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ABSTRACT In this article, we present a generative adversarial network framework that generates com-
pressed images instead of synthesizing raw RGB images and compressing them separately. In the real world,
most images and videos are stored and transferred in a compressed format to save storage capacity and data
transfer bandwidth. However, since typical generative adversarial networks generate raw RGB images, those
generated images need to be compressed by a post-processing stage to reduce the data size. Among image
compression methods, JPEG has been one of the most commonly used lossy compression methods for still
images. Hence, we propose a novel framework that generates JPEG compressed images using generative
adversarial networks. The novel generator consists of the proposed locally connected layers, chroma
subsampling layers, quantization layers, residual blocks, and convolution layers. The locally connected
layer is proposed to enable block-based operations. We also discuss training strategies for the proposed
architecture including the loss function and the decoding between its generator and its discriminator. The
proposed method is evaluated using the publicly available CIFAR-10 dataset and LSUN bedroom dataset.
The results demonstrate that the proposed method is able to generate compressed data with competitive
qualities.

INDEX TERMS Generative adversarial networks, image generation, image synthesis.

I. INTRODUCTION
Most images and videos exist in a compressed form since
data compression saves lots of data storage and network band-
width and further enables many applications such as real-time
video streaming in cell phones or virtual reality (VR) devices.
Compression is indeed crucial, considering that compressed
image and video can be about 10 times and 50 times smaller
than raw data, respectively. Nevertheless, typical genera-
tive adversarial networks (GAN) focus on generating raw
RGB images or videos [1]–[6]. Considering one of the
most common usages of GANs is generating large-scale
synthetic images/videos for data augmentation, the created
images/videos often require compression in a post-processing
stage to store the large dataset in hardware [7]–[10]. Besides,
typical GANs are evaluated using the generated raw RGB
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data although compression is processed to the raw data prior
to final applications. Hence, we investigate GAN frameworks
that aim to generate compressed data and to evaluate the
networks using the generated encoded images.

One application of the frameworks that generate com-
pressed data is creating/modifying content for VR/AR
devices in real-time. Let’s consider the circumstance that a
user wants to put amagenta cowboy hat on a person inVR/AR
content. Then, a traditional service provider should have the
specific type of hat in their database so that they can provide
the hat upon a user’s request in real-time. Also, the hat usually
needs additional processing to be in a proper orientation
and size with the consideration of the user’s content. Given
properly trainedGANs, the service provider does not need the
hat in their database and does not demand the processing for
rotation since the specific type/orientation of hat can be gen-
erated by providing a corresponding noise in the latent space
and by forward-propagating the noise through the networks.
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As a trained model can generate almost infinitely diverse
images, a model can substitute a huge database. Furthermore,
while a typical GAN framework requires compression of gen-
erated images to reduce transmitting content’s size to VR/AR
device, the framework that generates compressed data does
not need the compression step and can immediately transmit
the generated content to VR/AR device. Thus, the frame-
work can be utilized for the real-time creation/modification
of VR/AR content without requiring collecting/storing huge
databases and processing compression to transmit.

We focus on the GAN frameworks for compressed image
generation since image generation networks [1]–[4] have
been far more studied comparing to video generation net-
works [5], [6]. In image compression, JPEG [11], [12] has
been one of the most commonly used lossy compression
methods [13]–[15]. It has been used in digital cameras and
utilized for storing and transmitting images. While JPEG has
many variants, typical JPEG consists of color space trans-
formation, chroma subsampling, block-based discrete cosine
transform (DCT) [16], quantization, and entropy coding [17].
The compression method first converts an image in the RGB
domain to the image in another color space (YCbCr) that
separates luminance and chrominance components. Then, the
chrominance components are downsampled. It then applies
the 8 × 8 block-based DCT to both the luminance compo-
nent and the subsampled chrominance components to rep-
resent them in the frequency domain. It discards details of
high-frequency information by applying quantization. Lastly,
the processed data is stored using entropy coding.

We argue that investigating the frameworks of generating
compressed images is important to accomplish the creation
of more visually plausible large-scale images that require
storing in a compressed domain. Typical GAN frameworks
optimize and select the networks’ architectures and parame-
ters (weights) based on generated raw RGB images. Accord-
ingly, if we take into account the compression process in the
post-processing stage, the choice might not be the optimal
decision. Hence, we propose to optimize/determine archi-
tectures and parameters by evaluating them using generated
images in a compressed domain.

We propose a novel framework that generates compressed
images using generative adversarial networks as shown
in Figure 1. The framework consists of a generator, a dis-
criminator, and a decoder between the generator and the
discriminator. The proposed generator produces compressed
data given a randomly selected noise in a latent space. The
decoder is applied to make the data from the generator and the
training data to be in the same domain. Since the generator
outputs compressed data and the training data is raw RGB
images, the decoder converts encoded data to a raw image.
The discriminator takes synthesized images and real images
and aims to differentiate them.

The proposed generator has three paths, one path for
the luminance component and the other two paths for the
chrominance components. The separate paths are proposed to
process any required chroma subsampling. We also propose

FIGURE 1. The proposed framework to generate compressed images. The
framework consists of a generator, a discriminator, and a decoder
between the generator and the discriminator. The visualized generator
output is an intermediate example.

the locally connected layer that takes an input of a subre-
gion and produces the output for the corresponding subre-
gion. The proposed locally connected layer is able to handle
block-based processing in JPEG compression. In summary,
the contributions of our work are as follows:

• We propose the framework that generates JPEG com-
pressed images using generative adversarial networks.

• We propose the locally connected layer to enable
block-based operations in JPEG compression.

• We analyze the effects of compression for the proposed
method and other methods.

II. RELATED WORKS
A. GENERATIVE ADVERSARIAL NETWORKS
Generative adversarial networks were introduced in [1] where
the framework is to estimate generative models by learning
two competing networks (generator and discriminator). The
generator aims to capture the data distribution by learning
the mapping from a known noise space to the data space.
The discriminator differentiates between the samples from
the training data and those from the generator. These two
networks compete since the goal of the generator is making
the distribution of generated samples equivalent to that of the
training data while the discriminator’s objective is discover-
ing the discrepancy between the two distributions.

While the work in [1] employed multilayer perceptrons
for both generator and discriminator, deep convolutional
GANs (DCGANs) replaced multilayer perceptrons by con-
volutional neural networks (CNNs) to take the advantage of
shared weights, especially for image-related tasks [2]. To uti-
lize CNNs in the GAN framework, extensive architectures
are explored for relatively stable training. They examined
stability even for models with deeper layers and for networks
that generate high-resolution outputs. The analysis includes
fractional-stride convolutions, batch normalization, and acti-
vation functions. Salimans et al. presented the methods that
improve the training of GANs [18]. The techniques include

180978 VOLUME 8, 2020



B. Kang et al.: Generating Images in Compressed Domain Using GANs

matching expected activations of training data and those of
generated samples, penalizing similar samples in a mini-
batch, punishing sudden changes of weights, one-sided label
smoothing, and virtual batch normalization.

Arjovsky et al. presented the advantage of the
Earth-Mover (EM) distance (Wasserstein-1) comparing to
other popular probability distances and divergences such as
the Jensen-Shannon divergence, the Kullback-Leibler diver-
gence, and the Total Variation distance [3]. The advantage
of the EM distance is that it is continuous everywhere and
differentiable almost everywhere when it is applied to a
neural network-based generator with a constrained input
noise variable. They also showed that the EM distance is a
more sensible cost function. Based on these, they proposed
Wasserstein GAN that uses a reasonable and efficient approx-
imation of the EM distance. They then showed that the pro-
posed GAN achieves improved stability in training. However,
clipping weights for Lipschitz constraint in [3] might cause
optimization difficulties [4]. Hence, Gulrajani et al. proposed
penalizing the gradient norm to enforce Lipschitz constraint
instead of clipping [4].

Wasserstein GAN trains its discriminator multiple times at
each training of its generator so that the framework can train
the generator using the more converged discriminator [3].
To avoid the expensive multiple updates of the discriminator,
Heusel et al. proposed to use the two time-scale update rule
(TTUR) [19] in a Wasserstein GAN framework [20]. Since
TTUR enables separate learning rates for the discriminator
and the generator, they can train the discriminator faster
than the generator by selecting a higher learning rate for
the discriminator comparing to that of the generator. It is
also proved that TTUR converges to a stationary local Nash
equilibrium under mild assumptions. They further experi-
mentally showed that their method outperforms most other
state-of-the-art methods. Hence, the proposed framework of
this article is based on [20].

B. IMAGE COMPRESSION: JPEG
JPEG [12] has been one of the most commonly used
lossy compression methods for still images with continuous
tones [13]–[15]. It has been used for digital cameras, photo-
graphic images on theWorldWideWeb, medical images, and
many other applications.

In JPEG, the discrete cosine transform (DCT) is utilized
since it achieves high energy compaction while having low
computational complexity. Considering an image contains
uncorrelated (various) information, block-based DCT is used
so that each block contains correlated data. Using a small
block prevents from compressing correlated information.
A large block with uncorrelated pixels increases computa-
tional complexity without compression gain. 8×8 block size
is selected based on a psychovisual evaluation.

DCT transforms an 8 × 8 block of an image to 64 ampli-
tudes of 2D cosine functions with various frequencies. Since
the sensitivity of a human eye is different for each frequency,
quantization is applied differently for each amplitude. The

amplitudes for low-frequencies are maintained with high
accuracy and those of high-frequencies are quantized using
larger quantization values. Quantization is responsible for
most of the information loss in JPEG.

After quantization, since most of the non-zero compo-
nents are for low-frequencies, the amplitudes are encoded
in zig-zag order using a value pair. The information is then
encoded using Huffman coding considering the statistical
distribution of the information [17].

While these are the baseline of JPEG, other additional
methods and components were also suggested for particular
purposes. Also, typical JPEG uses the YCbCr color space and
chroma subsampling [11].

C. OTHER RELATED WORKS
Our work differs from learning neural networks for image
compression such as autoencoders [21]–[24] that aims to
learn image encoders to compress real images. The proposed
method and learning encoders differ in two aspects. First, the
goal of the proposed method is generating synthetic JPEG
compressed data while that of the latter is compressing real
images. Second, the proposed method intends to utilize exist-
ing standard decoder in general electronic devices while the
latter requires a particular decoder to decode the compressed
data.

This article is also distinct from [25], [26] that are about
utilizing GANs for postprocessing real data in a frequency
domain. The proposed work generates compressed images
from random noises in the latent space.

D. OTHER APPLICATIONS OF GANS
While one of initial applications of GANswas in synthesizing
images from noises, many other applications have also been
introduced such as image/video super-resolution [27]–[30],
image-to-image translation [31]–[34], inpainting [35]–[37],
denoising [38], [39], text-to-image translation [40]–[42], arti-
fact removal [43], [44], etc.

For image super-resolution, Ledig et al. introduced
SR-GAN (Super-ResolutionGAN) to recover high-frequency
details [27]. Wang et al. then investigated network architec-
ture, adversarial loss, and perceptual loss in SR-GAN and
proposed an enhanced SR-GAN (ESR-GAN) [28]. Consid-
ering that low-/high-resolution image pairs are unavailable in
general, Yuan et al. proposed an unsupervised learning-based
method which also uses GAN as a basic component [29].
Recently, Lucas et al. introduced a GAN that is optimized
for video super-resolution [30].

Isola et al. introduced a conditional adversarial net-
work framework to solve image-to-image translation prob-
lems [31]. Zhu et al. then presented an approach to
train adversarial networks without paired training data [34].
By assuming a shared-latent space, Liu et al. proposed an
unsupervised framework based on Coupled GANs [33], [45].
To learn image-to-image translation between more than two
domains, Choi et al. proposed StarGAN that can translate an
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FIGURE 2. The proposed architecture for JPEG compressed image generation. (a) Generator. (b) Discriminator. (c) Residual block. The proposed
generator consists of three paths, one for each luminance or chrominance component. The generator employs the proposed locally connected
layer to operate block-based processing. The visualized generator considers chroma subsampling ratio of 4:2:0.

image to another image in one of the multiple domains using
only a single model [32].

Considering image completion, Iizuka et al. proposed
a GAN-based approach that consists of a completion net-
work, a global discriminator, and a local discriminator [46].
The global discriminator and the local discriminator are to
ensure global coherency and local consistency, respectively.
Yu et al. then introduced a generative model-based method
for inpainting multiple holes at arbitrary locations and with
variable sizes in images [35]. For semantic image inpaint-
ing, Yeh et al. proposed a GAN-based method that processes
using high-level context information of given images [36].

Reed et al. proposed a GAN-based framework for text-to-
image synthesis [40]. Zhang et al. then introduced Stacked
GANs to generate higher-resolution(256×256) images from
text descriptions [41], [42].

Regarding denoising and artifact removal, Tripathi et al.
proposed a GAN-based method for denoising corrupted face
images [38]. Yang et al. also presented a GAN-based denois-
ing framework for computed tomography (CT) images [39].
Galteri et al. proposed a GAN framework to eliminate com-
pression artifact [43], [44].

III. PROPOSED METHOD
We propose a framework that generates JPEG compressed
images using generative adversarial networks. We use the

architectures analyzed in the TTUR method [20] as our base-
line networks since the method achieves one of the state-
of-the-art results. The generator in the baseline architecture
consists of one fully connected layer, four residual blocks,
and one convolution layer. The discriminator in the architec-
ture consists of one convolution layer, four residual blocks,
and one fully connected layer as shown in Figure 2(b). The
residual block consists of two paths (see Figure 2(c)). One
path has two convolution layers with filter-size of 3× 3, and
the other has only one convolution layer with filter-size of
1 × 1. All the convolution layers outside of residual blocks
have filter-size of 3× 3.
Given the baseline architecture, we propose an architecture

and training strategy to generate JPEG compressed images in
the framework of generative adversarial networks. We first
propose a novel generator in Section III-A. The proposed
generator has three paths, one for each luminance or chromi-
nance component. The proposed generator also has addi-
tional layers including the proposed locally connected layers,
chroma subsampling layer, quantization layer, and entropy
encoding layer. The entropy encoding layer in the generator
and the entropy decoding in Section III-B are excluded during
training since the entropy encoding/decoding is lossless.

We then present the processing between the generator and
the discriminator in Section III-B. Since typical generators
generate RGB images that are in the same domain with the
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training images, any additional processing is not required
to use the output of the generator for the input to the dis-
criminator. However, since the proposed generator produces
JPEG compressed data, the outputs of the generator and
the training images are in different domains and cannot be
used together for the discriminator. Consequently, we need
to either compress the training images or decode the gen-
erated JPEG compressed data so that they are in the same
domain.

In Section III-C, we discuss training strategies for the
proposed architecture. Although many studies have been
conducted to improve training stability, training GANs for
non-typical images is still quite challenging.

A. GENERATOR
We propose a novel generator that generates JPEG com-
pressed images (see Figure 2). The generator consists of six
locally connected layers, two chroma subsampling layers,
a quantization layer, and an entropy encoding layer in addi-
tion to the layers in the baseline generator. The generator has
three paths where each path generates one of luminance or
chrominance components in the YCbCr representation. The
separated paths are required to handle any required chroma
subsampling since the resolution of a luminance component
and chrominance components are different if chroma subsam-
pling is applied. The locally connected layer is proposed to
operate block-based processing. The entropy encoding layer
is not applied during training along with the corresponding
decoding in the decoder since the encoding is lossless, so it
does not impact the results. The quantization layer and the
entropy encoding layer are not learned and follow the JPEG
standard so that generated data can be decoded by using a
standard JPEG decoder.

The proposed locally connected layer takes an input of a
subregion and produces an output for the corresponding sub-
region (see Figure 3). The layer is proposed to perform opera-
tions comparable to block-based processing. Comparing to a
convolution layer, the proposed layer is different since a con-
volution layer takes input from a region and outputs to only a
single location. The nearby outputs from a convolution layer
are produced by using different regions of inputs. In other
words, to generate 8 × 8 outputs using a convolution layer,
the layer takes inputs from 64 different regions by shifting
a filter (weights). The proposed layer is also dissimilar from
a fully connected layer since a typical fully connected layer
does not share weights while the proposed locally connected
layer shares weights between blocks. For all paths in the
generator, the first locally connected layer (Loc1) and the
second locally connected layer (Loc2) employ the block-size
of 1 × 1 and 8 × 8, respectively. The block-size of 8 × 8
is selected considering 8 × 8 block-based inverse DCT in a
JPEG decoder. The block-size of 1 × 1 is a special case that
can be reproduced by a convolution layer.

Let X` and X`+1 denote the input and the output of the
`-th layer in the network. Considering this layer is a locally

connected layer, X`+1 is computed as follows:

X`+1t,bhp+m,bwq+n

=

∑
0≤r<nr

∑
0≤i<bh

∑
0≤j<bw

X`r,bhp+i,bwq+jW
`
t,r,m,n,i,j + B

`
m,n

(1)

where W ` and B` are the weight and the bias of the layer;
bh and bw are the height and the width of the block; p and q
are the vertical and horizontal block indices; m and n are the
vertical and horizontal indices inside of the output block; i
and j are the indices inside of the input block; t and r are the
indices of the feature maps of X`+1 and X`, respectively; nr
is the number of feature maps (channels) in X`.
In backpropagation, the weights W are updated to mini-

mize loss e using the gradient ∂e/∂W where e is computed
using the objective function in Eq. (10). For the locally
connected layer, ∂e/∂W ` is computed given the gradient
∂e/∂X`+1 from (` + 1)-th layer and W `. By the chain
rule [47]–[49], ∂e/∂W ` is represented as follows:

∂e

∂W `
=

∂e

∂X`+1
∂X`+1

∂W `
. (2)

For an elementW `
t,r,m,n,i,j in the weight matrix, the gradient

of Eq. (2) is expanded as

∂e

∂W `
t,r,m,n,i,j

=

∑
0≤p<nh

∑
0≤q<nw

∂e

∂X`+1t,bhp+m,bwq+n

∂X`+1t,bhp+m,bwq+n

∂W `
t,r,m,n,i,j

=

∑
0≤p<nh

∑
0≤q<nw

∂e

∂X`+1t,bhp+m,bwq+n

X`r,bhp+i,bwq+j (3)

where nh and nw are the number of blocks along the vertical
and horizontal axes.

To compute Eq. (2) at the (` − 1)-th layer, the gradient
∂e/∂X` needs to be computed at the `-th layer given the
gradient ∂e/∂X`+1 from (`+ 1)-th layer.

∂e

∂X`
=

∂e

∂X`+1
∂X`+1

∂X`
. (4)

For an element X`r,bhp+i,bwq+j, the gradient of Eq. (4) is
expanded as

∂e

∂X`r,bhp+i,bwq+j

=

∑
t

∑
m

∑
n

∂e

∂X`+1t,bhp+m,bwq+n

∂X`+1t,bhp+m,bwq+n

∂X`r,bhp+i,bwq+j

=

∑
t

∑
m

∑
n

∂e

∂X`+1t,bhp+m,bwq+n

W `
t,r,m,n,i,j (5)

where the ranges of summation are 0 ≤ t < nt , 0 ≤ m < bh,
and 0 ≤ n < bw; nt is the number of feature maps (channels)
in X`+1.
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FIGURE 3. Visual comparison of (a) convolution layer with filter-size of 3 × 3, (b) fully connected layer, and (c) proposed locally connected layer
with block-size of 4 × 4. The locally connected layer operates comparable to block-based processing. Each region of output is produced by the
summation of the multiplication of the corresponding region of input and shared weights. The weights are shared between blocks, but not
between outputs in a block.

Chroma subsampling is processed by averaging the ampli-
tudes of the chrominance component of each block and by
subsampling from the block to a scalar. In this article,
we investigate the proposed architecture using the popular
subsampling ratios, 4:4:4, 4:2:2, and 4:2:0. The 4:4:4 ratio
means no subsampling and preserves all the chrominance
information. The 4:2:2 mode averages and subsamples with
2:1 ratio for only the horizontal axis. Consequently, the
horizontal resolution of the output is half of the input. For
the 4:2:0 subsampling, both horizontal and vertical axes are
averaged and subsampled with 2:1 ratio. Consequently, each
block of 2× 2 pixels is turned to a scalar (see Figure 2(a)).

Forward processing all the layers in the proposed generator
before quantization generates amplitudes of 2D cosine func-
tions for luminance and chrominance components. Quanti-
zation is then performed using a conventional quantization
method in JPEG compression. We employ the conventional
method so that the final output is able to be de-quantized by
using a typical JPEG decoder. Quantization is performed by
dividing amplitudes by quantization matrices and by round-
ing the quantized amplitudes to an integer [50], [51]. The
gradient of the rounding process is assumed as 1 during
training since it is not differentiable. This straight-through
estimator approach was analyzed and employed in [52]–[54].
To the best of our knowledge, this is one of the most widely
used and reliable approaches. Nevertheless, the assumption is
not always correct, and we believe that an enhanced method
of handling gradients of rounding functions can improve the
performance of the proposedmethod. The quantizationmatri-
ces are determined based on user-selected quality factor and
can also be selected in an encoding process. Given a trained
model, users can control the trade-off between the quality
and the size of synthesized images for their applications by
varying the quantizationmatrices.We employ popular quanti-
zation matrices that are shown in Eq. (6) and Eq. (7) [55]. The
given quantization matrices (Ql,50, Qc,50) are for the quality
factor of 50. The former and the latter matrices are for the
luminance component (Ql) and chrominance part (Qc).While
the matrices have been utilized widely, users can also select

other quantization matrices as long as the same matrices are
employed in the decoding process. The proposed method is
not constrained by certain quantization matrices.

Ql,50

=



16 11 10 16 24 40 51 61
12 12 14 19 26 58 60 55
14 13 16 24 40 57 69 56
14 17 22 29 51 87 80 62
18 22 37 56 68 109 103 77
24 35 55 64 81 104 113 92
49 64 78 87 103 121 120 101
72 92 95 98 112 100 103 99


.

(6)

Qc,50

=



17 18 24 47 99 99 99 99
18 21 26 66 99 99 99 99
24 26 56 99 99 99 99 99
47 66 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99
99 99 99 99 99 99 99 99


.

(7)

Quantization matrix for another quality factor for luminance
component is computed as follows:

Ql,n =


max (1, b

100− n
50

Ql,50 + 0.5c), if n ≥ 50.

b
50
n
Ql,50 + 0.5c, otherwise.

(8)

where n ∈ (0, 100] denotes a quality factor. The conversion
of the quantization matrix for chrominance is equivalent.

The architecture in Figure 2 is used for the LSUN bed-
room dataset [56] which aims to generate images with the
resolution of 64× 64. For the CIFAR-10 dataset [57] whose
objective resolution is 32 × 32, the output dimensions of
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all the layers in both the generator and the discriminator are
reduced by half for both x- and y-axes. Also, the number of
activations (feature maps) is reduced by half up to the last
residual block in both the generator and the discriminator.

B. DECODER BETWEEN GENERATOR AND
DISCRIMINATOR
Since the discriminator takes half of the inputs from the gen-
erator and the other half from the training dataset, the two data
should be in the same domain (representation). However, the
training data set contains real images in the RGB domain, and
the outputs of the proposed generator are JPEG compressed
data. Hence, we have to either compress the training data or
decode the outputs of the generator so that the two images are
in the same domain.

We examined both alternatives (see Table 3). It turns out
that it is better to decode outputs of the generator before
providing them for inputs to the discriminator. Our opinion
is that convolution layers, which are major elements of the
discriminator, are invented for real imageswhich usually have
a continuous tone. However, the compressed data contains
amplitudes of block-based DCT which vary largely at the
boundary of blocks and also in the blocks. Consequently,
the discriminator provides inferior-quality gradients to the
generator and hinders training a good generator. Hence, the
proposed framework has a decoder that takes outputs of the
generator and renders inputs to the discriminator during train-
ing. We do not need this conversion (decoder) after training
since we only utilize the discriminator for training and our
goal is generating compressed data.

Given an output of the generator during training, we first
de-quantize the amplitudes by multiplying them by the corre-
sponding quantizationmatrices used in the generator.We then
apply inverse DCT to transform the amplitudes in the fre-
quency domain to the contents in the 2D color domain.
We upsample chrominance components to the same reso-
lution of the luminance component if chroma subsampling
is applied in the generator. We then convert the amplitudes
in the YCbCr space to the RGB space. Lastly, we clip the
amplitudes so that after compensating shifting and scaling,
the amplitudes are in the range of [0, 255].

C. TRAINING
As GANs are difficult to train [1], many studies have been
conducted to improve the stability of training [3], [4], [18].
Still, by employing current state-of-the-art training algo-
rithms to our problem, we had difficulty in training the pro-
posed networks. Hence, we propose a novel loss function to
train the proposed framework.

Given a loss function, L, the generator G and the discrim-
inator D are trained by playing a minimax game as follows:

min
G

max
D

L(G,D) (9)

Considering the objective function in theWasserstein GAN
with gradient penalty [4], we propose a loss function L(·) by

adding an auxiliary loss term |P(G(z̃))−Ĝ(z̃)| to guide locally
connected layers. By utilizing this function L(·), the generator
G learns to synthesize images in a compressed domain where
the generated images have similarity with the training data.
Also, the generator is overseen to utilize locally connected
layers for block-wise processing in image coding/decoding.
The function L(·) is defined as follows:

L(G,D,P) = Ez̃∼P` [D(P(G(z̃)))+ γ |P(G(z̃))− Ĝ(z̃)|]
−Ex∼Pr [D(x)]+ λEx̂∼Px̂ [(‖∇x̂D(x̂)‖2 − 1)2]

(10)

where P` and Pr denote the latent code distribution and
the training data distribution. The authors in [4] implic-
itly defined Px̂ as sampling uniformly along straight lines
between pairs of points sampled from Pr and the generator
distribution Pg. Ĝ is the layers in the generator G before any
locally connected layer. Ĝ is initialized by the parameters that
are trained using [4]. P is the decoder between the generator
and the discriminator. γ is the hyperparameter to weight
between typical generator loss and the proposed additional
generator loss. Gradient penalty coefficient λ is 10 and γ is
0.1 in all experiments. The learning rates for the discriminator
and the generator are 0.0003 and 0.0001, respectively.

We believe that further studying on an optimization
algorithm for non-typical images can improve the quality
of generated results further. However, developing a novel
optimization algorithm is beyond the scope of this article.

IV. EXPERIMENTS AND RESULTS
A. DATASET
We experiment using the CIFAR-10 training dataset [57] and
the LSUN bedroom training dataset [56]. The CIFAR-10
dataset consists of 50,000 images with the resolution
of 32× 32. The dataset includes images from 10 categories
(airplane, automobile, bird, cat, deer, dog, frog, horse, ship,
and truck). The LSUN bedroom dataset consists of 3,033,042
bedroom images. The images are scaled to 64×64 following
the previous work [4].

B. METRIC
We use the Fréchet Inception Distance (FID) [20] which was
improved from the Inception score [18] by considering the
statistics of real data. The FID computes the Fréchet distance
(also known as Wasserstein-2 distance) [58], [59] between
the statistics of real data and that of generated samples. The
distance is computed using the first two moments (mean and
covariance) of activations from the last pooling layer in the
Inception v3 model [60]. The FID d is computed as follows:

d2((m,C), (mw,Cw)) = ||m−mw||
2
2

+Tr(C + Cw − 2(CCw)1/2)

(11)

where (m,C) and (mw,Cw) represent the mean and covari-
ance of generated samples and of the real dataset. (mw,Cw)
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TABLE 1. Quantitative comparison using FIDs and compression ratio for the CIFAR-10 dataset [57]. The lower FID means closer to the statistics of real
data. The first and second rows show FIDs of training images and of generated RGB images using the TTUR method [20] by processing compression in a
post-processing stage. The last three rows present generating compressed data directly using the TTUR method [20], the FC Generator in the TTUR [20],
and the proposed method.

are measured using the entire images in the training dataset.
(m,C) are computed using 50,000 generated images.

While PSNR and MS-SSIM are more widely-used metrics
to measure image qualities, the metrics are full-reference
metrics. They consequently require reference (ground
truth) images to measure the qualities. However, synthe-
sized images using the proposed method do not have any
reference images. Hence, we use FID to evaluate synthesized
images.

C. RESULTS
We analyze the proposed method and the architectures in
the TTUR method [20] by training them using the datasets
in Section IV-A and by evaluating them quantitatively and
qualitatively. For quantitative comparison, we measure the
Fréchet Inception Distance (FID) in Section IV-B. Table 1
and Table 2 show the quantitative results for the CIFAR-10
dataset [57] and the LSUN bedroom dataset [56], respec-
tively. In both tables, we show the FIDs for three chroma
subsampling ratios (4:4:4, 4:2:2, 4:2:0) and for four quality
factors of quantization (100, 75, 50, 25). The first row shows
the FID variations of real images by applying chroma sub-
sampling and quantization. The second row presents the FID
of the original TTUR method generating RGB images [20].
For this analysis, JPEG compression is processed as a
post-processing step that follows the neural networks. The
third row shows the result of the TTURmethod for generating
JPEG compressed images directly. The fourth row presents
the result of the fully connected (FC) generator in the TTUR
method for generating JPEG compressed images directly.
In the last row, we show the result of the proposed method.

We show visual results of the CIFAR-10 and the LSUN
bedroom datasets in Figures 4 and 5, respectively. On the
left side, we denote the quality factor for quantization and
chroma subsampling ratios. We show the results of (100,
4:4:4), (100, 4:2:2), (100, 4:2:0), (75, 4:4:4), (50, 4:4:4),
and (25, 4:4:4) from the first row to the last row. On the
first column, we show the results of real images that are
processed by the corresponding compression. The second
column shows the results of the generated images using the
original TTUR method [20]. The result images are first gen-
erated as RGB images and are then coded and decoded in a
post-processing stage. The third column shows the result of
the TTUR method [20], and the fourth column presents the
result of the FC generator in the TTUR method [20]. The last
column shows the results of the proposed method. The last
three columns are the results of generating JPEG compressed
images in the networks.

To compute the FID in the first row in both tables, we first
encode and decode 50,000 training images and then com-
pute the statistics of the processed images. We then esti-
mate the FID between the statistics of the original training
data and those of the processed images. For the CIFAR-
10 dataset in Table 1, the distance is close to 0 using the
chroma subsampling ratio of 4:4:4 and the quality factor of
100. It’s quite small since the encoding/decoding does not
impact the images much (only small rounding errors, etc).
By decreasing quality factor and by subsampling from a
larger region, the encoding/decoding distorts images more
and hence, FID increases. Since decreasing quality factor
by 25 affects images much more than adjusting chroma sub-
sampling from 4:4:4 to 4:2:0, FID is also increased by a larger
amount.
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TABLE 2. Quantitative comparison using FIDs and compression ratio for the LSUN dataset [56]. The lower FID means closer to the statistics of real data.
The first and second rows show FIDs of training images and of generated RGB images using the TTUR method [20] by processing compression in a
post-processing stage. The last three rows present generating compressed data directly using the TTUR method [20], the FC Generator in the TTUR [20],
and the proposed method.

TABLE 3. Analysis on the input data domain for discriminator using the CIFAR-10 dataset [57]. The lower FID means the better result. The top row shows
FIDs when the model is trained using compressed images. The bottom row shows FIDs where the model is trained using RGB images.

TABLE 4. Analysis on the proposed objective function using the CIFAR-10 dataset [57]. The lower FID means the better result. The top row and bottom
row present FIDs of generated images using WGAN-GP loss in [4] and the proposed loss function in Eq. (10), respectively.

For the LSUN bedroom dataset in Table 2, the distance
of real data using the chroma subsampling ratio of 4:4:4
and the quality factor of 100 is much greater than that

in the CIFAR-10 dataset. The FID is defined by the dis-
tance between the statistics of the entire training data and
those of 50,000 processed or generated images. Since the
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FIGURE 4. Visual results of generating compressed images using the CIFAR-10 dataset [57]. On the left side, we denote the quality factor for
quantization and chroma subsampling ratios. We show the results of (100, 4:4:4), (100, 4:2:2), (100, 4:2:0), (75, 4:4:4), (50, 4:4:4), and (25, 4:4:4) from
the first row to the last row. The first and second columns show the results of real images and the original TTUR method [20] that are processed by
the corresponding encoding/decoding. The third and fourth columns show the results of the TTUR method and the FC generator in the TTUR method
that generates compressed data directly. The last column shows the result of the proposed method. We also present the compression ratio for each
image at the bottom of each set of images. The ratio is written in the clockwise order from the top-left image.
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FIGURE 5. Visual results of generating compressed images using the LSUN dataset [56]. On the left side, we denote the quality factor for
quantization and chroma subsampling ratios. We show the results of (100, 4:4:4), (100, 4:2:2), (100, 4:2:0), (75, 4:4:4), (50, 4:4:4), and (25, 4:4:4) from
the first row to the last row. The first and second columns show the results of real images and the original TTUR method [20] that are processed by
the corresponding encoding/decoding. The third and fourth columns show the results of the TTUR method and the FC generator in the TTUR method
that generates compressed data directly. The last column shows the result of the proposed method. We also present the compression ratio for each
image at the bottom of each set of images. The ratio is written in the clockwise order from the top-left image.
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TABLE 5. Analysis on the proposed locally connected layer using the CIFAR-10 dataset [57]. The lower FID means the better result. The first, second, and
third row present the FIDs of generated images using convolution layers, fully connected layers, and locally connected layers, respectively.

number of images in the CIFAR-10 dataset is 50,000, the
distance is quite small considering the encoding/decoding
does not distort much. However, since the LSUN bedroom
dataset contains 3,033,042 images, 50,000 images should be
sampled to compute the statistics of the processed images.
It causes a relatively larger FID for the LSUN bedroom
dataset. It is also interesting to note that for the LSUN
dataset, the quality factor of 75 is better than that of 100 in
most experiments. We believe since the bedroom images
often have continuous tone because of its contents or pre-
processing, discarding high-frequency components decreases
FID.

FIDs in the second row is computed by first generat-
ing RGB images using the TTUR method [20] and by
encoding/decoding the generated RGB images. As gen-
erating RGB images have been studied a lot in recent
years and the TTUR method is one of the state-of-the-art
methods, generated RGB images are quite visually plau-
sible. FID is increased by encoding/decoding the images
using a lower quality factor and subsampling from a larger
region. Some of the distortions can be visually observed in
Figs. 4 and 5.

The third row presents applying the same method to gen-
erate JPEG encoded images. The results demonstrate that
directly applying the method does not produce competitive
results. The fourth row shows the results of applying the FC
generator in the TTUR method [20] for generating encoded
images. While FC generator often performs poorer than
the selected TTUR method for generating typical images,
we tried the FC generator to avoid extensively applied con-
volution layers in the TTUR method. However, the FC gen-
erator does not perform well even for generating encoded
images.

The last row in both tables shows the results of the pro-
posed method. The proposed method achieves promising
results for generating JPEG encoded images directly. The
proposed method outperforms applying the TTUR method
for generating JPEG encoded image directly. Moreover, the
proposed method is competitive to the method that generates
RGB images using the TTUR method and compresses them
by post-processing.

D. ANALYSIS
To analyze statistical significance, we computed the FIDs of
all the methods in Table 1 for 100 times with the chroma sub-
sampling ratio of 4:4:4 and the quality factor of 100. Each FID
is computed using 50,000 synthesized images as mentioned
in Section IV-B. Considering synthesizing compressed data
directly, the FIDs of the proposed method (last row) were
always lower than those of the TTURmethod (third row) [20]
and those of the FC Generator in the TTUR (fourth row) [20].
Comparing the FIDs of the proposed method (synthesizing
compressed data directly) to those of the TTUR method [20]
(compressing them in post-processing), the former (last row)
was also always lower than the latter (second row).

As mentioned in Section III-B, we need to make the inputs
to the discriminator in the same domain by either compress-
ing the training data or decoding the outputs of the generator.
We present an ablation study on the two cases in Table 3 using
the CIFAR-10 dataset [57]. The inputs to the discriminator are
in the compressed domain and in the RGB domain for the top
row and the bottom row, respectively. In other words, the top
row shows the results of compressing the training data, and
the bottom row presents the results of decoding the outputs of
the generator. Table 3 shows that decoding the outputs of the
generator is better than compressing the training data. Hence,
the proposed framework has a decoder that takes outputs of
the generator and renders inputs to the discriminator during
training.

To demonstrate the effectiveness of the proposed loss
function, we present an ablation study in Table 4 using the
CIFAR-10 dataset [57]. The top row shows the results using
the objective function in [4], and the bottom row presents
those using the proposed loss function. Table 4 demonstrates
that the model trained using the proposed loss function
achieves lower FID (better quality) while having a compet-
itive compression ratio.

To analyze the proposed locally connected layers, we show
an ablation study in Table 5 using the CIFAR-10 dataset [57].
The top row and the second row show the results of the archi-
tectures that are based on the proposed networks, but replaced
the locally connected layers by convolution layers and by
fully connected layers, respectively. The results show that the

180988 VOLUME 8, 2020



B. Kang et al.: Generating Images in Compressed Domain Using GANs

TABLE 6. Analysis on the processing time of synthesizing compressed
image data from noise using the CIFAR-10 dataset [57].

TABLE 7. Analysis on the hyperparameters in the proposed objective
function using the CIFAR-10 dataset [57]. The generator output is a JPEG
compressed image, and the chroma subsampling is 4:4:4. The lower FID
means the better result.

FIDs of the network with locally connected layers are lower
than those of the networks with convolution layers and with
fully connected layers. The network with convolution layers
is inferior to the others since convolution layers repeatedly
utilize the same weights and biases at all output locations
while block-based operations in JPEG demand quite different
values at each location (both within a block and between
blocks).

To present the efficiency of the proposed method, we show
the processing time of synthesizing compressed image data
from noise in Table 6. The proposed method (last row)
takes less time comparing to synthesizing RGB images and
compressing them in a separate step (first row) while the
two methods have competitive FIDs and compression ratios
as shown in Tables 1 and 2. The proposed method takes
longer time comparing to synthesizing compressed image
data directly using the TTUR method [20] and the FC gener-
ator in [20] since the proposed method has additional layers
such as the proposed locally connected layers. However, the
visual qualities and FIDs of the proposed method outperform
twomethods (second and third rows) (see Figures 4 and 5 and
Tables 1 and 2). The processing time was measured using a
computer with an Intel Xeon Processor (E5-2609 v4) and an
NVIDIA GeForce RTX 2080 Ti GPU. We generated 50,000

images using the batch size of 1,000, then calculated average
processing time per image.

Table 7 shows the analysis of the hyperparameters in the
proposed objective function. We trained the proposed archi-
tecture with varying hyperparameters and generated 50,000
images using each trained model. We then measured FIDs
between the statistics of the generated images and those of
the original training data.

V. CONCLUSION
We presented a generative adversarial network framework
that directly generates images in the compressed domain
rather than generating rawRGB images.We proposed a novel
generator consisting of the proposed locally connected lay-
ers, chroma subsampling layers, quantization layers, residual
blocks, and convolution layers. We also presented training
strategies for the proposed framework including the loss func-
tion and the decoder between the generator and the discrimi-
nator. We demonstrated that the proposed framework outper-
forms applying the state-of-the-art GANs for generating com-
pressed data directly. Moreover, we showed that the proposed
method achieves competitive results comparing to generating
raw RGB images using one of the state-of-the-art methods
and compressing the images by post-processing. We believe
that the proposed method can be further improved by investi-
gating optimization algorithms for learning to generate com-
pressed data. We also believe that if quality-enhanced GANs
are later available, the proposed method can be extended and
applied to the networks to synthesize higher-quality images
in the compressed domain.
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