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ABSTRACT Wind speed interval prediction is gaining importance in optimal planning and operation of
power systems. However, the unpredictable characteristics of wind energy makes quality forecasting an
arduous task. In this paper, we propose a novel hybrid model for wind speed interval prediction using an
autoencoder and a bidirectional long short term memory neural network. The autoencoder initially extracts
important unseen features from the wind speed data. The artificially generated features are utilized as input
to the bidirectional long short term memory neural network to generate the prediction intervals. We also
demonstrate that for time series prediction tasks, feature extraction through autoencoder is more effective
than making deep residual networks. In our experiments which involve eight cases distributed among two
wind fields, the proposed method is able to generate narrow prediction intervals with high prediction interval
coverage and achieve an improvement of 39% in coverage width criterion over the traditional models.

INDEX TERMS Wind speed prediction, bidirectional LSTM, autoencoder, residual LSTM, interval
prediction.

power systems require prior knowledge about the behavior

NOMENCLATURE
PI and nature of wind speed in the area. Over the last decade,

prediction interval

WSIP wind speed interval prediction numerous researchers have contributed a number of different
LSTM 19“5 sh(?rt term memory techniques such as physical [1], [2], statistical [3], [4], as well
BLSTM  bidirectional LSTM as hybrid frameworks [5]-[7] to improve the accuracy of
LUBE lower upper bound estimation deterministic wind forecasts. However, deterministic fore-
PICP PI coverage probability casts or point forecasting can be of limited use if there is a
PINRW  PI normal?zed root-mean-square width large downside to an incorrect prediction like in scheduling
PINAW Pl normalized average width and operation of energy systems. Indicating the uncertainty
PINC PI normal confidence associated with each forecast is therefore more imperative
CwC coverage width criterion over point forecasting.

ReLU rectified linear unit One common way of communicating the uncertainty is to
NREL the National Renewable Energy Laboratory

indicate the expected upper and lower bounds of the fore-
casts or in other words generating the prediction intervals
(PIs). There exist several interval prediction methods in the
literature like Delta method [8], Bayesian technique [9],
Bootstrap [10], [11] and Fuzzy models [12]. Fuzzy models
suffer from implementation difficulties whereas the tradi-

I. INTRODUCTION
Wind energy is a clean and abundantly available alternate
sources of energy. However, integration of wind energy in
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tional models mostly obtain PIs based on certain error dis-
tribution assumptions over point predictions.
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Eliminating the need for any distributional assumption for
the original data, lower upper bound estimation (LUBE) is
proposed in [13]. The core idea is to generate PIs directly
using a certain predictive model, which is trained by mini-
mizing a PI-based cost function which assumes high-quality
PIs to capture as many data points while keeping the interval
width as narrow as possible. Because of its inherent lucidity,
this method finds its implementation in a plethora of applica-
tion focused works [14]-[18]. Majority of these works imple-
ment shallow machine learning models such as ANN, ELM,
and SVM as predictive models. The insufficiency of these
models has restricted the performance of LUBE method. Like
SVMs are incapable in handling large amount of data, and
ELM suffers from weak universal approximation property.
Also, integration of these models require too many parame-
ters to be tuned for the metaheuristic optimization mechanism
adopted in the framework, making the computational cost too
expensive.

Recent years have seen arise of deep learning methods as a
new research hotspot in machine learning [19]. In particular,
RNNs with the capability of maintaining states between dif-
ferent inputs show advantage in handling time sequences, but
suffer from problems like vanishing and exploding gradients.
LSTM, an extension of RNN, solves the vanishing gradi-
ent problem by introducing memory cells with controlling
gates and have been used extensively to simulate the time-
series correlation [20], [21]. Further extensions to RNNs have
recently become popular where the output is obtained by
exploring not only the past but also the future context [22].
These networks connect the outputs from two separate hidden
layers (which scan the input sequences in opposite directions)
to the same output layer making them bidirectional RNNs.
LSTMs can also benefit from this bidirectional modeling
resulting in bidirectional LSTMs (BLSTMs).

Due to the intermittent and very volatile nature of wind
power the data distribution assumptions seem dubitable, thus
in view of the advantage of no distributional assumption of
LUBE and the merits of bidirectional LSTM, how to establish
an interval prediction model based on BLSTM as the predic-
tive model in the LUBE framework would be interesting and
challenging and has seldom been researched.

Traditionally, LSTMs are shallow across layers, instead
obtaining their depths across time steps. Recent advance-
ments in residual networks have unlocked the ability to use
deep networks. With residual connections the network can
directly learn an Identity function resulting in more effective
learning [23]. Fascinated by the enticing popularity of these
networks, researchers applied residual modeling to make
deep residual LSTMs and report improvements in perfor-
mance specially in the field of natural language process-
ing [24], [25]. This inspires to examine the performance of
residual LSTMs in time series prediction which is an area
not yet documented. Will it work as a predictive model for
complex time series prediction? A soft answer here is, maybe
not. The reason based on our findings are discussed later in
the paper. An interesting question then arises that why this

182284

remarkable idea of identity connection is not successful in
time series prediction or is there any other way to utilize
this idea? Another very popular network called autoencoder
(AE) exists which basically learns an identity function. The
fundamental idea in an autoencoder is to learn and reproduce
almost the same input. This usually involves two stages:
1) contracting the input data into a latent-space representation,
and ii) reconstructing the output from this representation.
In this process the latent representation learns the most salient
features of the training data. This is very interesting as an
autoencoder can be trained to preserve as much information
as possible which can be utilized to make hybrid networks.

In the present paper, a hybrid model is proposed and inte-
grated as a predictor network in the LUBE framework for
improved interval predictions. The method involves a stacked
BLSTM prediction model which generate PIs based on the
artificial features extracted by a BLSTM autoencoder initially
from the wind series data.

The main contributions of this paper are as follows:
(1) a novel methodology to generate prediction intervals by
integrating a deep neural network into the LUBE framework
is proposed; (2) the concept of identity function, in learning
the important features across the layers of a deep model is
examined, and is shown that utilizing it as a preprocessor
(autoencoder) is more effective over its use as a residual, for
time series prediction; (3) specifically, a hybrid model com-
bining an autoencoder and BLSTM is presented to perform
high-quality PI for wind speed interval prediction (WSIP).

The rest of the paper is organized as follows: Section II
gives a brief introduction about the PI quality and evaluation
indices as well as the structures of BLSTM, residual networks
and autoencoders. Section III proposes the hybrid BLSTM
model. Section V lists the conclusions obtained from the
discussions and comparisons of several numerical examples
presented in section I'V.

Il. THEORITICAL BACKGROUND
A. BIDIRECTIONAL LSTM

A typical LSTM cell is shown in Fig. 1 (a) which use the
following transition equations:

fo = o (Wexy + Urhy—1 + by) (D
in = 0 (Wixy + Uihy—1 + b)) 2
on = 0 (Woxy + Ushy—1 + by) 3)
¢p = tanh Wex,, + Uchy,—1 + be) @)

which leads to

e =0 (Cr ®Iy+cn1 fn) (5)
h, = 0, ® tanh (c;) (6)

wherein x,, ¢,, and hj, represents the input, cell state and the
output of the current LSTM respectively whereas £, is the
mean output of the last LSTM. f,, i,, 0,, and ¢, represents
the forget gate, input gate, output gate, and the cell candidate
value. W and U are weight matrices while b is the bias.
® denotes the Hadamard product.
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The concept of memory cells with controlling gates helps
LSTMs to achieve considerable success in removing the
problems of long term dependency and vanishing gradients
associated with RNNs [26]. The learning process through
backpropagation estimates the weights based on which the
cells either store or delete the data.

Another variation to RNNs is proposed in [22] wherein
a single RNN layer consists of two RNN blocks processing
temporal information simultaneously in two opposite direc-
tions. The final output at each single time instance is a com-
bination of the outputs of each RNN block. The bidirectional
structure can be applied to LSTM to make a bidirectional
LSTM (BLSTM) as shown in Fig.1 (b).

CVH 1 ® @ n
— By
fn En ln on
hwfl
xn
(a) An LSTM Cell

Backward States

(b) ABLSTM Layer

FIGURE 1. General structure of LSTM cell and BLSTM layer.

B. RESIDUAL NETWORKS

During back-propagation in a deep network, repeated mul-
tiplication may make the gradient infinitively small due to
which deep neural networks are hard to train. Residual net-
works [23] introduce a so-called “‘identity shortcut connec-
tion” between the input and output as shown in Fig. 2 which
ensures unimpeded flow of original information layer to layer
throughout the network. Consequently, gradients are com-
puted with the original input taking into consideration and
would never vanish no matter how deep we go. But why this
is called as residual network? Mathematically, for a neural
network layer whose input is x and output is F (x). The
difference or the residual between this is

Rx)y=F(x)—x @)
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Rearranging it we get,
Fx)=Rx)+x (8)

The residual block is overall trying to learn the true output,
F (x) but as can be seen from Fig. 2 (a), that since there is
an identity connection coming due to x, the layer is actually
trying to learn the residual, R (x). Hence, the added layer just
need to learn the features on top of already available input.

Encoder
X ‘ \ Py
N, '
_ —

l-": Stacked Neural ,
\ Network Layers ).-' -

o

Input Laye:
N
Output Layer

7 8
} AN
mE—REeE Decocoder
(a) A simple Residual block (b) An Autoencoder block

FIGURE 2. General structures of residual block and autoencoders.

C. AUTOENCODERS

Autoencoders (AE) are a category of neural networks for
which the output resembles the input as closely as possible.
An AE consists of two parts: an encoder ¢ that maps the
input data x to latent-space representation Z by combining
the data’s most important features, and a decoder ¢ that
aims to reconstruct the input x” from the latent space rep-
resentation as shown in Fig. 2 (b). These transitions can be
represented mathematically by the standard neural network
function passed through an activation function.

¢ X—>Z:x—>¢dpx)=0Wx+b): =z &)
VZ Xz w(z)=a<vi/z+ia) =X (10)

There are a few reasons why AEs may be useful: 1) Using
latent feature representations may enhance model perfor-
mance, 2) Dimensionality reduction can reduce training time.

D. EVALUATION INDICES AND QUALITY OF PI

An effective forecasting model must construct sharp and reli-
able PIs. Number of target values covered or coverage prob-
ability is the commonly used measure for reliability whereas
width of PI represents its sharpness. Mathematically, these
two measures defined through indices like PI coverage Prob-
ability (PICP) and PI normalized average width (PINAW) or
PI normalized root-mean-square width (PINRW) [18]:

1 1 e [L:. U;
PICP = — Zn C, C=1{" yi € [Li, Ui] (11)
n —i=l 0, yi¢ILi, Uil
 J—
PINAW = — Zi:l (Ui — Lj) (12)
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1 [T n 5
PINRW = I_Q\/Z Zi:l (Ui — L;) (13)

where U; and L; are the upper and lower bounds of the
i PI respectively and R is the range of the minimum and
maximum of the time-series, n is the number of data pints.
The format for PINRW is more close to mean square error
which enhance the training performance by magnifying the
big error terms [18]. Therefore, we chose PINRW as our width
assessment index.

The wider the intervals the higher will be the coverage.
So, higher coverage may lead to a higher PINAW or reduced
sharpness and vice-versa. Thus the two indices conflict with
each other and are insufficient to independently reflect the
quality of the PI. A popular index called coverage width cri-
terion (CWC) which makes a comprehensive balance between
PICP and PINAW is used as a measure to examine the quality
of PI. Because of its importance the definition of CWC keeps
evolving in literature. We used the definition of CWC as

B - PINAW, PICP > u
CWC = { (&« + B * PINAW) (14)
(1 4 exp (= (PICP — p))), PICP < u

where «, B, n, and u are hyperparameters that govern the
measurement of CWC index. 8 is used to linearly increase
the influence of PINAW, « avoids the CWC from vanish-
ing once PINAW becomes zero, n is the penalty factor for
unqualified PICP and p is a PI normal confidence (PINC)
that needs to meet the PICP. This definition of CWC is
very effective because the multiplication operation between
PINAW and PICP solves the problem of PINAW losing
control of CWC [27]. Thus, PICP is given more weight
when the PICP does not meet the required PINC. Once
PINC is satisfied, the width of PI will have more influence
on CWC.

IIl. NOVEL BLSTM BASED HYBRID AUTOENCODER-
BLSTM MODEL FOR INTERVAL PREDICTION

A. FRAMEWORK OF H-BLSTM MODEL

Using the deep learning fundamentals, a novel multi-layer
neural network for WSIP is proposed. For simplicity we call
it hybrid BLSTM (H-BLSTM) model.

The forecasting framework is easy to elucidate as illus-
trated in Fig.3. We start with training a BLSTM AE on the
initial wind speed series; next we extract the encoder and
utilize it as a features creator. The prediction model then
acts on these artificially generated features to generate the
prediction intervals. The specific training procedure of the
proposed model is shown in Fig. 4.

1) BLSTM AUTOENCODER

Usually, the input data may contain some redundant or cor-
related features which may result in wasted processing time
and overfitting in the model. It is thus ideal to only include
the features we need. AE comes in handy in extracting those
important unknown features. An AE consists of two parts:
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FIGURE 3. Framework of the interval prediction model.
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Preprocess time series to training,
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using y;, v, and [

Calculate the two target functions f; and f; ‘

Feed i sample from training data
to autoencoder

Train the network using matrix of zeroes
as labels for both f; and f5

Train autoencoder by using ADAM
minimising the mean square error

‘ (W, b)are updated by means of ADADELTA |
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Reach maximum training

v samples
Ni .
Autoencoder trained =2 Y Yes No
v Yes Reach maximum iterations
Obtain unseen features using the v Yes
encoder part of autoencoder for the Training process finished and optimized
entire data (W, b) obtained

Preprocess the artificial features Extract u; and |; for i sample of testing data
obtained into training and testing from preliminary part of the prediction
datasets network
v
Initialize C,, H, (W, by) for the
prediction network

| Rank ordered to get U; and L; ‘

I PI of test dataset is obtained ‘

v
End

FIGURE 4. Flow chart of the H-BLSTM model.

an encoder that maps the input data to a latent-space represen-
tation by combining the data’s most important features, and
a decoder that aims to reconstruct the input from the latent
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space representation. If the “‘reconstruction” of data is very
accurate, the latent space representation can be used as input
into another model. Our AE consists of a BLSTM encoder as
well as a BLSTM decoder with a BLSTM bottleneck (hidden
layer). The decoder is followed by a Time-Distributed output
layer. Taking in the train data x at the encoder input the AE
reconstructs the input x at the output of decoder by minimiz-

ing the mean square error 1 / n (x — x/>2 as the reconstruction
loss utilizing Adam [28], as the optimizer algorithm. Once
trained the encoder part is removed and is fed in full wind
speed data (train + test) to generate the features dataset z.
The generated dataset is then divided into train and test data
(Zirain, Ztest) as earlier and the train data is fed to the prediction
model.

2) PREDICTION MODEL

In time series prediction, the temporal characteristics are
really important. LSTMs learn by back propagating through
time allowing the gradient of weight updates to be estimated
from all observations in the sequence. Based on the weights,
the memory cells with controlling gates either store or delete
the data. Thus LSTMs can disregard the error contribution
from prior time-steps in gradient estimates, and can give
more weight to the input of most recent moments, while
simultaneously keeping important information in the mem-
ory cells thus removing problems of long term dependency
and vanishing gradients. BLSTM which combines another
LSTM that move backward through the sequence is therefore
capable to learn a representation that depends on both the
past and the future but is most sensitive to the input values
around that particular time. Thus the structural characteristics
of BLSTM layer suits well at this point. So our prediction
model starts with a BLSTM which is designed as multiple
input on time scale and outputs a sequence of vectors. These
vectors are passed on to a subsequent BLSTM layer which
gives single output from last cell. This hierarchy of layers
enables more complex representation of the time-series data,
capturing information at different scales. Thus, the stacked
BLSTM layers transfer the input z = {z1,22,...,2,} into a
high dimensional vector h,, which is full of temporal feature
information. Feeding on this feature vector the subsequent
fully connected layers, two in number, further apply nonlinear
computations (ReLU activation) layer by layer transforming
it to a dense representation which is then finally converted
into two bound output by the output layer. ReLU [29] as
defined in Eq. (15) gives several advantages over sigmoid and
Tanh activation functions.

(e

>
ReLU =5 * = (15)
0, x<0

In the regime x> 0 the gradient has a constant value which
helps reducing the likelihood of the vanishing gradient prob-
lem as well as results in faster learning whereas in x< 0
regime it results in sparse representations. Sparse representa-
tions seem to be more beneficial than dense representations.
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Initializing the weights of these layers with He initializa-
tion [30], further ensures a faster and more efficient gradient
descent. For the output layer, just a linear activation func-
tion can receive a good result in fitting the prediction label.
We term this part of network as preliminary prediction net-
work. The bounds obtained from this network are optimized
by using the true value and two target functions. In the end
a rank-ordered terminal sorts the output to correspond the
upper and lower bounds.

B. OPTIMIZATION STRATEGY
The prediction network gives two outputs. We call these as
the preliminary upper (u;) and lower (/;) bounds of the PIL.

u=v,(W,b), z
L=y, (W,b), =z

where v, and ; are functions of relationship among the
layers of the prediction network, (W, b) contains the weights
and biases of the various layers in the network. For accurate
predictions these bounds must be optimized. A neural net-
work optimizes the prediction by minimizing a loss function
which is generally the error between the predictions and the
training labels. However, unlike point prediction, interval
prediction lacks in the available labels and require a way
of constructing the training labels artificially. Optimal PIs
should possess high coverage probability while keeping the
PI width as narrow as possible. Based on these two objectives,
two target functions fi, and f> are specifically designed as
described in (17) and (18) respectively. If the observed value
is in PI, it is expected to be closer to the mid-point of PI while
demanding a penalty on the value of the target function once it
escapes from the PI. The farther it flees the greater the penalty.
At the same time, however, a narrow PI width is expected.

AW, b) =k - (|yi— @i+1) /2| + 1 -y-d) (17)
HW,b) =ky- ((ui — 1)) + 2oy - d) (18)

(16)

where ki, and k are weights of f1, and f>. These two deter-
mine the importance between hit rate and width of PI. y; is the
observed value of the i sample, A1 and A; are the penalty
coefficients, y is the step function given by Eq.(19) and
finally d as defined in Eq. (20) measures the distance between
v; and boundary of u; and /;, when y; escapes PL

_ 0,y; € [, ui (19)
Ly; & [, ui]

We incorporated these two target functions as succeeding
layers to the preliminary prediction network, shown as bound
optimization layers in Fig. 3. So now our network makes
two predictions namely the distance of the observed value
from the center of the bound, and the bound. To train the
network we now need labels for these predictions. In ideal
scenario the observed value should lie at the midpoint of
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the preliminary PI. Also, in limiting case of fully accurate
prediction the bound should be so narrow that it approaches
zero. Thus, the neural network is trained by using a matrix of
zeros as the training labels for both f1, and f>. Adadelta [28]
a gradient based optimization algorithm is employed to train
the prediction model. With its update rule adadelta eliminates
the need to set a default learning rate thus accelerate conver-
gence. Once trained the bound prediction network is removed
and used to predict the optimal bounds Uj;, and L; of the PIs.
The hyperparameters ki, kp, A1, and A, hugely influence
the construction of the optimal bounds and thus finding the
best values for these hyperparameters is very significant.
Hyperparameter optimization is generally represented as
0* = argmin g (9) (21
Oex
where g (0) represents an objective score to minimize such as
mean square error evaluated on the validation set; 6* is the set
of hyperparameters that yields the lowest score, and 6 varies
the domain x. Evaluating the objective function of a deep
model iteratively is computationally expensive. So we took
a Bayesian approach to find these optimal hyperparameters.
In this approach a probabilistic model (*“‘surrogate” for the
objective function) is formed mapping the hyperparameters to
a probability of a score on the objective function, by tracking
the results from previous evaluations. This is represented as
p (y|x) where y is the score. The surrogate is much easier to
optimize than the objective function. We employ a python
library Hyperopt [31] for using the Bayesian model based
optimization. Quality forecast involves narrow intervals; thus
we design our objective function to minimize the mean aver-
age error of the upper and lower bounds from the true value
as described in Eq. (22).

Loss = 1 (Z?_l (i = yi)
2

n

n —
+ lel (i z)) (22)
n
The hyperparameters obtained are listed in Table 1.

TABLE 1. Parameter settings of different models.

Model Parameters Quantity
QR model confidence 0.95
ARIMA  model confidence 0.9
number of layers 3
number of neurons in each layer 9,8,2
S-ANN population size of PSO 100
maximum number of iterations of PSO 100
number of layers 5
number of neurons in each layer 9, 8-6-4,2
D-ANN Population size of PSO 100
maximum number of iterations of PSO 100
BLSTM autoencoder 64,32, 64
number of BLSTM layers 2
H- number of time steps in BLSTM layers 9
BLSTM  dimension of z,, h%, h, 64,128, 32
number of neurons in fully connected layers  64,16,2
ky, ko, A4, and A, 5,5,1,4.5

An advantage of the optimization methodology adopted,
is that by incorporating Eq.17 and Eq. 18, we are able to
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use mean square error as the loss function, which is differ-
entiable and thus the method can be trained by classical neu-
ral network optimization technique called gradient descent.
In contrast, the previous LUBE versions [13], [18] employ
the commonly used measures of PI evaluation to train their
model. To do so, they combine the two conflicting objectives
of coverage probability and interval width into a single cost
function called CWC, which is complex, highly nonlinear,
and non-differentiable and thus difficult to optimize via clas-
sical local optimization problems.

IV. EXPERIMENTS ON REAL DATASETS

A. DATASET AND METHODOLOGIES

We choose wind speed datasets from two different wind
fields collected in 2011 and 2012 from the National Renew-
able Energy Laboratory (NREL) website. The first dataset
is from an offshore wind field (numbered 110197) located
in Lake Huron, of which the longitude and latitude are
—83.111816 and 45.07209 respectively. The second is an
onshore wind field (numbered 71764) located in Pennsylva-
nia with —78.3109 and 40.7147 as the longitude and latitude
respectively.

For experiments we divide the wind series data into four
subseries and evaluate the model performance in each of
them. This is similar to performing a cross-validation to
assure better generalization capabilities of the model [32].
Each subseries is extracted using a sliding window
of 15 months, of which the first twelve months’ data is
considered for training the model while the remaining three
months’ data is kept for testing purpose, e.g., first subseries
consists of data from January 2011 to December 2011 as
train data and from January 2012 to March 2012 as test data,
second subseries from April 2011 to March 2012 as train
data and from April 2012 to June 2012 as test data and so
on. The three months testing period is taken considering a
particular season of a year generally consists of three months.
Thus we term the four subseries as “‘spring’, ‘“‘summer”,
“autumn”, and “winter”” based on the season names. Each
subseries contains data points with a resolution of 30 min.
So, in total we have eight cases, four for each location. In each
case we perform multi-step predictions 3 hours ahead every
30 minutes.

We present the experimental results in four steps. The first
two steps involve the evaluation of the structural components
of the model, like the first step compares the effectiveness of
BLSTM over LSTM whereas in the second step we check the
advantage of AEs over residual RNN approach. The third step
compares the proposed model with a variety of traditional
approaches like LUBE based Shallow ANN (S-ANN) as
well as Deep ANN (D-ANN) [33] methods and statistical
approaches like Bootstrap ARIMA [11] and Quantile Regres-
sion (QR) [34]. Finally, in the fourth step the performance
of the proposed model is compared for multi-step horizons.
The selection of parameters is trial and error based for the
proposed model, whereas the parameters of the other models
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were set as per the instructions of the references. The param-
eters of different models used in the comparative studies were
presented in Table 1.

B. COMPARISON AND ANALYSIS

The indices of PICP, PINRW, and CWC, are used as the eval-
uation criterion to compare the performance of the different
models. To counter the effect of the randomness associated
with the initialization of the neural networks, each experiment
is repeated 10 times and the mean values of indices are
kept for comparison. For a WSIP model, a higher PICP and
lower PINRW which lead to a lower CWC represent a high
quality PL.

1) COMPARISON BETWEEN LSTM AND BLSTM

This subsection is to compare the performance of BLSTM
with LSTM. For pure comparison, experiments are run con-
sidering solely the LSTM and BLSTM models without using
the AE as in the proposed model. The parameters for both
the models were also kept the same. The experiments contain
eight cases, each of which contains a week’s data with a res-
olution of 10 min, from the four seasons, for each of the two
locations. In each of the eight cases the first five days were
devoted to train data whereas the last two days of the week
were considered as test data. The selection of small datasets
is just to save the computational time, since the sole purpose
here is to check the performance of BLSTM over LSTM. This
dataset is selected only for the experiments of this subsection,
while in the rest of the paper the data described in the previous
section is used for all the experiments.

1

- I I I I
0.8

PICP

sprmg summe r aufumn winter
024
018
e
=S
E 012
~
0.06
0
sprmg summe r autumn winter
1.8
12
1]
=
1]

- I I
(o]
spring summer autunn winter

Lake Huron BLSTM ™ Lake Huron LSTM = Pennsylvania BLSTM m Pennsylvania LSTM

FIGURE 5. Performance indices comparison for LSTM and BLSTM models.

From Fig. 5 one can easily visualize that BLSTM is able
to capture a higher PICP with lower PINRW thus a lower
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CWC in most of the cases. The BLSTM model is able to
achieve an average improvement of 11% in CWC over LSTM.
The model training time for BLSTM is a little higher in
experiments than LSTM (not shown in the Fig. 5) which is
justified for the two opposite LSTM layers in the BLSTM
structure. The improvements in the performance indices at
the expense of a little computational cost justify the selection
of BLSTM for the proposed model.

2) THE IDENTITY FUNCTION: AUTOENCODER

OR RESIDUAL CONNECTIONS

With effectiveness of BLSTM already established in previ-
ous subsection, we now attempt to enhance the quality of
prediction by making BLSTM based deep neural network.
As described in the introduction section that a residual or
identity connection is highly successful in deep neural net-
works. Let us now attempt to answer the interesting question
raised in the introduction section, that whether the remark-
able success of the identity connections as enjoyed by the
deep residual networks in computer vision tasks, can also
be duplicated in time series predictions by making deep
residual RNNGs.

A satisfactory answer requires comparative experiments.
For intuitive comparison we run the experiments on three
different models. The difference among the three models is in
the way they create the high dimensional vector %, from the
input time series. Once h,, is extracted the remaining structure
of all the three models is the same i.e., fully connected layers
followed by rank ordered terminal to generate PIs. The first
model we call BLSTM model as it contains a single BLSTM
layer followed by the rest of the structure. The second model
which we call residual BLSTM (R-BLSTM) model is deeper
across the layers and consists of four BLSTM layers with
residual connection between them. Also, it is known that the
last layer of BLSTM only outputs the sequence at the last
time step, so to make a residual connection at the last layer
we sliced the last element of the output sequence from the
previous layer. All the four BLSTM layers have equivalent
dimensionality of 64. This parameter setting gives two ben-
efits; firstly, the input size matches the BLSTM output size
therefore a residual connection is kept at the input also and
secondly, it ensures that the number of parameters are almost
the same as the total number of parameters including the AE
and stacked BLSTM layers in the H-BLSTM model. Since
making a bidirectional layer is also a kind of stacking up lay-
ers, we think the model possess sufficient depth to effectively
utilize the advantages of residual connections. The datasets
used are the same fifteen months’ datasets as described earlier
in the dataset and methodology section.

Table 2 summarize the performance indices obtained from
the three models. The results clearly indicate that the residual
connection model failed miserably in improving over the
forecasts of the BLSTM model, instead a degraded perfor-
mance is observed in some cases. In four cases it failed to
maintain even the PINC of 0.9 and thus a higher CWC which
implies lower quality forecasts. In contrast, the proposed
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TABLE 2. Performance indices comparison of BLSTM, R-BLSTM and H-BLSTM models.

Off-shore wind field in Lake Huron

On-shore wind field in Pennsylvania

Mean Value of 10 Times

Spring Summer Autumn Winter Spring Summer Autumn Winter
= PICP 0.9539 0.9190 0.9186 0.9311 0.9521 0.9285 0.9157 0.9440
2 PINRW 0.1389 0.1561 0.1700 0.1176 0.1420 0.1912 0.1888 0.1218
g CWC 0.7710 1.1520 1.1785 0.7603 0.7852 1.2164 1.2913 0.6814
= PICP 0.9124 0.8683 0.8488 0.9171 0.9086 0.8869 0.8806 0.9241
~ 2 PINRW 0.1086 0.1375 0.1319 0.1118 0.1256 0.1713 0.1798 0.1124
é CWC 0.9468 2.0938 2.7278 0.8265 0.9884 2.0595 2.3576 0.8992
= PICP 0.9440 0.9265 0.9251 0.9426 0.9211 0.9363 0.9388 0.9329
- 7 PINRW 0.1192 0.1551 0.1667 0.1163 0.1215 0.1852 0.2088 0.1137
E CWC 0.6634 0.8473 0.8943 0.6377 0.6682 1.0244 1.1438 0.6320
TABLE 3. Performance indices comparison of five models by wind fields.
Mean Value of 10 Times Off.-shore wind field in Lake Huron . On-_shore wind field in Pennsylvania .
Spring Summer Autumn Winter Spring Summer Autumn Winter
4 PICP 0.9870 0.9582 0.9517 0.9832 0.9766 0.9638 0.9539 0.9834
<Zg PINRW 0.2321 0.2302 0.2101 0.2165 0.1988 0.2632 0.2487 0.1979
2 CWC 1.3926 1.3814 1.2606 1.2991 1.1925 1.5790 1.4923 1.1877
% PICP 0.9828 0.9206 0.9374 0.9807 0.9555 0.9406 0.9381 0.9710
< PINRW 0.2791 0.3755 0.2717 0.2299 0.4042 0.5328 0.4107 0.3236
=] CWC 1.6744 2.2529 1.6303 1.3794 2.4250 3.1969 2.4644 1.9418
PICP 0.9407 0.8727 0.8618 0.9289 0.9028 0.8983 0.8813 0.9379
g PINRW 0.1087 0.1083 0.1104 0.1012 0.1053 0.1425 0.1368 0.1076
CWC 0.6472 1.8690 2.1105 0.5992 0.6215 1.9123 2.1197 0.6354
< PICP 0.9122 0.9225 0.9185 0.9132 0.9088 0.9232 0.9109 0.9128
5 PINRW 0.6014 0.6601 0.5897 0.4935 0.6159 0.5697 0.5803 0.4976
< CWC 3.6032 3.9552 3.5334 2.9569 3.6896 3.4135 3.4765 2.9815
= PICP 0.9440 0.9265 0.9251 0.9426 0.9211 0.9363 0.9388 0.9329
= 2 PINRW 0.1192 0.1551 0.1667 0.1163 0.1215 0.1852 0.2088 0.1137
é CWC 0.6634 0.8473 0.8943 0.6377 0.6682 1.0244 1.1438 0.6320
TABLE 4. Average and standard deviation of indices of 8 cases.
PICP PINRW CWC
MEAN STDEV MEAN STDEV MEAN STDEV
S-ANN 0.9691 0.0127 0.2247 0.3534 1.3482 0.1235
D-ANN 0.9533 0.0202 0.0206 0.0862 2.1206 0.5172
QR 0.9031 0.0283 0.1151 0.0145 1.3144 0.6933
ARIMA 0.9153 0.0048 0.5760 0.0050 3.4512 0.2996
H-BLSTM 0.9334 0.0075 0.1483 0.0320 0.8139 0.1782

H-BLSTM model improves the forecast performance with
better CWC index in all the cases and a maximum improve-
ment of 16.9%. Thus we can assert with ease that our BLSTM
AE is a worthy weapon to extract important unseen features
from time series. Talking about R-BLSTM model, while
expecting a better performance, we were bewildered in the
manner this model performed. The reason for this adverse
performance may be attributed to the fact that while maintain-
ing the attractive property of unimpeded gradient flow across
layers, the identity connection can interact unpredictably with
the BLSTM architecture, as the ‘‘fast’” state of the BLSTM
no longer reflects the network’s full representation of the data
at that point. Extracting the features using autoencoder and
then passing those features as input to H-BLSTM does not
suffer from this unpredictable interaction thus improved pre-
dictions compared to R-BLSTM. The ruinous unpredictable
interaction in R-BLSTM might be mitigated by passing the
same value both to the next layer as input and to the next
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time-step as the “fast” state [35]. However, given the remark-
able performance of the hybrid BLSTM model we were least
interested in improving the R-BLSTM model as more the
number of layers higher will be training time and thus less
efficient the model will be.

3) COMPARISON BETWEEN PROPOSED MODEL
AND TRADITIONAL MODELS
After experimental justification of the structural components
of the proposed model in the previous subsections, let us
now compare its performance with the traditional models.
The average indices for PICP, PINRW and CWC for the
different models are listed in Table 3. To evaluate the overall
performance, the mean and standard deviation values of the
indices of the eight cases are listed in Table 4.

(1) The results from Table 3 dictate that the proposed
model performs better in terms of coverage probability than
the statistical models but achieves comparatively lower PICP
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TABLE 5. Performance indices comparison in multi-step forecasting on Lake Huron datasets.

Mean Values of 10 Ti ONE-STEP TWO-STEP THREE-STEP
can values of 1D Times PICP PINRW CWC PICP PINRW CWC PICP PINRW CWC
- spring 0.9870 0.2321 1.3926 0.9838 0.2681 1.6085 0.9786 0.3103 1.8617
Z. summer 0.9582 0.2302 1.3814 0.9325 0.2725 1.6348 0.9291 0.3110 1.8660
5-) autumn 0.9517 0.2101 1.2606 0.9394 0.2778 1.6670 0.9355 0.3188 1.9131
winter 0.9832 0.2165 1.2991 0.9812 0.2540 1.5239 0.9787 0.2919 17515
spring 0.9407 0.1087 0.6472 0.9240 0.1624 0.9714 0.9182 0.2060 1.2338
~ summer 0.8727 0.1083 1.8690 0.8653 0.1648 2.9120 0.8534 0.2091 4.0754
o autumn 0.8618 0.1104 2.1105 0.8725 0.1736 2.8657 0.8828 0.2266 3.3458
winter 0.9289 0.1012 0.5992 0.9377 0.1525 0.9129 0.9404 0.1969 1.1786
= spring 0.9440 0.1192 0.6634 0.9378 0.1782 1.0128 0.9432 0.2393 1.3653
= summer 0.9265 0.1551 0.8473 0.9195 0.2187 1.2128 0.9211 0.2753 1.5613
=2 autumn 0.9251 0.1667 0.8943 0.9105 0.2298 1.2703 0.9155 0.2773 1.8489
i winter 0.9426 0.1163 0.6377 0.9335 0.1694 0.9513 0.9391 0.2083 1.1917
Mean Values of 10 Ti FOUR-STEP FIVE-STEP SIX-STEP
ean values of 1D Times PICP PINRW CWC PICP PINRW CWC PICP PINRW CWC
. spring 0.9701 0.3474 2.0844 0.9640 0.3669 22017 0.9626 0.3972 23831
z summer 0.9183 0.3505 2.1029 0.9219 03712 22274 0.9164 0.3947 23680
E autumn 0.9339 0.3616 2.1695 0.9275 0.3927 2.3564 0.9244 0.4154 2.4924
winter 0.9734 0.3263 1.9580 0.9766 0.3586 2.1513 0.9750 0.3775 2.2651
spring 0.9082 0.2418 1.4491 0.9015 0.2750 1.6492 0.8982 0.3031 3.8864
~ summer 0.8538 0.2467 47354 0.8570 0.2803 5.1761 0.8544 0.3078 5.8006
o autumn 0.8794 0.2678 4.0253 0.8832 0.3037 43914 0.8850 0.3348 47442
winter 0.9383 0.2376 1.4187 0.9367 0.2706 1.6127 0.9342 0.2986 1.7834
= spring 0.9385 0.2726 1.5806 0.9464 03168 1.8493 0.9236 0.3209 1.8872
| = summer 0.9239 0.3285 1.8868 0.9186 0.3601 2.0867 0.9119 0.3885 2.2605
= 3 autumn 0.9181 0.3219 1.8663 0.9124 0.3501 2.0246 0.9227 0.3918 2.2976
= winter 0.9369 0.2477 1.4260 0.9582 0.2987 1.7445 0.9459 0.3241 1.9251
values than the traditional LUBE models. However, the lower
PICP is not a downside as the average PICP for the proposed % -
model is 0.9334 as depicted from Table 4 which means 5
that the proposed model can guarantee the desirable PINC & 10
of 0.9. Moreover, while maintaining the PICP higher than E
S

PINC, the model shows the least deviation which manifests
its stability over those higher performing ANN models. The
lower PICP can be explained by Eq. 17 and Eq. 18 which
maintain a balance between PICP and width of interval. The
target is to obtain narrow intervals which can attain the PINC.

(2) The higher PICP index achieved by the ANN models
can be easily explained by the wider PIs produced by these
models as suggested by Table 3 and Table 4. Thus, collec-
tively it easy to manifest that H-BLSTM model wins over the
ANN models as it achieves significantly lower PINRW and
still contain the data points over the threshold value. Talking
about statistical models, the ARIMA model failed miserably
in terms of PINRW. However, QR wins over H-BLSTM in
generating narrow intervals but since it failed to meet the
PINC of 0.9 for those cases the lower PINRW gives no
advantage. Figure 6, gives a visual of the PIs of wind field
in Lake Huron in spring case clearly showing the quality PIs
produced by H-BLSTM.

(3) From Table 3 the H-BLSTM model appears to achieve
significantly better CWC values than other models with
exceptions in spring and winter cases where QR shows
marginal improvements over H-BLSTM. However, QR lose
to H-BLSTM with a notable difference in terms of average
CWC as shown in Table 4. Further the deviation in CWC for
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FIGURE 6. Comparison of PI in wind field in Lake Huron in spring.

QR is significant which is a measure of its high instability
in terms of CWC. Thus, H-BLSTM emerges to be victo-
rious over the other models in terms of CWC index with
an improvement of 39.6% over its best competitor S-ANN,
whereas an improvement of 38.1% and 76.4% over QR and
ARIMA methods respectively.
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(4) Apart from PI quality, the training efficiency of the
model is also of practical importance. To compare the effi-
ciency, we observe the average time taken for an experiment
repeated 10 times for one case for S-ANN and H-BLSTM
models on the same computing machine. The values obtained
are 139.8 s, and 789.6 s for S-ANN and H-BLSTM models.
A decline of 460% over S-ANN seems a little frustrating,
however, the absolute time of 789 s or 13 minutes is lesser
than the 30-min resolution of wind data. Thus the method is
practically feasible and competitive considering the massive
amount of year round data. Further, a certain expense of effi-
ciency paid off with high quality PIs which is more desirable
in real world application.

4) MULTI-STEP VALIDATION

This subsection evaluates the performance comparison of the
different models for multi-step prediction. The heretofore
results reveal S-ANN and QR to be better performing models
in their respective categories of LUBE models and statistical
models and therefore we adopt these two models as the
representative for multi-step comparisons. Experiments are
run for S-ANN, QR, H-BLSTM models adopting off shore
Lake Huron wind field data with a varying horizon from one
step to six steps. The average PICP, PINRW, and CWC values
are summarized in Table 5.
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™
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FIGURE 7. Multi-step wind speed interval prediction in “summer” case.

Achieving significantly better CWC index H-BLSTM
clearly outperforms S-ANN in all the seasons. The reason lies
in the narrow interval widths captured by H-BLSTM as com-
pared to S-ANN while keeping the PICP well above PINC.
While both QR and H-BLSTM models have almost identical
performance for spring and winter cases, however, for sum-
mer and autumn cases QR appears to be a mediocre performer
with PICP continuously under the PINC of 0.9 and thus lose
the competition significantly to H-BLSTM. Figure 7 shows
the variation of the CWC index with the increasing horizon
from one step to six steps, for the summer case. The green
line for H-BLSTM is at the bottom among the three lines
indicating H-BLTSM to be the best performer for all the
horizons.
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V. CONCLUSION

Enhancing the quality of wind forecasts may hugely influ-
ence the scheduling and operation of wind integrated power
systems. Aiming to obtain high quality prediction intervals
a hybrid model is proposed in this paper. The model utiliz-
ing the recently introduced RNN called BLSTM, constructs
quality intervals based on the high-quality principle of the
forecasts to have high coverage probability and narrow inter-
val widths. The model is initially benefitted by a BLSTM
autoencoder which extracts the important unseen features
from time series and pass it to the BLSTM model.

We examine the power of a BLSTM autoencoder over
residual BLSTM model in comparative experiments which
proved the BLSTM autoencoder to be a worthy feature
extractor from the time series data. Thus utilizing the
extracted features, the H-BLSTM model presents excellent
prediction performance in comparative experiments with tra-
ditional models like ANN based LUBE models as well as
statistical models like QR and bootstrap ARIMA models.

As a future work, different types of autoencoders such as
sparse autoencoder, denoising autoencoder etc will be tried
to preprocess wind speed data, and to improve the prediction
neural network, ensemble of BLSTM, GRU, or 1D-CNN will
be tried to model the wind speed, to check for the possibility
of improvements in the wind speed forecasts.
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