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ABSTRACT Driving intention identification is a key technology which can improve the adaptability of the
intelligent driver assistance systems and the energy efficiency of electric vehicles. This article proposes a
novel method for identifying the driver braking intention. In order to improve the identification accuracy
of driving intention, a braking intention identification model based on Long Short-Term Memory (LSTM)
Network is constructed. The data of slight braking, normal braking and hard braking that can use for offline
training are obtained through tests on real vehicle at Chang’an University vehicle performance testing
ground. Support vector machine - recursive feature elimination (SVM-RFE) algorithm is used to select
the characteristic parameter of braking intention identification model. The random search is subsequently
used to optimize the hyper-parameters of LSTM. LSTM-based and Gaussian Hidden Markov Model
(GHMM)-based model under different time window are used to identify braking intention of slight braking,
normal braking and hard braking respectively. The results show that the Precision, Recall, F-measure,
Accuracy of the braking intention identification model which propose in this paper based on LSTM are
better than that of the braking intention identification model based on GHMM. Moreover, the Recall and
Accuracy of the LSTM-based braking intention identification models are above 0.95, indicating the good
ability of intention identification.

INDEX TERMS Braking intention recognition, driving safety, driver assistance system, LSTM network,
accuracy and real-time.

I. INTRODUCTION
With the increasing complexity of road traffic environ-
ment, advanced driver assistance systems have been widely
researched and deployed to avoid or mitigate collision,
improve driving safety, and reduce accidents and fatali-
ties [1]–[4]. As more intelligent driver assistants, in order to
avoid the occurrence of false interventions and mismatch sit-
uations, and increase the driver’s adaptability and trust to the
vehicle, these systems should effectively obtain the driver’s
intentions [5]–[7]. At the same time, driving intentions have
also been used in the electro-hydraulic composite braking
control system of electric vehicles in order to improve braking
safety, energy utilization and increase driving range [8]–[11].
When slight braking is recognized, braking force is generated
only by the motor regenerative braking system to increase
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energy utilization. When emergency braking is recognized,
ABS and the motor regenerative braking system work in
coordination to achieve braking safety. When the normal
braking is recognized, the motor regenerative braking sys-
tem and the mechanical hydraulic braking system work in
coordination [12]–[15]. Therefore, in order to maximize the
safety and energy utilization of electric vehicles, the braking
intention also needs to be identified accurately and timely.

Various identification methods have been proposed to
study on driving intentions of lane-changing, steering, start-
ing, parking, and braking. HMM, as a kind of dynamic infor-
mation processing method based on time-series cumulative
probability, has been widely used. Pentland and Liu built a
lane changing driving intention identification model based
on Hidden Markov Model (HMM), and recognition accu-
racy reached 95% [16]. On the basis of Pentland and Liu,
Oliver and Pentland also proposed the driving intention iden-
tification model based on coupled HMM. The recognition
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accuracy is 100% of passing and stop intentions, 85.7% of
right lane change intention, 66.7% of left lane change inten-
tion, and 83.3% of start intention [17]. Tran and Sheng pro-
posed a driver’s intention prediction model using HMM and
6 maneuvers. The recognition accuracy is above 82% [18].
Li and Wang proposed a lane changing intention recogni-
tion model combining HMM and Bayesian filtering (BF),
and recognition accuracy reached over 90.98% [19]. Zhao
and Wang combined GHMM and GGAP-RBF for identify-
ing driving intention, such as turning intention and braking
intention [20], [21].

Fuzzy reasoning, support vector machine (SVM), artificial
neural network (ANN) and hidden Markov model (HMM)
are the also the primary methods employed in the field of
driver intention recognition all over the world. Peng and
Guo proposed a lane-changing classification method based
on back-propagation neural network model, and recognition
accuracy reached 85.44% [22]. Hua and Jiang proposed a
driver’s steering intention identification method using prin-
cipal component analysis (PCA) [23]. Li and Zhu built a
driver’s starting intention identification method based on
an artificial error back-propagation neutral network [24].
Kim and Bong proposed a lane change driving intention
classification method using support vector machine (SVM).
The recognition accuracy is greater than 90% [25]. Bock-
lisch proposed a lane change driving intention detection
method using adaptive fuzzy pattern classification, and recog-
nition accuracy reached over 86.3% [26]. Kim proposed
a braking intention identification model using neurophys-
iological signals, which can identify the driver’s braking
intention earlier than the method based on driver’s behav-
ior [27], [28]. Wang and Haufe proposed a driver emergency
braking intention method based on electromyography and
electroencephalography (EEG), and identification results ear-
lier than real-world driving behavior [29], [30].

Meanwhile, the driving intention is the thinking activities
which cannot be observed directly. They have to be inferred
from observation sequence which is composed of vehi-
cle state (e.g., longitudinal acceleration, lateral acceleration,
yaw velocity and speed), driver’s characteristics (e.g., head
motion, eye gaze, brain signal, body motion), and driver’s
operation (e.g. steering wheel angle, pedal displacement,
pedal force) [23], [31], [32]. However, vehicle state belongs
to post-effect data, and some parameters cannot be mea-
sured directly. Driver’s characteristic data can be obtained by
wearing special equipment and the movement characteristics
are different in individuality, which are suitable for off-line
identification.

All the above-mentioned related research can be seen that
the most widely used method of driving intention identifi-
cation are HMM and machine learning techniques. HMM
can reflect the dynamic characteristics of driving intention
in time series well. However, this method considers that
the future state of the system is only related to the current
state, which is a process without after-effect. But in the real
world, human thoughts are not aMarkov process. At the same

time, the length of driver’s operation observation sequence is
different. The HMM usually uses a fixed time window which
has great impact on recognition effect under the different time
window.When there are too many hidden nodes in the model,
larger time window must be chosen. And the growth of state
space is related to the size of time window, which will lead to
a rapid increase in computational complexity.

Although the machine learning techniques have strong
classification self-learning ability among the categories, only
the current time parameters are used in the driving inten-
tion identification process, and the connection between
the former and the latter moment is ignored. Therefore,
the dynamic characteristics of the identification are not
obvious.

The Long Short-Term Memory (LSTM) model proposed
by Hochreiter and Schmidhuber is an improvement of Recur-
rent Neural Network (RNN) [33], [34]. LSTM has a sig-
nificant advantage in capturing long-range time-dependent
relationships, since they cannot access long-range context
due to the backpropagated error either inflating or decaying
over time[35]. Although RNN is good at modeling variable-
length sequence data, the hidden state of each step can contain
almost arbitrarily large time window, but when the length of
the sequence is longer enough, the model will appear gradient
explode or vanish in the process of back propagation, which
will invalidate the long time memory of RNN [36], [37].

LSTM is an effective method to solve the problem of
gradient vanish by introducing the ‘‘gating’’ mechanism.
It can make up for the poor effect of RNN in long time
series information transmission. LSTM network has shown
excellent performance in many pattern recognition fields
such as language translation, image analysis, speech recogni-
tion, fault diagnosis and text recognition [38]–[41]. Because
the RNN maintains its memory of hidden states over time
and has feedback loops between them, it can take full
advantage of the timing of the driver sequence of opera-
tions to find connections between operations and driving
intention [42]. Therefore, LSTM algorithm is used in this
manuscript to build the driver braking intention recognition
model.

The main contribution of this study can be attributed to
the following aspects: Driver braking intentions identification
model based on LSTM is established based on the analysis
of brake pedal operation behaviors. The suitable characteris-
tic parameters of braking intention identification model are
selected using SVM-RFE algorithm. The random search is
used to optimize the hyper-parameters of LSTM.

This paper is organized as follows. The LSTM-based
model and GHMM-based model which is chosen as the
comparison are presented in Section 2. Test and data prepro-
cessing are presented in Section 3. Off-line training braking
intention identification model based on LSTM and GHMM
model is discussed in Section 4. The online identification
of braking intention identification model is presented in
Section 5. Finally, Section 6 presents the conclusions of this
study.
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FIGURE 1. Framework of the LSTM-based driver braking intention identification model.

II. LSTM-BASED DRIVER BRAKING INTENTION
IDENTIFICATION MODEL
The framework of the LSTM-based driver braking intention
identification model is shown in Fig. 1.

The LSTM is a machine learning algorithm which requires
a certain large amount of test data for off-line training. Thus,
the real vehicle braking test was conducted. And the experi-
ment data, such as vehicle speed, brake pedal displacement,
brake pedal speed, brake pedal acceleration, brake pedal
force, ect., were obtained by using VBOX speed sensor,
gyroscope, line displacement sensor and pedal force sensor.
The direct data and indirect data obtained by simple numer-
ical calculation have certain correlation. In order to decrease
the complexity of the model and improve the computational
efficiency, the acquired parameters of these sensors were
processed by feature extraction method. And brake pedal
speed, vehicle speed, brake pedal displacement, and brake
pedal force were determined as the characteristic parame-
ters of the braking intention identification model. The data
obtained from the test cannot be directly used to train the
braking intention model. The data must be preprocessed. The
de-noised and normalized characteristic parameters are taken
as the input sequence of themodel and the braking intention is
taken as the output of the LSTM model. Although the LSTM
has good generality and generalization, the setting of its
hyper-parameters still has a decisive influence on its training
time and model accuracy. In order to improve the learning
speed and avoid model overfitting, random search is used in
this manuscript to optimize the learning rate, MiniBatchsizes
and MaxEpoch of the model. Thus, the driver braking inten-
tion identification model based on LSTM is established.

A. MODEL FEATURE SELECTION
The brake pedal displacement and force are chosen as the
feature parameters of braking intention identification model
normally. Some scholars also choose brake pedal angular
velocity, brake pedal speed, and vehicle deceleration as iden-
tification parameters. The lack of feature parameters will
ignore the key information of driver operation in the iden-
tification process and will lead to inaccurate description. Too
many feature parameters will make the decision maker been
inundating with the ocean of information and unable to make
a correct judgment. At the same time, noise and redundancy
features not only increase the computation time, but also may
reduce the generalization ability of the model. Therefore,
feature selection theory should be used to select the suitable
feature parameters of the driver’s braking intention identifi-
cation model.

Filter, Wrapper and Embedded methods are commonly
used for feature parameter selection. The advantage of the
Filter method is that the time complexity is low, even for a
large number of data. However, because it is relatively simple
and independent of the classifier, the sample quality will
have a great impact on the accuracy of statistics. While the
Wrapper method is easy to overfit.

Support vector machine (SVM) is insensitive to dimension
disasters and can deal with high dimensionmodel well. At the
same time, its model parameters depend on the number of
samples rather than the number of features, so it can adapt
to the high-dimensional small sample data well. Because
of these advantages, Guyon et al. proposed an advanced
Wrapper feature selection method that combines support vec-
tor machine (SVM) with subsequent item deletion search
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strategy - recursive feature elimination method based on
SVM (SVM-RFE) [43], [44].

Since each dimension of the SVM hyperplane corresponds
to each feature in the data set, the dimension weight on the
hyperplane can be regarded as the contribution or importance
of this dimension (feature). So, weights can be used to rank
features from the most important to the least important. The
SVM-RFE procedure is as follows:

(1) Initially, the current feature subset Current_D contains
all the features, and the optimal feature subset Best_D is null
set.

(2) Set the proportion E% of the number of features to be
deleted in each step.

(3) Repeat the following procedures until the feature subset
Current D is a null set.

The SVM model was established based on the current
feature subset Current_D to obtain its ranking score w;

Rank the features of Current_D in descending order
according to the ranking score w;

Removes E% of the features sorted at the end of the current
feature subset Current_D;

(4) If the accuracy of current feature subset Current_D is
higher than that of the optimal feature subset Best_D, let
the optimal feature subset to be the current feature subset
Current_D.

(5) Return the optimal subset of features Best_D.
In this paper, the Current_D contains vehicle speed, brake

pedal displacement, brake pedal speed, brake pedal accelera-
tion, brake pedal force, change rate of brake pedal force and
rate of change of brake pedal force. The feature parameters
will be selected by using pre-processed data.

B. ESTABLISHMENT OF DRIVER BRAKING INTENTION
IDENTIFICATION MODEL BASED ON LSTM
As shown in Fig. 2, the braking process can be divided
into three stages: (1) brake pedal pressing stage; (2) brake
pedal keeping stage; (3) brake pedal releasing stage. These
three stages can be further subdivided into hard brake pedal
pressing stage, normal brake pedal pressing stage, slightly
brake pedal pressing stage, brake pedal keeping stage, brake

FIGURE 2. Brake pedal operation process.

pedal releasing stage. The driving intention is composed
of these simple basic operations that represent the driver’s
behavior. For example, the hard brake intention is composed
of a series of actions including hard brake pedal pressing
stage, normal brake pedal pressing stage, brake pedal keeping
stage and brake pedal releasing stage in a certain sequence of
time. This timing feature is in line with the characteristics of
LSTM algorithm. According to the result of feature selection,
the input and the output of LSTM model at time t is defined
as:

xt = {a(t), b(t), c(t), d(t)} (1)

ht = {slight brake, normal brake, hard brake} (2)

where, xt is the input of LSTMmodel at time t; ht is the output
of LSTMmodel; a(t) is the brake pedal force; b(t) is the brake
pedal displacement; x(t) is the brake pedal acceleration; d(t)
is the vehicle speed.

LSTMmodel makes use of the structure of ‘‘gate’’ to trans-
mit information selectively. The ‘‘gate’’ structure includes the
input gate, output gate, and forget gate. And memory cells
are used to realize timing memory and timing prediction.
The internal structure of LSTM node is shown in Fig. 3. The
construction process of driver braking intention identification
model based on LSTM is as follows:

(1) Computing input gate
The input gate consists of a sigmoid layer and a tanh

layer. The sigmoid layer determines what information will be
updated in the memory unit. The tanh layer determines the
candidate memory cell σ at current time.

it = σ (wixxt + wihht−1 + bi) (3)

gt = tanh
(
wgxxt + wghht−1 + bg

)
(4)

where, (wix;wih; bi) is the weight matrix and bias matrix of
the input gate; wgx and wgh are the weight matrix and bias
matrix of memory units respectively, sigmod and tanh are
nonlinear activation functions.

(2) Computing forget gate
The forget gate has only one sigmoid layer, which is used

to determine whether information should be discarded. f = 1
means to retain all information, and f = 0 means to forget all
information.

ft = σ
(
wfxxt + wfhht−1 + bf

)
f ∈ [0, 1] (5)

where, (wfx;wfh; bf ) is the weight matrix and bias matrix of
the forget gate.

(3) Computing output gate
The output gate determines the output information of the

model according to the state of the memory unit. The first
step is to use the sigmoid layer to calculate which part of
the memory unit state to output. In the second step, the tanh
activation function is used to process the cell state. The third
step multiplies the state value by the output value of the
sigmoid layer.

ot = σ (woxxt + wohht−1 + bo) (6)
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FIGURE 3. Internal structure of LSTM node.

FIGURE 4. Automobile comprehensive performance testing ground of
Chang’an university.

where, (wox;woh; bo) is the weight matrix and bias matrix of
the output gate.

(4) Updating the memory unit status

ct = ftct−1 + itgt (7)

(5) Computing the LSTM output

ht = ot tanh(ct ) (8)

III. TEST AND DATA PREPROCESSING
A. TEST PLAN AND DATA COLLECTION
The real vehicle test was conducted in the automobile com-
prehensive performance testing ground of Chang’an univer-
sity, as shown in Fig. 4. In order to eliminate the influence of
driving skills on test results, three drivers with different driv-
ing experience were selected to conduct hard braking, normal
braking and slight braking tests under 30km/h, 50km/h and
70km/h respectively. The test process is as follows:

¬Hard braking: The test vehicle travels at a constant speed
to the designated position, then the driver will perform hard
braking.

­ Normal braking: The test vehicle travels at a constant
speed to the designated position, then the driver will perform
normal braking.

® Slight braking: The test vehicle travels at a constant
speed to the designated position, then the driver will perform
slight braking.

Test data distribution results are shown in table 1. The text
data are divided into two parts. The 3

4 test data are used for
training the model, and the remaining test data are used for
model verification.

TABLE 1. Test data distribution.

VBOX speed sensor, gyroscope, line displacement sensor,
OBD and pedal force sensor are used to collect the vehicle
speed, acceleration, brake pedal displacement, brake pedal
displacement rate and brake pedal force during the test.
Considering the accuracy, range, reliability and stability of
sensors, the characteristics of output signals, the installation
convenience and other factors, the selected sensors are shown
in the table 2. And the test equipment is shown in Fig. 5.
Meanwhile, in order to realize real-time and synchronous
acquisition of multi-channel sensor signals, a 32-channel
data acquisition instrument manufactured by Austria Co.
DEWETRON, ltd. is adopted to record the signals in real
time.

FIGURE 5. Test equipment.

B. DATA PREPROCESSING
In the ideal condition, the driver only presses or releases the
pedals after intends to brake. But in reality, engine vibration,
road bumps and other vibrations will also cause brake pedal
jitter. Hence, whether or not the brake pedal displacement,
brake pedal displacement rate and brake pedal force are equal
to 0 are not appropriate conditions for identifying driver
braking operations. It is necessary to determine a threshold.

In this paper, the interval estimation method is adopted
to determine the threshold of non man-made boundary of
brake pedal. The brake behavior data are divided into two
categories: non man-made action data and man-made action
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TABLE 2. Test equipment and acquisition parameters.

data. The man-made action data of brake pedal are selected
as the final training data. Based on point estimation and
sample error, interval estimation is a method in mathematical
statistics to infer the range of parameters according to certain
hypothesis conditions with a certain degree of confidence.
The data of pedal force and pedal displacement in idling state
of engine, running on flat road and running on bumpy road
are collected, and the boundary of non man-made action of
brake pedal can be inferred based on the test data samples by
using interval estimation theory.

As the population variance of the brake pedal displace-
ment, the brake pedal displacement change rate, and brake
pedal force are unknown, for the sample X1,X2, · · · ,Xn from
X , S2 is an unbiased estimation of σ 2, therefore[45]:

X − µ
S/
√
n
∼ t(n− 1) (9)

And the t(n−1) distribution doesn’t depend on any unknown
parameters. X−µS/

√
n is chosen as the pivot.

P

{
−tα/2(n− 1) <

X − µ
S/
√
n
< tα/2(n− 1)

}
= 1− α (10)

where, X and S2 are the sample mean and variance of X ; n is
the number of samples; tp(n−1) is the p quantile of student’s
t-distribution in (n−1) degrees of freedom; p = 1−α/2, and
α = 0.01, p = 0.995.
The confidence interval of the sample X at the confidence

level 1− α can be obtained.

X ±
S
√
n
tα/2(n− 1) (11)

Thus, the boundary of non man-made action of brake pedal
displacement, pedal force and pedal displacement rate can be
obtained from statistical data. The sampling frequency was
set to 10Hz. The boundary value of brake pedal displace-
ment obtained by interval estimation was [−0.1773, 1.1721],
and the boundary value of brake pedal force was [−0.9042,
1.1422]. The boundary thresholds are shown in Fig. 6.

Finally, in order to avoid the influence of different dimen-
sions of parameters, the input parameters are normalized.

x =
x −min

max−min
(12)

FIGURE 6. Boundary thresholds.

C. FEATURE SELECTION
The Filtering method based on SVM-RFE is used to select
the feature parameters of driver braking intention recognition.
Brake pedal displacement, brake pedal speed, brake pedal
acceleration, brake pedal force, change rate of brake pedal
force and rate of change of brake pedal force are alternative
feature parameters. The ranking score order of each feature is
shown in table 3.

TABLE 3. Ranking score of alternative feature parameters.

The ranking score order of each feature is as follows:
feature 3> feature 1> feature 2> feature 5> feature 4>

feature 6> feature 7
From the first parameter to the seventh parameter, it is the

vehicle speed, brake pedal displacement, brake pedal speed,
brake pedal acceleration, brake pedal force, change rate of
brake pedal force, and rate of change of brake pedal force.
After the feature selection, feature4, feature6, feature7 are
removed, so we choose vehicle speed, brake pedal displace-
ment, brake pedal speed, brake pedal force as the character-
istic parameters for braking intention identification.
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IV. OFF-LINE TRAINING
A. LSTM OFF-LINE TRAINING
Although the deep neural network has good generality and
generalization, the setting of its hyper-parameters still has a
decisive influence on its training effect and model accuracy.
In order to improve the learning speed and avoid model over-
fitting, it is necessary to optimize the hyper-parameters. How-
ever, the time cost of manual adjustment of hyper-parameter
is high, the results are difficult to reproduce, and may not be
adjusted to the optimal results. Therefore, grid search algo-
rithm, random search algorithm, genetic algorithm, particle
swarm optimization, Bayesian optimization algorithm and
other automatic optimization methods are mostly adopted at
present.

Bayesian optimization is the global optimization algo-
rithm, which assumes that the unknown function is sampled
from a Gaussian process and maintains posterior distribu-
tion of the function during observation [46], [47]. Therefore,
the method needs to determine the mean and variance of
Gaussian distribution. Grid search and manual search are the
most widely used strategies in hyper-parameter optimization.
Grid search has high reliability in low-dimensional space, low
technical difficulty, easy implementation and parallelization,
so it is suitable for optimization with few hyper parame-
ters. However, as the number of hyper-parameters increases,
the amount of computation required for grid search increases
exponentially. Random search is to extract a certain num-
ber of candidate combinations from the parameter space
with specific distribution, which avoids the traversal hyper-
parameter space of grid search. It is more efficient than grid
search in optimizing parameters of single layer neural net-
work classifier [48]. It not only keeps the advantages of easy
implementation and high reproducible of grid search, but also
achieves the small reduction of efficiency in low dimensional
space in exchange for the substantial increase of efficiency
in the high dimensional space. Therefore, random search is
used in this manuscript to optimize the learning rate, Mini-
Batchsizes and MaxEpoch of the model. The accuracy, loss
and iteration times of different learning rates, MiniBatchsizes
and MaxEpoch are shown in the Fig. 7. It can be seen that the
model performance with optimized hyper-parameters is sig-
nificantly better. After the optimization, MiniBatchsizes=22,
MaxEpoch=100, and learning rate=0.011.

B. GHMM OFF-LINE TRAINING
GHMM is a common method in pattern recognition [20],
[21], [49]. In order to verify the effect of the proposedmethod,
the driver’s braking intention identification model based
on GHMM model is taken as a comparison model in this
paper.

The 952 groups of data of brake pedal pressing stage in
slight, normal and hard braking condition are chosen for
offline training of the GHMM model. There are 142 groups
of hard brake data, 337 groups of normal brake data, and
472 groups of slight brake data. The parameters of the

GHMM model are shown as follows.

GHMM = {prior, transmat,mix {N ,mixmat, Sigma,mu}}

(13)

where, prior is the initial state matrix, transmat is the state
transition matrix, mix is the mixture Gaussian parameter
array, N is the number of Gaussian function, mixmat is the
weight of each Gaussian function in GHMM, mu is the mean
of each Gaussian function, Sigma is the covariance of each
Gaussian function.

The GHMM models of hard braking intention, normal
braking intention and slow braking intention were trained
under the time window of 0.5s, 1s,2s and 3s respectively. The
parameters of the hard braking under the time window of 1s
are shown as follows:

N = 3, prior =
[
011.2442× 10−72

]
,

transmat =

0.8838 0.1025 0.0137
0 0.1 0.9

0.18 4.2922× 10−77 0.82

,
mu =

 154.5785 3.1578 135.1065
273.2089 1.0880 144.6540
20.1633 30.8594 46.2839

 ,
mix = {mix {1}mix {2}mix {3}} ,

mix {1} .mixmat = [0.01260.96210.0253] ,

mix {1} .Sigma = [val (:, :, 1) val (:, :, 1) val (:, :, 1)]

V. ONLINE IDENTIFICATION
A. GHMM MODEL ONLINE IDENTIFICATION
The 48 groups of hard braking data, 113 groups of nor-
mal braking data and 158 groups of slight braking data are
selected to make GHMM online recognition. Meanwhile,
0.5s, 1s, 2s and 3s are selected as time windows for driver’s
braking intention identification, respectively. The accuracy
of GHMM models with different time windows is shown in
table 4. The identification results of three braking intentions
under different time windows are shown in Fig. 8-10. The
identification results of the three GHMM are expressed by
50, 100, 150, respectively.
For different braking intention identification models with

different time windows, there are significant differences in
the model accuracy. When the time windows are 1s, 2s and
3s of hard braking intention, the accuracy reaches 100%.
And when the time window is 0.5s, it reaches 100%. The
difference is not obvious. Under normal braking intention,
the highest accuracy rate is 90.0684% when the time window
is 1s, and the lowest is 85.1851%when the time window is 3s,
with a difference of 5.968%. Under slight braking intention,
the highest accuracy rate is 88.2877% when the time window
is 1s, and the lowest is 79.0645% when the time window is
0.5s, with a difference of 9.2232%. It can be seen that the
size of time window has a significant impact on the accu-
racy of model identification in the two braking intentions.
Meanwhile, only four sizes of time window have been used
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FIGURE 7. (a) The accuracy under different learning rate. (b) The loss under different learning rate. (c) The accuracy under
different MaxEpoch. (d) The accuracy under different MaxEpoch. (e) The loss under different MiniBatchsize. (f) The loss under
different MiniBatchsize.

in this paper, which cannot indicate that the time window
of 1s for slight braking intention and the time window of 1s
for normal braking intention is optimal and can achieve the
highest accuracy.

The identification result of the normal braking intention
under different time windows is shown in the Fig. 8. When
the time window is 0.5s, it is mistakenly identified as hard
braking at 0.1-0.2s and slow braking at 0.3s. When the time
window is 1s, normal braking intention is mistakenly iden-
tified as slight braking at 1.1-1.2s and 2.7-2.9s. When the
time window is 2s, normal braking intention is mistakenly

identified as hard braking at 0.3-0.5s, and slow braking at
1.01-1.2s.When the timewindow is 3s, normal braking inten-
tion is mistakenly identified as slight braking at 0.1-0.4s.

The identification result of the slight braking intention
under different time windows is shown in the Fig. 9. When
the time window is 0.5s, it is mistakenly identified as normal
braking at 0.9-1.6s. When the time window is 1s, it is mistak-
enly identified as normal braking at 0.6-1.5s. When the time
window is 2s, it is mistakenly identified as normal braking at
0.1-0.7s. However, when the time window is 3s, there is no
mistaken identification.
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TABLE 4. Accuracy of different driving intention identification models
with different time windows.

FIGURE 8. The identification result of the normal braking intention under
different time windows.

FIGURE 9. The identification result of the slight braking intention under
different time windows.

Through the above comparison, it can be seen that the
time points and types of mistake are random in every braking
intention under different time windows. Therefore, the opti-
mal time window of each model is not the same. The opti-
mal time window can improve the identification accuracy of
driving intention, but the selection of optimal time window
will increase the workload of the model.

B. LSTM MODEL ONLINE IDENTIFICATION
The data which are same to GHMM recognition are selected.
These data are used to make LSTM model online recog-
nition. The accuracy of model identification with different
MiniBatchsizes, MaxEpoch and learning rate is shown in the
Fig. 11. Themaximum,minimum, first quartile, median, third
quartile of the accuracy are shown in table 5.

It can be seen from the table 5 that under different hyper-
parameters, the maximum accuracy difference is 48.64%, and

FIGURE 10. The identification result of the hard braking intention under
different time windows.

FIGURE 11. Boxplot of the LSTM model identification result.

the minimum accuracy difference is 9.67%. The quartiles fur-
ther demonstrate the influence of different hyper-parameters
on the identification accuracy. And the model accuracy is also
optimized by hyper-parameter optimizing.

In order to further verify the effect of driver braking inten-
tion recognition model proposed in this paper, the accuracy,
recall, Precision, F-measure of the braking intention identi-
fication model based on LSTM and based on GHMM are
compared. The confusion matrixes of the LSTM-based and
GHMM-based model are shown in the table 6.

From table 6, it can be seen that the Precision, Recall,
F-measure, Accuracy of the braking intention identification
model proposed in this paper based on LSTM are better than
that of the braking intention identification model based on
GHMM. In particular, the evaluation index of LSTM-based
normal braking intention and slow braking intention identi-
fication model are obviously better than the GHMM-based
model. The thermodynamic diagram of confusion matrixes
of the LSTM-based and GHMM-based model is shown in
Fig. 12. Through comparison, it can be seen that under the
premise of improving the fitting ability, the braking intention
identification model based on LSTM model did not lead to
over-fitting phenomenon, and effectively mined the potential
feature information of the data set. Moreover, the recall and
accuracy of the LSTM-based braking intention identification
models are above 0.95, indicating the good ability of intention
identification.
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TABLE 5. The maximum, minimum, first quartile, median, third quartile of the accuracy.

TABLE 6. The accuracy, recall, Precision, F-measure of the braking intention identification model.

FIGURE 12. The thermodynamic diagram of confusion matrixes of the LSTM-based and GHMM-based model.

VI. CONCLUSION
(1) Driver braking intentions identification model based

on LSTM is established based on experiment data and
the analysis of brake pedal operation behaviors. SVM-RFE
algorithm is used to select the characteristic parameters of
braking intention identification model. LSTM models are
trained offline and recognized online. The random search
is subsequently used to optimize the hyper-parameters of
LSTM. The results show that the Recall and Accuracy of
the LSTM-based braking intention identification models are
above 0.95. The model has good real-time performance and
accuracy.

(2) In further research, the braking intention prediction
model will be studied on the basis of braking intention
identification model. The predictive braking intention can
be used to control the vehicle braking system in advance,
which will improve the safety and comfort of the vehicle
and the braking energy recovery efficiency of the electric
vehicle. At the same time, this method can not only be used
to construct the braking intention identification model but
also can be used to construct the acceleration, steering, lane
change and other complex driving intention identification
models. Also, gradient explosion problem has been solved
in LSTM to some extent, but not completely. The order of
magnitude of time sequence information which LSTM can
process is limited. Since each cell has four full connection

layers (MLP), if the time span of LSTM is large and the
network is deep, the calculation amount will increase rapidly.
These are also the problems that need to be addressed in
future research.
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