runs stage 2, in which it uses
the time information, depth of the anchored nodes and the
speed of the underwater current to estimate the Doppler’s
shifts for each of the four anchored nodes. Then taking the
estimated Doppler’s shifts into consideration, the position of
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the unknown node is determined using multilateration. The
sink node further improves location estimates by employing
genetic algorithms. The proposed technique improves accu-
racy by taking into consideration the often ignored factor of
Doppler’s shift and by using genetic algorithms to improve
the estimates further. However the overhead generated by the
three way communication between sink and anchored nodes,
and the resultant contention can diminish energy efficiency.

In [36] aiming at minimizing localization errors,
the authors propose a target localization and tracking method
which takes into consideration the influence of underwater
environment, such as variation in the speed of sound and
the resultant curved trajectory of the transmitted signals.
The authors use real sound speed measurement data in the
ocean environment and calculate time of flight (ToF) using
the underwater sound speed profile. The target position is
estimated through particle swarm optimization based tracking
using ToF and angle information. Data fitting is used to
further improve the accuracy. This method reduces local-
ization error by considering the actual sound propagation
characteristics in the oceanic environment i.e. sound speed
variation, which, if not considered, translate directly into
estimation error. However, issues, such background noise and
variation in target velocity which may affect the performance
of localization protocols significantly, are ignored.

In [37] authors propose a novel deep learning based tar-
get localization and tracking scheme. The proposed scheme
uses a convolutional denoising auto-encoder (figure 6) which
takes a noisy image (that represents the time delay matrix of
the signal) as input. The output is a denoised image/matrix
which highlights only the path of the target. The propose
scheme is scalable to the number of targets as it carries
out detection and tracking per sample in the time delay
matrix.

FIGURE 6. Convolutional Denoising Auto encoder [37].

In [38], the authors propose a received signal strength
based localization method for underwater acoustic sen-
sor networks. Firstly, a practical path loss model is pre-
sented. For a given area, RSS data is collected dynamically
while taking into consideration measurement noises, cor-
relation between the measurement noises and mobility of
the randomly deployed anchored nodes with waves. For a
transmitter-receiver pair, their geometric distance from each
other is approximated based on a linear regression model.
Thus quick access is obtained for the range information, while

achieving low communication overhead, localization error
and response time. Moreover a method for mitigating noises
in distance estimation is also presented.

In [39] the authors propose a target localization scheme
for under water sensor networks with challenging commu-
nication conditions. Firstly a support vector machine based
strategy is devised for selecting a set of nodes with relatively
smaller distances to the target nodes to partake in the sensing
process. Secondly, in order to deal with the sensing noise in
the raw data collected by the selected sensor nodes, a learning
based model is built to acquire precise observations in the
presence of sensing noises. Moreover to acquire accurate
location estimates, a likelihood function is formulated for
updating the particle weights while avoiding particle degen-
eracy. The merit of the proposed scheme lies in cutting out
unnecessary transmissions by allowing only those nodes to
partake in the sensing process which are within a certain
distance threshold from the target node thus saving energy
and reducing sensing noise. However this is achieved by
incorporating complex processing.

In [40], the authors propose a compressive sensing based
positioning method for UWSNs. The sensing area is divided
into cubic units. The cubic unit based sparse localization
is converted to compressive sensing based node positioning
problem by means of the energy relationship between the
unlocalized sensor nodes and the mobile anchored node. The
anchored node initiates the localization process by sending
N pieces of information which is followed by reception of
signals from unlocalized nodes. The signal strength of the
received singles is calculated and sent to the fusion cen-
ter which applies a compressive sensing based algorithm to
locate the specific position of the unlocalized sensor nodes in
the grid. The positioning error is further reduced by applying
the centroid algorithm. The use of cube lattice positioning
method (that requires the mobile node to traverse the whole
cubic module using basic path models such as layered scan
and random way point models) reduces complexity by avoid-
ing the complex path planning that is required to achieve
collinearity in case of trilateration. However, the proposed
scheme is not scalable to the number of unlocalized nodes as
the localization error increases with increase in the number
of unlocalized nodes.

In [41] authors propose virtual node assisted static and
dynamic localization algorithms for static and mobile envi-
ronments respectively. Nodes are divided into four roles;
a surface mobile beacon node, underwater auxiliary node,
underwater virtual nodes and unlocalized nodes. The sur-
face mobile beacon and the unlocalized node use Time of
Arrival (ToA) to determine the distance of the unlocalized
node from the mobile beacon. The mobile beacon and auxil-
iary node communicate to find the ToA error. A quarter circle
of radius R centered at the mobile beacon is drawn where
R is the distance between the mobile beacon and the auxiliary
node. Virtual nodes are assumed to be located on the circle
and are used to find the distance between the virtual and the
unlocalized nodes.
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2) CENTRALIZED LOCALIZATION SCHEMES WITHOUT
MOBILITY CONSIDERATION
In [42], the authors propose a sound source localization algo-
rithm using the time difference of arrival of multiple instances
of a signal transmitted by a sound source. Sensor nodes use
compressed sensing to determine the time delay spread of
the received multipath signal. To determine the search area,
an adaptive OMP algorithm is proposed which facilitates
expanding or shrinking the search area based on the value
of the edge of the search area in terms of Euclidian metrics.
The target localization is achieved by a three step weighted
least square algorithm. In step 1, a rough estimate of the target
position is made using least square approach. Step 2 deter-
mines the noise parameters from the polynomial equations
for accurate estimation of the target position. Lastly, step 3
further refines the results obtained in the first two stages.

In [43], the authors propose target positioning techniques
for known and unknown target transmission power cases.
General target positioning cases based on the maximum like-
lihood (ML) criterion are formulated initially. However the
non-convex nature of the formulatedML estimators increases
the complexity of finding global optimum solution. There-
fore, in order to achieve efficient solution, these estimators
are converted into a Generalized Trust Region Sub-problems
or GTRS framework. The localization accuracy is enhanced
in case of unknown transmit power by a three step procedure
which involves finding initial position estimates, finding the
corresponding maximum likelihood estimate of transmission
power and finally using the estimated transmission power
to transform the unknown transmit power problem to the
know transmit power problem. The proposed scheme attains
good levels of accuracy by approaching Cramer Rao Lower
bound in some cases. However, it does not consider node
mobility which may have considerable adverse impact on the
performance of the proposed scheme.

In [44] the authors propose an RSSI based localization
method for energy harvesting wireless underwater optical
sensor networks. In order to deal with the limited energy
constraint, a framework for energy harvesting is intro-
duced which enables the low energy nodes to harvest ambi-
ent energy and be active again upon harvesting sufficient
amount of energy (figure 7). For location estimation, dis-
tances are estimated by the active nodes based on RSS
subject to the impairments of the optical underwater chan-
nel. This is followed by computing block kernel matrices
for the RSS distance estimates. The error in the estimation
of shortest paths in the block kernel matrices is mitigated
through a matrix completion procedure. Upon completion
of block kernel matrices, nodes are localized by employ-
ing a closed form location estimation procedure. The pro-
posed scheme includes energy harvesting which makes it
robust thus achieving longer network life time. However,
it does not consider the effect of node mobility on local-
izability of nodes which may result into highly erroneous
estimates keeping in view the use of light as medium of
communication.

FIGURE 7. Illustration of time slotted operation of sensor nodes [44].

In [45], the authors propose a method for accurate location
estimation of selected smart objects in a three dimensional
underwater Internet of Things. The authors argue that in
certain scenarios, data collected from a certain group of
underwater smart objects is more important than others.
Therefore the more important objects should be more accu-
rately localized. To achieve this, a four step solution is pre-
sented. In step one a pairwise distance matrix is built using
RSSI to measure distances between smart objects. In step 2,
using a graph partitioning method, the network is divided into
disjoint sub graphs each of which represents a set of smart
objects (figure 8). This is followed by disintegrating the dis-
tancematrix, computed in step 1, into sub graph level distance
matrices. Lastly positions of anchored nodes are optimized to
achieve further improvement in localization accuracy. Due to
its modular nature, the proposed solution is scalable and can
be applied to small and large scale networks. However the
localization accuracy may vary depending on the density of
sensor and anchored nodes, ranging errors etc.

In [46], the authors propose a robust 3D location estimation
scheme for optical UWSNs. The authors assume that noisy
range measurements between nodes are available. Given the
noisy range measurements, the distance matrix (which rep-
resents pairwise distance among sensor nodes, relay nodes
and anchored nodes) may have some missing distances and
outliers thus resulting into a partially connected network.
A low rank matrix approximation technique is thus pro-
posed in order to calculate accurate estimates of the missing
distances. Moreover the outliers are accommodated through
a closed form convergent iterative solution. Due to range
limitations the localization may be carried out over multiple
hops. Initially relative positions are estimated which are then
transformed to absolute position estimates. The proposed
scheme successfully reduces ranging errors and solves out-
lier problem. However, it uses multihop approach that may
amplify errors due to error accumulation.

In [47], the authors propose a node localization method
for underwater optical sensor networks with limited
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FIGURE 8. a) Graph with associated vertices and links, b) Graph after
partitioning into two subgraphs [45].

connectivity. The proposed method operates on the RSSI
based noisy distance estimates embedded in a high dimen-
sional space and estimates locations in a low dimensional
space. Based on the neighborhood information a weighted
graph is created that contains distance estimates of the one
hop neighborhood.Missing distance information in the kernel
matrix is completed and helmert transform is applied to
achieve further reduction in location estimation errors. The
proposed technique reduces root mean squared positioning
error and achieves Cramer Rao Lower Bound. However it
does not considers mobility of nodes with currents which can
drastically degrade the performance of an underwater local-
ization scheme when the medium of communication is light.

In [48], the authors propose a localization scheme for
partially connected 3D Underwater Optical WSNs aiming
at improving localization accuracy by optimizing anchored
node placement and accommodating outliers. The pairwise
distances between nodes are estimated using RSSI. How-
ever due to the impairments of the underwater optical chan-
nel, the distance matrix may not be complete. The authors
frame the problem of outliers and the missing pairwise dis-
tances in the pairwise distance matrix as an optimization
problem and solve it using half quadratic minimization.
Moreover, in order to improve accuracy, the optimal anchored
node placement problem is studied. The problem is expressed
as a combination of Fisher information matrices for the
nodes where the D-optimality condition is satisfied. The pro-
posed scheme successfully reduce ranging errors and outliers
problem.

In [49] the authors propose a RSSI based localization
method for optical-acoustic hybrid underwater sensor net-
works. The proposedmethod consists of three steps. In step 1,
sensor nodes estimate ranges from neighboring nodes using
optical communication. As optical channel enables only short
range communication, acoustic channel is used in step 2
to measure distances from the nodes located farther away.

In step 3, the range information acquired during step 1 and
step 2 is communicated to a centralized node which combines
the optical and acoustic range estimates and computes a pair-
wise distance matrix. Finally, weighted multiple observation
dimensionality reduction is applied to estimate node locations
while suppressing noisy observations. The proposed method
offers multiple advantages. On one hand, the use optical
channel for short range communication improves data rate
while on the other hand the use of acoustic communication for
longer distances improves connectivity. Moreover, the hybrid
approach divides the communication domain which enables
collision free communication as transmissions in one com-
munication medium do not collide with the transmission of
the other medium. Furthermore, the proposed scheme also
implements energy harvesting to improve the energy effi-
ciency of the system. On the downside, assumption of a fully
connected network is somewhat unrealistic. Node mobility,
energy drainage and node malfunction introduce connectivity
holes and partitions in the network, in which case the perfor-
mance of the proposed scheme may be compromised.

B. DISTRIBUTED LOCALIZATION SCHEMES
In case of distributed localization schemes, sensor nodes
collect location estimation related data and run position-
ing algorithms individually to estimate their positions.
Table 2 evaluates distributed localization schemes based on
the parameters explained in section 1. Distributed localization
schemes can be divided into two categories based on mobility
consideration i.e. those which consider node mobility and
those which do not consider node mobility. The following
section gives brief explanation of the mode of operations of
each of the distributed localization schemes considered in this
survey.

1) DISTRIBUTED LOCALIZATION SCHEMES WITH MOBILITY
CONSIDERATION
In [50], the authors propose a cluster based distributed
localization scheme with partition handling capability for
mobile UWSNs. The proposed scheme consists of two stages.
In stage 1 a beacon is propagated down the network. All the
nodes that receive the beacon localize themselves using tri-
lateration. However certain partitioned nodes may not receive
any beacon. These partitioned nodes initiate an iterative stage
two after a certain threshold time by transmitting beacon
request with increased transmission power. If the beacon
request is received by the reference node, it responds by trans-
mitting a beacon which should be received by the requester
within a certain time threshold. Otherwise, upon reaching the
time threshold, the clusterheads (which are selected among
the partitioned nodes based on random numbers included
in the beacon request sent in the previous iteration) send
localization request again by doubling the previously used
transmission power and wait for beacon. This process con-
tinues until a beacon is received or the maximum retry
limit is reached. The advantage of this scheme lies in the
clustering strategy, which reduces contention and energy
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TABLE 2. Evaluation Parameters (Distributed Localization schemes).
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consumption considerably by allowing only cluster heads to
request beacons of behalf of thewhole cluster.Moreover, with
increasing number of iterations the clusters get bigger thus
resulting in fewer clusterheads and lesser traffic. Furthermore
a retransmission control strategy is also introduced to further
reduce the number of transmissions.

In [51], the authors propose an asynchronous localization
protocol for UWSNs. The network consists of AUVs which
act as reference nodes, active sensor nodes which communi-
cate with the AUVs to estimate their positions and passive
nodes which stay silent and are localized through unsolicited
messages from the active nodes and/or AUVs. Node mobility
is tackled through a mobility prediction algorithm which
predicts the future locations of the nodes. The algorithm
solves the optimization problems using least squares estima-
tors. The proposed scheme reduces noise and interference
through short distance communication as AUVs can come
in short distance to sensor nodes. Reduction of noise and
short distance communication improves accuracy and energy
efficiency. On the downside, the protocol does not define any
mechanism to localize those passive nodes which may drift
away from the rest of the network and therefore are unable
to receive localization messages from AUVs or active nodes.
As the passive nodes do not request localization proactively,
they may remain unlocalized if they do not receive localiza-
tion messages.

In [52], the authors propose an anchored nodes assisted
target localization scheme. The proposed scheme consists
of 3 stages (Figure 9). The target node initiates stage 1 by
transmitting start instruction. Upon reception, the anchored
nodes estimate their distance from the target node and mea-
sure environmental parameters such as absorption coefficient
and spreading characteristics of the channel. In stage 2,
the anchored nodes send localization messages to the target
node. Upon reception, the target node estimates transmission
loss for each of the received messages. In stage 3 the target
node uses the transmission loss information to measure its
distance from each anchored node. Based on the measured
ranges, the target node estimates its location using triangu-
lation. The estimates are further optimized using centroid
algorithm. The proposed scheme has a simple, low power
and effective design which, unlike its counterparts, does not
need additional clock information and can achieve similar
accuracy with smaller communication cost.

In [53], the authors focus on the inaccuracy in position esti-
mation caused due to inaccurate estimation of sound velocity
as it changes non-linearly with increasing depth. The authors
propose Symmetry Correction Least Square Estimation. I’s
a two-step process. In the first step traditional Least Square
Estimation (LSE) is used to obtain initial position estimates.
The authors argue that the actual target node has a symmetry
relation with these estimates obtained using the LSE. Step
two improves the accuracy of the first estimation by using the
symmetry of the actual target node and the estimates obtained
during step1. The major advantage of the proposed method
is its insensitivity to the deviation of the estimated speed

FIGURE 9. Flow chart of the proposed localization method [52].

of sound from the original speed of sound which enables
it to achieve similar or more accurate location estimates at
different speeds of sound.

In [54], the authors propose an energy efficient localization
algorithm that aims at achieving optimum tradeoff between
energy consumption and localizability by devising strategies
for sensor and anchored nodes to choose optimal transmission
power levels for their transmissions. The scheme uses Stack-
elberg game theory based approach. The sensor nodes, which
act as leader, send request message using certain transmission
power. Anchored nodes within the range act as followers and
respond to the request by choosing an optimal transmission
power.With the aim of minimizing their energy consumption,
the sensor nodes localize themselves after receiving enough
beacon locations. In order to improve localizability, sensor
nodes can send requests with higher transmission powers
to increase chances of receiving responses from multiple
anchored nodes. Moreover authors also introduce a mecha-
nism to find two hop anchored nodes if one hop anchored
nodes can’t produce the required results (figure 10). The pro-
posed scheme successfully conserves energy thus prolonging
network life time while not compromising on the localiz-
ability of nodes. Moreover the scheme is scalable showing
increase in localization coverage with increase in number of
nodes while achieving almost constant energy cost per sensor
node irrespective of the number of nodes. However energy
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FIGURE 10. An Example of 2-hop transmission power calculation [54].

cost per anchored node increases non-linearly with increase
in the number of sensor nodes.

In [55], the authors propose a two phase technique for
joint localization and tracking of Autonomous Underwater
Vehicle (AUV). The first phase, called self-localization, deals
with estimation of the position of AUV while taking stratifi-
cation effect and lack of time synchronization into account.
This phase tries to save energy by dividing the time into
multiple measurement windows. Phase two deals with track-
ing of the AUV using a reinforcement learning (RL) based
tracking controller which uses the position estimation of the
first phase. By employing joint design for localization and
tracking the proposed scheme improves energy efficiency
significantly. Moreover consideration of stratification effect
and asynchronous clock improve localization accuracy. Fur-
thermore use of reinforcement learning improves tracking by
reducing the impact of uncertainty in parameters due to ocean
currents. The scheme assumes that accurate position of the
surface buoys is pre-known. However the buoys move with
surface currents and may affect the accuracy of tracking if a
fixed pre-known position is assumed.

In [56], the authors propose an AUV based localization
scheme for UWSNs subject to passive mobility. The authors
assume deployment of a high speed AUV, which transmits
localization beacons periodically as it traverses the network
on a pre-defined path. Sensor nodes that receive the beacons
estimate their position using trilateration. In order to improve
localization coverage, the deployed sensor nodes disseminate
neighborhood information by transmitting ‘info’ messages.
The neighborhood information is actively shared with the
AUV upon its arrival. Based on the received neighborhood
information, the AUV may adaptively increase its range to
reach out to more nodes thus improving localization cover-
age. The proposed scheme improves localization coverage;
however, the improvement is achieved at the cost of the
energy consumed to carry out the neighborhood information
dissemination phase. Moreover, the relationship between the
speed of AUV and the mobility of nodes is not defined.
This relationship is important because if the AUV is not fast
enough, the measurement may go stale which may result in
very high localization error.

In [57], the authors focus on cooperative localization in
case of multiple AUVs networks in UWASNs (figure 11).
Taking into account the constraint of cooperative structure,
they develop two measurement schemes for rough location
estimation methods. The first scheme, which is based on
isotropic transmission in the underwater acoustic medium,
assumes that the ranging inaccuracies estimated from the
concurrent omni-directional responses originating from the
same source are correlated. Similarly, the second scheme
which is based on the common observation environment, also
assumes that the observation environment has correlation.
The correlation that exists among errors is used for coarse
estimation followed by application of an appropriate filter to
fuse the coarse estimation with dead reckoning estimation in
order to improve the accuracy of location estimates. The pro-
posed schemes effectively suppress error consistently when
tested under different noise levels and different navigation
trails.

FIGURE 11. The schematic diagram of cooperative localization [57].

In [58], the authors propose a beacon free localization
scheme for anchoredUWSNs. The scheme achieves its objec-
tive in two stages namely maximum a posteriori (MAP) esti-
mation and particle swarm optimization (PSO) localization.
During MAP estimation stage, nodes, which are within each
other’s communication range, form clusters. Nodes within
a cluster communicate with other nodes in their cluster to
measure distance using two way time of arrival. The anal-
ysis of the mobility patterns of nodes in the first stage sets
ground for localization in stage 2 by combining the distance
and the priori localization info to derive posterior probabil-
ity distribution and weighted objective function. In stage 2,
a swarm of particles is used to look for the fittest location
solutions from local and global views at the same time.
Furthermore, localization ambiguity (figure 12) is removed
and convergence time is improved using a novel reference
node selection strategy and a bound constraint mechanism
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FIGURE 12. Localization ambiguity [58].

respectively. The proposed scheme takes into account differ-
ent performance degradation factors such as noise, mobility
and communication overhead and provides solutions in order
to achieve considerable improvement in convergence time,
energy consumption and location errors.

In [59], the authors propose a feedback based approach
for target location estimation in UWSNs. The localization
procedure is carried out in two steps. In the first step a closed
loop feedback based range estimator is designed in order to
estimate the distance from the target. Adequate conditions
for stability are presented to demonstrate that the system can
stabilize the closed loop structure. In order to localize the
target, the distance information acquired in the first step is
used in the second step to design a consensus based unscented
Kalman filtering algorithm. The effect of malicious data is
diminished by combining the direct and indirect measure-
ments which improve the localization accuracy of the pro-
posed scheme.

In [60], the authors propose ProLo, a distributed position-
ing method for mobile 3D underwater acoustic sensor net-
works. ProLo uses the rigidity theory and builds a virtual rigid
structure using projections. The authors assume at least three
beacons using which a virtual beacon plane is constructed.
The 3D problem is reduced to 2D by projecting the edges
of the ordinary sensor nodes onto the beacon plane. As the
proposed scheme canmaintain global rigidity while the nodes
are in motion, the global rigidity theory is applied to enable
mobile node localization. ProLo has the advantage of being
able to localize nodes in 3D space using only 3 beacons.
However, on the down side, it cannot handle errors in distance
measurements well, which may result in high localization
errors.

In [61], the authors propose a confidence based position-
ing scheme for mobile and large scale UWSNs. Based on
the confidence value of the current positioning estimates
of localized nodes, the nodes with highly precise estimated

locations are employed as reference nodes to localize their
unlocalized neighboring nodes. The confidence value for
each node is updated based on the expected error of the
adopted positioning method. Three different positioning
methods are considered namely; Trilateration based on Time
of Arrival, Dead reckoning and ultra-short base line localiza-
tion (figure 13). The update rules of the confidence value rely
only on local information thus making the proposed method
highly scalable.

FIGURE 13. Confidence based positioning scheme [61].

In [62], the authors propose a localization scheme that
aims at improving localization accuracy by mitigating errors
caused by beacon node drift and ranging. In the proposed
method, the unknown nodes select four most reliable beacon
nodes with in their communication range to estimate their
position. Reliability is determined based on evaluation of
weights of some proposed indexes using analytical hierarchy
process method (figure 14) which is followed by calculation
of the grey correlation grades which represent reliability of
every beacon node. A set of two possible locations of the
unknown node is calculated using three beacon nodes. Then
one of the two possible locations that has smaller distance
error from the forth beacon node is chosen as the final posi-
tion estimate of the unknown node. The proposed scheme
improves localization accuracy by resolving errors due to
beacon node drift and ranging. However, it ignores error accu-
mulation that is caused by using localized nodes as beacon
nodes.
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FIGURE 14. Analytical Hierarchy Process Model [62].

In [63], the authors propose energy efficient target localiza-
tion and tracking scheme subject to constraints such as noisy
measurements, asynchronous clocks and power limitations.
The proposed scheme consists of two phases. In phase 1,
which deals with position estimation of the target, an asyn-
chronous position estimation method is developed based
on the relationship between propagation delay and position
(figure 15). In phase 2, in order to facilitate persistent tacking,
a consensus oriented Bayesian filter is designed based on the
localization results of phase 1. Specifically, longer network
life time and improved tracking accuracy is achieved by
jointly adopting duty cycle mechanism and the consensus
fusion approach. One of the advantages of the proposed
scheme is that it does not require clock synchronizationwhich
is hard to achieve in the harsh underwater environment.More-
over the possible adverse effects of lack of synchronization on
position estimation are handled smartly by acquiring recep-
tion and transmission time stamps of communicating entities
and using them in a least square method to acquire positions.
On the downside, adverse effects of the underwater channel
and environment such as mobility of sensor nodes, lack of
availability of communication links etc. are ignored.

In [64], aiming at improving localization accuracy,
the authors propose a passive localization scheme that consid-
ers and utilizes the multipath nature of the underwater acous-
tic channel. The scheme considers two types of anchored
nodes; S-anchors that are deployed on or near the water sur-
face and U- anchors which are deployed underwater. In case
of S-anchors only direct path between the anchored nodes
and the unknown nodes is considered whereas in case of
U-anchors both direct and surface reflected paths are consid-
ered (figure 16). Nodes are localized by running optimization
procedure given in (15). Once the horizontal ranges between
the underwater ordinary node and S-anchors and U-anchors
have been calculated, the passive localization problem of the
underwater ordinary node can be formulated as an optimiza-
tion problem as follows:

V o
= argmin


Ns∑
i=1
|ρi − ||(V o,Zo)− Si|||

+

Ns+NU∑
j=Ns+1

∣∣ρj − ∣∣∣∣(V o,Zo)− Uj
∣∣∣∣∣∣
 (15)

FIGURE 15. Example of the localization process [63].

FIGURE 16. Architecture of a passive localization system [64].

where Si, Uj, Vo represent the coordinates of the surface
anchored node i, underwater anchored node j and the under-
water ordinary node respectively;ρi, ρj represent horizontal
ranges between the unlocalized node and the anchor nodes i
and j respectively. NS, NU denote the number of surface
anchor nodes and the number of underwater anchor nodes
respectively. The proposed scheme considers the variations
in the speed of sound due to underwater characteristics such
as pressure, salinity and temperature which is an important
consideration often ignored in many previously proposed
designs.

In [65], aiming at improving localization accuracy and con-
vergence time, the authors propose a mobile reference node
and RSSI based localization method. The proposed method
comprises four steps. Step 1 deal with defining the trajectory
of the mobile reference node and estimation of RSSI val-
ues by sensor nodes. Step 2 deals with designing a support
vector regression based interpolation system that processes
the estimated RSSI values in order to find the projection of
sensor nodes on the reference node trajectory. Step 3 develops
a curve matching technique that processes the RSSI values to
find the perpendicular distance between underwater sensor
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nodes and the trajectory. Finally, step 4 estimates node loca-
tions by geometrically processing the available information.
The proposedmethod reduces localization error considerably.
Moreover unlike some of the existing methods in which the
anchored node is required to travel two trajectories at mini-
mum, the proposed method requires only one time trajectory
to localize a node.

In [66], the authors propose an AUV based localization
algorithm for distributed localization of sensor nodes. The
authors study the impact of the time interval of beacon
transmission and AUV traversal path on energy consumption
and localization coverage. The study finds appropriate time
intervals for beacon transmission when the AUV traverses
the network over a layered rectangular path. As the bea-
cons, transmitted by the AUV from different locations, are
received by an unlocalized node, it estimates its position by
the computing the innermost intersection body through the
geometric intersection of the received signals. The proposed
method saves energy by employing a passive localization
approach in which sensor nodes do not transmit. Secondly,
time synchronization, which is very hard to achieve under-
water, is not required. On the downside, the localization cov-
erage of the scheme depends heavily on the beacon interval.
Larger beacon intervals, which may save energy, bring down
the localization coverage considerably.

In [67], the authors argue that in AUV centric localization
schemes the deployment geometries of anchored nodes and
AUVs, which include their deployment pattern and ranges,
have considerable impact on the localization accuracy of
the AUV. Therefore, aiming at finding efficient deployment
geometries, the authors study the impact of deployment con-
figuration of anchored nodes and underwater autonomous
vehicle on location estimation process. Firstly, Jacobian
matrix of the measurement inaccuracies at the true position
of the AUV is derived and used to quantify the Cramer Rao
Lower Bound (CRLB) with Time of Flight measurement
using an isogradient sound speed profile. Then an optimiza-
tion problem is formulated which minimizes the CRLB’s
trace bounded by the range and angle constraints to real-
ize the AUV-anchor geometric configuration which, being
non-linear and multivariate, is hard to deal with. This multi-
variate problem is therefore transformed into univariate opti-
mization problem that results in formulating an AUV-anchor
geometric configuration that achieves satisfactory localiza-
tion estimates and is easy to implement. The proposed scheme
considers variation in the speed of sound in the underwater
environment which, if not considered, will result in inaccurate
distance estimates leading to inaccurate location estimates.
However the authors use an isogradient sound speed profile,
whereas in real world scenarios the speed varies nonlinearly.
Therefore in real deployment scenarios the inaccuracies may
still persist.

In [68] the authors propose Robust Joint Localization and
Synchronization (RJLS) scheme which is an iterative tech-
nique to carry out simultaneous localization and synchroniza-
tion in underwater sensor networks. The proposed technique

considers the inherent stratification affect in the underwa-
ter environment and tries to compensate it. The technique
consists of five phases (figure 17). Phase 1 is the message
exchange phase in which ordinary nodes acquire timestamp
information of the reference nodes. In phase 2, the acquired
time stamps are used in conjunction with the least square and
weighted least square estimation to estimate the clock skew,
offset and location of the ordinary nodes. Phase 3 takes the
locations of the anchored and ordinary nodes as input and
estimates the propagation delay by compensating the strati-
fication affect. In phase 4, the distance between the ordinary
node and the anchored node calculated based on the position
information (determined in phase 2) is used in conjunction
with the propagation delay between the two nodes (calculated
in phase 3) to determine the speed of sound. In phase 5,
the output of phase 4 is input back into phase 2 in order to run
iterations so that the location accuracy and time synchroniza-
tion can be improved. The advantage of the proposed scheme

FIGURE 17. RJLS workflow [68].
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lies in the compensation of the stratification effect which,
if left uncompensated, increases localization error. Moreover,
the proposed technique improves location estimations and
time synchronization through iterative method.

In [69], the authors propose a fuzzy decision support
system (figure 18), called Best Suitable Localization Algo-
rithm (BSLA), for selecting one or more of the available
localization methods in order to achieve improved localiza-
tion coverage and accuracy. BSLA assumes n underwater
localization techniques each of which can localize a sensor
node with certain accuracy as the node descends from the
ocean surface to the ocean floor. Each sensor node runs a
fuzzy inference system which evaluates the feasibility of the
available localization methods for that node based on four
input variables namely, Ultra Short Base Line (USBL) avail-
ability, operational depth of the node, node’s battery level
and the number of localized neighbors of the corresponding
node. Based on the output of the fuzzy inference system,
the node may select a single localization method or alter-
natively combine two or more methods to achieve improved
localization covered and accuracy. On the high side, USBL
improves localization coverage and accuracy by combining
different localization methods. However, this is achieved at
the cost of increased computational complexity due to the
implementation of fuzzy decision support system.

FIGURE 18. Fuzzy decision support system.

2) DISTRIBUTED LOCALIZATION SCHEMES WITHOUT
MOBILITY CONSIDERATION
In [70], the authors propose a two stage localization scheme
which carries out localization in sparse UWSN by estimat-
ing Euclidean distances between anchored and sensor nodes
using Angle of Arrival (AoA) measurement. In stage 1, all
nodes N measure their distance from anchored nodes using
AoAmeasurements. In the second stages, trilateration is used
to localize nodes based on the measured distances. Moreover,
in order to minimize error, a weighted Least Square estimator

is used if distances to more than the required number of
anchored nodes are available. One of the demerits of the
proposed scheme is the inherent accumulation of ranging
and positioning errors due to the design of the scheme.
Moreover, the scheme does not consider mobility due to
currents. Therefore, the error may be even more amplified.
However the authors try to optimize by using weighted
LS optimization if multiple least hop count paths are
available.

In [71], authors propose an unscented transform based
localization method that takes into account stratification
effects (such as sound speed variation) and lack of time
synchronization among nodes. It reduces linearization errors
by computing Jacobian matrix through employing unscented
transform. Particularly, ray-tracing method is used to model
stratification in the underwater channel. The authors derive
the Cramer Rao Lower Bound (a lower bound on error vari-
ance) for the proposed scheme and show that the proposed
method diminishes the root mean square errors in the esti-
mated positions closer to Cramer Rao Lower Bound thus
achieving improved localization accuracy.

In [72], the authors propose a patch and stitch localiza-
tion scheme for the sparse three dimensional UWSNs that
lack enough number of common nodes among patches. The
authors solve the merging problem by developing the condi-
tions for the unique merger of two sub networks. The pro-
posed solution treats the translation parameters as unknowns
and derives a set of equation which can uniquely solve the
unknowns. Moreover, in order to merge the adjacent patches,
the proposed scheme uses both connecting edges and com-
mon nodes among the patches which increases the chances
of the successful merger. The proposed scheme achieves
higher localization coverage in even very sparse 3D networks
as compared to previously proposed solutions in the given
scenario. Moreover it can achieve higher localization accu-
racy by reducing error accumulation by calculating optimum
component merger parameters.

In [73] the authors propose a received signal strength
based localization algorithm for asynchronous UWSNs while
accounting for the inhomogeneous nature of the underwater
acoustic channel. Firstly, the authors derive the transmission
loss of the acoustic signal as it travels from source to desti-
nation in the inhomogeneous underwater environment. Then,
an oversampled match filter based method for measuring
received signal strength is proposed. For the channels subject
to flat fading, an improved oversampled match filter based
received signal strength measurement method is proposed.
Build on these underlying models, an iterative scheme for
location estimation based on Gauss-Newton method is devel-
oped. The proposed scheme can achieve high localization
accuracy at lower bandwidth. Moreover when flat fading is
low it can achieve accurate results. However with high flat
fading, the performance of the proposed methods degrades.
The proposed RSS methods are appropriate for localization
in environments with low bandwidth and where it is very hard
to achieve synchronization.
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In [74] taking presences of malicious anchored nodes
in consideration, the authors propose a cooperative local-
ization scheme. The study assumes that a certain ratio of
the anchored nodes is malicious and can generate incorrect
ranging information to attack the localization process. The
proposed scheme works in two phases. In the first phase,
which deals with distance estimation, one hop neighbors of
anchored nodes measure distance from the anchored nodes
using ToA. Based on the difference in the distances from
neighboring anchored nodes, the sensor nodes cast reputa-
tion votes. The number of votes decides whether anchored
node should be considered honest or malicious node. After
elimination of malicious nodes, an MMSE based iterative
localization algorithm ensues in which localized nodes may
act as reference nodes for unlocalized nodes. The malicious
node detection and elimination mechanism of the proposed
scheme is energy efficient as it does not involve any additional
transmissions. On the downside, the effect of node mobility
due to water currents is ignored. Ignoring such an important
factor compromises the accuracy of the location estimates.
Moreover, error accumulation due to relegating the role of
reference node to localized sensor nodes is also ignored.

In [75] the authors propose a Two Phase Time Synchro-
nization Free Localization Algorithm (TP-TSFLA) using
mobile beacons (figure 19). The network consists of two
types of nodes: mobile beacon nodes whose location are
known and static sensor nodes with unknown location. In the
first phase, Time Synchronization Free Localization (TSFL)
is used to obtain ranges measurements between the mobile
beacon nodes and the unknown sensor nodes. Then particle
swarm optimization is employed to localize the nodes with
known range estimates. However, some of the nodes, which
could not receive beacon during phase 1, are not localized.
All such unlocalized nodes initiate phase two by transmitting
beacon requests. The already localized nodes act as reference
nodes and respond to the requests by sending back their coor-
dinate information. Based on the received response, every
unknown node localizes itself proactively using Circle based
Range Free Localization Algorithm (CRFLA). The accuracy
of CRFLA based location estimates is further improved using
a coordinate adjustment scheme. The proposed scheme does
not need time synchronization to carry out localization which
makes it more practical solution as time synchronization is
hard to achieve underwater.

In [76] the authors propose a Gauss Newton method based
joint localization and synchronization technique for underwa-
ter sensor networks. The major challenges addressed in this
work are: 1) stratification effect in the marine environment
and, 2) lack of synchronization between anchored and sen-
sor nodes. Stratification effect is modelled using ray tracing
method. Moreover, in order to achieve simultaneous local-
ization and synchronization, the stratification effect, sensor
node locations and clock imperfections are formulated into
an integrated framework. The system model and the resultant
Maximum Likelihood (ML) estimator are derived. Due to the
nonconvex and nonlinear nature of the ML estimator, Gauss

FIGURE 19. TP-TSFLA work flow.

Newton method is employed to resolve the original problem
using a roughly estimated initial point. The proposed scheme
employs one way messaging to save energy and reduce com-
munication overhead. However, on the downside, the nodes
positions are assumed fixed during message exchange. Con-
sidering the slow speed of the acoustic waves underwater,
the assumption may not be realistic for longer distances.

In [77] the authors point to the inconsistency in the posi-
tional precision of individual nodes in the process of network
positioning and propose an error control adjustment method
to readjust the position estimates in order to achieve consis-
tent localization precision. The proposed method establishes
a mathematical model using the range information between
nodes. Accurate range information is obtained using time
delay measurements in conjunction with actual sound speed
profile and ray tracing model. After processing, the posi-
tioning accuracy of sensor nodes can be enhanced with the
same level of network positioning accuracy. The proposed
technique tries to improve variation in estimation errors and
therefore can prove beneficial for applications, such as aided
navigation, data fusion and signal processing where variation
in localization precision may have adverse effects on the
performance of these applications.

IV. FUTURE RESEARCH DIRECTIONS
A. MOBILITY AND NETWORK PARTITIONING
Most of the existing literature on underwater localization
assumes limited or no mobility of sensor nodes. Neverthe-
less, certain applications such as observation of the chang-
ing characteristics of the underwater streams, determination
of the spread of certain pollutants or minerals in the sea
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water etc., may require untethered mobility. Consideration of
such scenarios gives rise to certain challenges. For instance
free mobility may introduce network partitioning in which
case a set of nodes may not be able to receive localization
beacons/neighborhood information and therefore will remain
unlocalized. Partition handling mechanisms [33], [50], must
be investigated to cope up with such situations. Moreover,
the prevalent network architectures, which mostly assume
fixed reference nodes and limited range, stand useless when
underwater nodes are unable to communicate with the fixed
reference nodes as theymove away due to freemobility. Some
new network architectures for such scenarios are proposed
in [33], [50]. However research is required to further refine
the solutions.

B. SECURITY
Many schemes have been proposed to secure the localiza-
tion process [78]–[80] in terrestrial wireless sensor networks.
However these solutions are not applicable underwater due
to the unique characteristics of the underwater acoustic chan-
nel. Security aspects are often ignored in the localization
schemes proposed for UWSNs. An attack on the localization
infrastructure can compromise the integrity of thewhole sens-
ing mission by relating sensed data to wrong locations. For
instance a malicious node can impersonate a reference node
and jeopardize the location estimation process by transmit-
ting wrong reference locations. Therefore, there is a need to
incorporate robust authentication techniques that are appro-
priate for underwater localization systems. Location privacy
is another major concern for certain underwater systems such
as military application in which leak of location information
can have dire consequences. In order to be localized, sen-
sor node must reveal certain information that can be eaves-
dropped and lead to privacy holes [81]. Therefore proper
confidentiality mechanisms must be researched and incorpo-
rated to design fool proof underwater localization systems.
Moreover, as underwater sensor nodes have limited energy,
the security related mechanism must be energy efficient.

C. SOUND SPEED VARIATION
Acoustic waves are the preferred medium of choice for
underwater communication. Mostly, constant speed of sound
(i.e. 1500 m/s) is assumed by localization algorithms. How-
ever, the speed of sound underwater is not constant and
varies with changes in depth, temperature and salinity. Thus,
assumption of a constant speed results in inaccurate range
estimates which leads to error in location estimation [15]. For
accurate location estimates, localization algorithms should
incorporate mechanisms that measure changes in the velocity
and direction of sound waves as they propagate from trans-
mitter to receiver. Alternatively accurate sound speed profiles
can be used.

D. SYNCHRONIZATION
Node time synchronization is important for certain ranging
techniques such as TDoA and ToA. Most of the researches

using these techniques assume time synchronization among
nodes. However, in practice it is hard to achieve time syn-
chronization underwater due to harsh channel characteristics.
Some schemes have been proposed in [82]–[84]. However
they require extensive communication among nodes, which
may lead to high energy consumption.

E. BEYOND ACOUSTICS
Though acoustic waves are a preferred medium of choice due
to their long range communication ability in UWSNs, opti-
cal waves can support high data rates over shorter distance.
Therefore hybrid cluster based mechanisms such as [85] that
use optical waves for short range intra cluster communication
and acoustic waves for long range inter cluster communi-
cation should be investigated. Using two different mediums
improves the performance by reducing contention and by
improving data rate.

F. CROSS LAYER APPROACH
Although ignored in many localization algorithm designs,
consideration of lower layer constraints, such as mac layer
contention, is important. The contention may increase con-
vergence time which may cause some of the information to
go stale and therefore result in inaccurate location estimates.
Moreover, consideration of lower layers may increase the
communication overhead and energy consumption drasti-
cally and may render an otherwise feasible solution totally
infeasible.

V. CONCLUSION
In this paper we presented a survey of the recently pro-
posed localization algorithms for underwater acoustic and
optical sensor networks. The algorithms are scrutinized based
on parameters which cover most of the basic characteris-
tics of a localization algorithm. Additionally, the methods
adopted by each algorithm are also explained briefly along
with their merits and demerits. The surveyed algorithms
have been divided primarily into two classes, which are:
a) Centralized Localization schemes which compute location
estimates at a centralized location such as sink node and
b) Distributed Localization algorithms which enable individ-
ual sensor nodes to compute their location based on received
information. Each of the two classes is further divided based
on mobility consideration.
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