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ABSTRACT Aimed to automate the segmentation of organs at risk (OARs) in head and neck (H&N) cancer
radiotherapy, we develop a novel Prior Attention enhanced convolutional neural Network (PANet) based
Stepwise Refinement Segmentation Framework (SRSF) on full-size computed tomography (CT) images.
The SRSF is built with a multiscale segmentation concept, in which OARs are segmented from coarse to
fine. PANet is a pyramidal architecture with elements of inception block and prior attention. In this study,
the developed PANet based SRSF is applied for OARs segmentation in H&N radiotherapy. 139 CT series and
manually delineated contours of twenty-two OARs by experienced oncologists are collected from 139 H&N
patients for training and evaluating the proposed PANet based SRSF. The mean testing Dice similarity
coefficients (DSC) on 39 CT series range from 76.1±8.3% (left middle ear) to 91.9±1.4% (right mandible)
for large volume OARs(mean volume >1cc) while the corresponding ranges are 63.4±12.3%(chiasm) to
81.0±14.1% (right lens) for small and challenging OARs(mean volume ≤1cc). Furthermore, the proposed
method also achieved superior segmentations over reference methods on the MICCAI 2015 H&N dataset
with mean DSC of 95.6±0.7%, 81.3±4.0%, 77.6±4.5%, 77.5±4.6%, and 69.2±7.6%, on the mandible, left
submandibular, left and right optical nerve, and chiasm, respectively. The accurate segmentation of OARs is
obtained on both the self-collected testing data and public testing dataset, which implies that the proposed
method can be used as a practicable and efficient tool for automated OARs contouring in the H&N cancer
radiotherapy.

INDEX TERMS Artificial intelligence, image segmentation, supervised learning, image processing, organ
at risk, radiotherapy, head and neck cancer.
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I. INTRODUCTION
Organs at risk (OARs) delineation in computed tomogra-
phy (CT) is a critical step in radiotherapy planning to achieve
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organ dose sparing for minimizing radiation-induced toxic-
ity [1], [2]. Manual delineation is usually adopted in current
clinical practices, which is time-consuming and with large
inter- and intra-operator variabilities [3]. On the other hand,
the quality of OARs delineation directly influences the dose
distribution in OARs, especially for head and neck(H&N)
cancer radiotherapy, which involves many important OARs,
such as brain stem, optical nerves, pituitary, and so on. Amore
robust and accurate automatic OARs segmentation is clini-
cally desirable for H&N cancer radiotherapy [1].

In the past several decades, many automatic OARs seg-
mentationmethods, such as the watershed segmentation algo-
rithm [4], [5], active contour model-based algorithm [6], [7],
and region-growing based segmentation algorithm [8], [9]
were developed for H&N cancer radiotherapy. The most
widely studied and used traditional method is the atlas-based
automatic segmentation (ABAS) method, which is exten-
sively adopted in the commercial treatment planning sys-
tem for assisting contour delineation. ABAS method can
be divided into two categories: single atlas [10], [11] and
multiple atlases based methods [12]–[15]. The single atlas-
based method is sensitive to the selected atlas, which may
fail if there are great anatomical differences between the
target image and the atlas [16], [17]. In contrast, multiple
atlases based method has lower sensitivity to atlases, but also
lower efficiency with involving more registration procedures,
which may introduce more registration errors [15]. However,
due to the low soft-tissue contrast and inter-patient variances
in CT images, the ABAS method tends to low accuracy in
segmentation. Thus, more manual modification is usually
required to satisfy the clinical requirement in radiotherapy
planning.

Recently, the convolutional neural network (CNN) based
deep learning methods were considered as the state-of-the-
art approaches for the tasks of medical image segmentation.
Many deep learning researches had been conducted in H&N
OARs segmentation for radiotherapy [18]–[23]. Ibragimov
and Xing [19] applied a CNN in thirteen OARs segmentation
in CT images for H&N cancer radiotherapy, and achieved
higher accuracies in most OARs than conventional ABAS
methods, while reported poor segmentations in low-contrast
and small organs such as the optical nerves (ONs) and chiasm
with Dice similarity coefficient (DSC) of 63.9% and 37.4%,
respectively. Liang et al. [20] proposed a two-stages (detec-
tion and segmentation) method for eighteen H&N OARs
segmentation with DSC from 68.9% (ONs) to 93.4%(eyes),
which is superior to the results of fully convolutional neu-
ral network (FCN). However, the segmentation accuracies
were limited by only using 2D image information with
mean DSC <70% for ONs. Tong et al. [21] developed a
shape representation model to constrain the 3D FCN for
nine H&N OARs segmentation, which achieved mean DSC
from 58.5%(chiasm) to 93.7% (mandible). However, this
study is conducted on downsampled CT images with a voxel
size of 2mm×2mm× 2mm2× 2× 2mm3, which is not suit-
able for clinical usage [21]. Chen et al. [22] developed an

ensembleUNet [24] based recursive segmentation framework
for brain stem, eyes, ONs, and chiasm segmentation on mag-
netic resonance image, which performs superior to UNet,
even in small OARs with mean DSC of 80.1% and 71.1%
for ONs and chiasm. Yet, the delineations on MRI still need
to be extrapolated to CT via image registration for radio-
therapy treatment planning, which will introduce the regis-
tration uncertainties. Zhu et al. [23] constructed a squeeze
and excitation residual block based AnatomyNet for nine
OARs on whole volume CT images. The mean segmentation
DSC achieved byAnatomyNet ranges from 53.5%(chiasm) to
91.3%(mandible). However, the above methods still perform
poorly on low contrast and small OARs because of the blurred
boundary and limited image information. Furthermore, the
compatibility of the proposed methods on very large and
small OARS such as temporal lobe, pituitary, and chiasm
was not considered. Gao et al. [25] proposed a FocusNet to
balance large and small OARs segmentation. It achievedmore
accurate segmentation on small OARs with training OAR
specific model, which is time-consuming. Besides, FocusNet
used the prior information by simply concatenating feature
maps from OARs localization, which may weaken the model
stability.

In this study, twenty-two OARs for H&N cancer radio-
therapy are involved in the segmentation task, including four
single organs: brainstem, spinal cord, chiasm, and pituitary,
and nine paired organs: temporal lobes(TLs), eyes, optical
nerves(ONs), lens, middle ears(MEs), mastoids, mandibles,
temporal mandibular joints(TMJs), parotids. In the follow-
ing paragraph, the left and right parts of paired OAR are
expressed as OAR_l, OAR_r, respectively. To achieve fully
automatic accurate segmentation for large and small OARs
in full volume CT images for H&N cancer radiotherapy,
we developed and evaluated a novel Stepwise Refined Seg-
mentation Framework (SRSF), whose core model is a novel
Prior Attention enhanced Convolutional Neural Network
(PANet). The PANet based SRSF(SRSFPANet ) explores and
takes advantage of the inherently stable relative position
among OARs, and achieves OARs segmentation from coarse
to fine via three sequential segmentation steps: OAR-groups
segmentation (OGS), large/easy OARs segmentation (LOS),
and small/difficult OARs segmentation (SOS). To improve
the segmentation accuracy in each step, a novel combined
attention of prior and learnable spatial attention is applied
to a justified inception block for more accurate and effective
feature extraction in PANet.

II. METHODS AND MATERIALS
A. METHODS
In this study, a novel PANet based SRSF: SRSFPANet is devel-
oped for a large amount of OARs’ segmentation in common
large volume CT images. Twenty-two OARs to be delineated
are divided into three groups: Group A: brainstem and spinal
cord; Group B: mastoids, mandibles, temporal mandibular
joints, parotids, middle ears; Group C : temporal lobes, eyes,
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and adjacent small OARs (mean volume ≤1cc): lens, opti-
cal nerves, chiasm, and pituitary. As illustrated in Figure 1,
the SRSF includes three sequential segmentation steps: OGS,
LOS, and SOS. Firstly, the OGS model is trained on down-
sampled CT images with half-resolution for OARs group
segmentation. The label of each OARs group is obtained via
Equation 1. That means OARs in each group are regarded as
one individual target.

Labeli =


1 if voxel i is in group A
2 if voxel i is in group B
3 if voxel i is in group C
0 if voxel i not in any group

(1)

FIGURE 1. Overview of the SRSFPANet for H&N OARs segmentation. SRSF
includes three parts: OGS, LOS, and SOS in this study. The boxes marked
as ‘‘IPNet’’ and ‘‘PANet’’ represent the core models of SRSF.

Then, the corresponding regions of interest (ROIs) are local-
ized and prior probability maps are predicted based on the
rough OGS for LOS, respectively. Similarly, the small OARs
(if exist) in each group are also segmented as a whole
structure for ROI location and prior probability obtaining.
For LOS and SOS, each OAR except for the small OARs
group in LOS C is treated as an individual target.

For OGS, a justified inception pyramidal network(IPNet)
is constructed based on a classic pyramidal network:
UNet [24]. Compared with UNet, the core feature extractor of
IPNet is a justified inception block without the pooling path.
As shown in Fig.2, the justified inception block improves the
respective field and feature variety by using multiple convo-
lution paths with different kernel sizes. However, the pool-
ing path was removed to avoid the image feature losing.
Then, a convolution block is followed for combining the
multi kernels extracted feature maps. The convolution block
sequentially includes a convolution layer with a kernel size of
3×3×3, a batch normalization (BN) layer [26], and the ReLu
activation layer. With the justified inception block, the depth
of the pyramidal network also can be reduced to avoid image
feature losing, especially for small targets.

To constrain the network pays more attention to effective
and informative spatial regions, a Prior Attention enhanced
Inception (PAI) block is designed in the PANet. As shown
in Fig.3, the learnable PAI firstly adjusts feature maps in

FIGURE 2. The architecture of the proposed IPNet and its core blocks:
Inception and output block.

FIGURE 3. The architecture of the proposed PANet and its core blocks: PA
and PAI block. The inception and output blocks are the same as those
in IPNet.

spatial positions via prior attention (PA) and convolutional
spatial attention. Finally, all the attention refined featuremaps
are element-wise added with the unrefined feature maps to
avoid the gradient vanishing problem. In this study, prior
attention map Pi for depth i in PANet is generated by average
pooling. In this study, the probability maps predicted by
IPNet and PANet in OGS and LOS for group Cwere regarded
as the prior information for following OARs segmentation,
respectively.

Considering surface distance (SD) is more sensitive to the
shape changes than the dice coefficient. A combined loss of
Dice loss [27] and SD loss [28] is employed for segmentation
model training in this study, which is defined as:

Loss = LossDice + αLossSD (2)

LossDice = 1− 1/C
∑C

c=1

∑
i
PciG

c
i∑

i
(Pci )

2
+
∑
i
(Gci )

2 (3)

LossSD = 1/C
∑C

c=1

1
V

∑
i

(Pci − G
c
i )
2(Dci )

γ (4)
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TABLE 1. Hyperparameters of all models in the proposed.

where Pci and Gci represents the predicted SoftMax prob-
ability and gold standard label in voxel i of channel c,
respectively. Dci is the corresponding normalized distance
to the surface of the gold standard. γ and α are the
parameters to adjust the penalty of large surface error,
and the weight of LossSD, are set as 1 refer to [28].
Adam optimizer [29] is chosen for minimizing the loss
function.

The proposed SRSFPANet is implemented with the deep
learning library of Pytorch in Python 3.5. The model
training and validation are completed on two GPU cards
(NVIDIA GeForce GTX 1080) with 12GB memory. The
hyperparameters of models are illustrated in Table 1. The
maximum training epoch is set as 50 with an early stop
strategy (10 epochs without validation loss decrease) to avoid
overfitting.

B. MATERIALS
139 independent CT series from 139 nasopharyngeal cancer
patients with manual contours are collected in Sun Yat-Sen
Cancer Center, China. All contours are manually delin-
eated by an experienced oncologist and review and adjust
by the other experienced oncologist, which are regarded
as the gold standard in this study. Resolutions of the CT
images vary between 0.7mm∼1.2mm in the transverse plane.
The slice thickness is 3mm for all cases. The number of
slices ranges from 90 to 172 with an average of 111.
There are 15,443 slices extracted from the self-collected
dataset.

All the CT images are clipped to the range of
[WL-WW/2, WL+WW/2], and then normalized to the range
of [−1, 1], where WW and WL represent window width and
level, respectively. 100 of all 139 patients are randomly split
for training and the rest for testing. During training, 10% of
the training set is randomly divided into inner-validation data
to avoid overfitting. Translation, rotation, and noise addition
are applied for the training data augmentation. With the data
augmentation, there are 360 three dimensional images used
for the model training. To obtain the rough prediction proba-
bility on training data, five-fold cross-validation is employed
in the OGS and LOS C.

C. EVALUATION
DSC [30] and 95 percentiles of Hausdorff’s distance
(HD95) [31] are adopted as quantitative metrics for the seg-
mentation accuracy evaluation. Given two volumes G (gold
standard) and P (prediction or segmentation), and their cor-
responding contour points G = {g0, . . . . . . , gn} and P =
{p0, . . . . . . , pn}. The DSC and HD95 are defined as:

DSC = 2 (G ∩ P)
/
(G+ P) (5)

HD95 = max
95%

(h (G,P) , h(P,G)) (6)

where h (G,P) = max
g∈G

min
g∈P
‖g− p‖. DSC ranges from 0 to

1, corresponding to the worst and the best segmentation,
respectively. HD95 ranges from 0 to positive infinity. Higher
DSC and lower HD95 indicate more accurate segmentation.
In this study, the DSC and HD95 are calculated on a three-
dimensional basis for each patient. Besides, the volume cover
ratio (VCR) is defined as VCR = Vin

/
Vgt , where Vin and Vgt

are the covered volume within the extracted ROI and the gold
standard volume of the targeted OAR, respectively. VCR is
used for evaluating ROI localization accuracy. 100% of VCR
means the localized ROI can cover all target OARs.

Because of the large occupation in the Graphics Process-
ing Unit (GPU), general hardware conditions are difficult
to support the segmentation of twenty-two organs on the
original CT image directly. Thus, the proposed SRSFPANet
are compared with UNet and IPNet based SRSF(SRSFUNet
and SRSF IPNet ) in the evaluation study. The core models
used in the above three methods are illustrated in Table 2.
The Kolmogorov–Smirnov test is employed for normal

TABLE 2. The core model architecture used in SRSF UNet , SRSF IPNet and
SRSF PANet .
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TABLE 3. The ROI localization accuracies of OGS and LOS C in the
proposed SRSF PANet .

distribution testing(p > 0.05). Then, the Wilcoxon rank-sum
test and paired t-test are used for statistical significance anal-
ysis on the dataset with abnormal and normal distributions,
respectively. The statistical analysis is implemented in SPSS
19.0 software in this study. The significant difference was
defined by p < 0.05.

To compare the proposed method with other state of art
methods, SRSFPANet is also compared with five published
methods [23], [25], [32]–[34] on the MICCAI 2015 H&N
OARs segmentation dataset [32], denoted as MIC-
CAI’15 dataset (http://www.imagenglab.com/newsite/pddca/).
The MICCAI’15 dataset consists of 38 samples for train-
ing and 10 samples for testing. Five reference methods
include the champion method of MICCAI‘15 challenge [32]
and the other four state-of-art deep learning based meth-
ods [23], [25], [33], [34]. To transfer the proposed SRSFPANet
for this MICCAI’15 segmentation task, the original output
channels for TMJs are replaced for submandibular segmen-
tation in LOS of group B in this comparison study. Other
settings of the SRSFPANet are the same as those used in
experiments on the self collected dataset.

III. RESULTS
Table 3 illustrates the OARs group segmentation accuracy in
OGS and LOS C. The mean DSCs of large OARs groups in
OGS are >83%, and the corresponding HD95 are <4.8mm
with small variations. The mean DSC and HD95 of small
OARs in LOS C is 68.3±4.7% and 6.3±2.6mm, respectively.
Furthermore, 100% of VCR shows that all the OARs are
covered in the corresponding ROIs under the size settings.
As the results showed, the segmentation accuracies on OARs
groups and ROI size settings are enough for the SRSF in
this study. As the segmentation example illustrated in Fig.4,
under and over segmentations are observed in segmentation
results obtained by SRSFUNet , especially for mandible and
TLs. Benefiting from the larger respective field of the incep-
tion module, SRSF IPNet achieved better performance than
SRSFUNet , but still cannot achieve accurate segmentation
on very large organs and low contrast organs, such as TLs,
mastoids, and ONs. In comparison, SRSFPANet performed
superior over SRSFUNet and SRSF IPNet with the best agree-
ments to the physician delineated gold standard. On the small
OARs, such as ONs and chiasm, SRSFPANet also achieves the
best segmentation results.

Table 4 lists the testing results of SRSFUNet , SRSF IPNet ,
and SRSFPANet . For SRSFUNet , the mean DSCs are above

FIGURE 4. Segmentation comparisons among SRSF UNet , SRSF IPNet , and
SRSF PANet . Yellow arrows indicate the over and under segmentation. The
first and last columns are the original CT images and manual
segmentation.

70.0%with ranges from 72.8%(ME_r) to 89.1%(mandible_l)
on large volume OARs, and ranges from 51.2%(chiasm)
to 75.2%(ON_r) on small OARs. For almost all OARs,
SRSFUNet could achieve good results, except for very larger
volume OARs, such as TLs and mandibles. With the respec-
tive field improved, SRSF IPNet achieves significantly better
segmentation results on TL_l/r, parotid_l/r, ME_r, mastoid_l,
TNJ_l/r, lens_l/r, ON_l/r, chiasm and pituitary, and not sig-
nificantly different results on eye_l/r, ME_l, mastoid_r, but
significantly worse results on the spinal cord and TMJ_l/r.
Compared with SRSFUNet , SRSFPANet achieves significantly
better segmentation results on nineteen OARs, and not sig-
nificantly different results onME_l, TMJ_l/r. Compared with
SRSF IPNet , SRSFPANet also achieves significantly better seg-
mentation results on seventeen OARs, and not significantly
different result on five OARs (mastoid_l, mandible_l, lens_l,
ON_l, and pituitary). In the comparison of HD95, SRSF IPNet
achieves significantly superior performance over SRSFUNet
on ten of twenty-two OARs. Moreover, SRSFPANet achieves
significantly superior performance on thirteen and seven
OARs over SRSFUNet and SRSF IPNet , respectively. Over-
all, SRSF IPNet achieves performance improvement, while
SRSFPANet achieves the best results among all three methods.
Fig.5 depicts the boxplots of DSC and HD95 compar-

isons in testing data. We can observe that: 1)Among all
the three methods, SRSFPANet achieves best results on DSC
and HD95 overall; 2) Compared to SRSFUNet , SRSF IPNet
performs significantly superior for eleven OARs, but
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TABLE 4. DSC and HD95 comparisons of SRSF UNet , SRSF IPNet , and SRSF PANet on all twenty-two OARs in testing data. Bold indicates the best result or
significant differences.

significantly inferior on two OARs(ME_l and Mandible_r);
3) The worst results achieved by SRSFPANet on chiasm and
pituitary are worse than SRSFUNet and SRSF IPNet . In gen-
eral, the SRSFPANet achieves more accurate segmentation for
H&N OARs than SRSFUNet and SRSF IPNet .
Table 5 illustrates the segmentation comparison on the

MICCAI’15 dataset among our proposed method and five
state-of-art methods. In comparison, the proposed method
achieved comparative and slightly superior(mandible) seg-
mentation accuracy on large volume OARs. For small OARs,
the most accurate segmentations were achieved by the pro-
posed method with means DSC of 77.6±4.5%, 77.5±4.6%,
and 69.2±7.6%, on the ON_l, ON_r, and chiasm, respec-
tively. It should be noted that Zhu, et al. [23] used an addi-
tional training dataset in their study. The segmentation results
of the public dataset demonstrated that: (1) the segmentation
accuracy of SRSFPANet is superior over these reference meth-
ods; (2) the SRSF and PANet both can be easily transferred
for different OARs segmentation scenarios.

IV. DISCUSSIONS
This study developed and validated a novel PANet based
SRSF: SRSFPANet for the automatic segmentation of OARs
in CT images for H&N cancer radiotherapy. SRSF is pro-
posed to alleviate the volume imbalance in multiple target
segmentation, especially for tiny targets, such as the optical
nerves, chiasm, and pituitary in this study. Excluding more
background regions is a direct and efficient approach to solve
this issue. Thus, we achieve the multiple OARs segmentation
stepwise via SRSF. The primary step is used for achieving
rough segmentation, OARs localization, and prior attention,

which is useful for the next segmentation refinement in dif-
ferent aspects. Thus, the proposed SRSF is compatible with
different basic networks, such as PANet, IPNet, and UNet for
multi-targets segmentation. Furthermore, we propose prior
attention in PANet to utilize the predicted confidence prob-
ability map in previous segmentation. To improve the seg-
mentation accuracy on small organs, a justified inception
block is employed for feature extraction on a larger scale with
the pooling operation reduced, which is employed in IPNet
and PANet.

The quantitative and qualitative evaluation results(Table 4,
Fig. 5, Table 5) achieved in 39 testing cases and MICCAI’15
public datasets have demonstrated the effectiveness of the
proposed method. Moreover, compared with SRSFUNet and
SRSF IPNet , the proposed SRSFPANet achieved significantly
better performance on most of the OARs. Besides, the mean-
time cost in segmenting all twenty-two OARs for a new case
is about 30s, which can effectively support clinical delin-
eation work.

As the quantitative and qualitative evaluation results illus-
trated in Table 5 and Fig. 5, we can observe that: (1) the
segmentation accuracies achieved by SRSFUNet are inferior
than SRSF IPNet and SRSFPANet , especially for very large
OARs(TLs) and small OARs(ONs, and chiasm). There are
two reasons: shallower network and larger respective fields
in IPNet and PANet. To avoid the feature missing for small
OARs segmentation, we reduce the pooling operation. Thus,
the network is shallower, which will weaken the capability
of networks likes UNet, but will not affect the IPNet and
PANet with a larger respective field. The larger respective
field benefited from the inception block helps IPNet and
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TABLE 5. DSC comparisons among published methods and SRSF PANet on MICCAI 2015 H&N dataset. Bold indicates the best result.

FIGURE 5. Quantitative comparisons in DSC and HD95 among SRSFUNet , SRSFIPNet , and SRSFPANet . The boxes run from the 25th to 75th
percentile; the two ends of the whiskers represent the 10th to 90th percentile, the horizontal line and cross symbol in the box represent the
median, mean values, respectively. The ‘∗’ and ‘-’ symbol above each group represents the statistically significant differences exist or not exist
between the two approaches.

PANet extracting more helpful global features for segmen-
tation. In this way, the IPNet and PANet achieved a balance
between pooling operation andmore global features. (2) Even
with the same respective field, the SRSFPANet still achieves
superior segmentation performance over SRSF IPNet , which
is benefited from the combination mechanism of prior atten-
tion and convolutional spatial attention. Firstly, the proposed
SRSF provides a practicable way to utilize the information
obtained from previous segmentation steps. It is not just for

ROI localization, also can be used as prior attention in PANet.
Thus, the prior attention from OGS and LOS for group C can
provide additional glob information, which involved the rela-
tionship among OARs. Secondly, the learnable convolutional
spatial attention can achieve case-specific spatial adjustment
on feature maps. Furthermore, the learnable spatial atten-
tion is soft, which can adjust the hard attention from prior.
Therefore, the proposed SRSFPANet is reliable in theory and
practice.
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Moreover, as shown in Table 5, Wang’s method [34]
achieved the best performance on the brain stem and
mandible but performed poorly on parotid. The reason is that
they used a shape regression model constructed based on the
shape correspondences detected across all atlases. However,
the shape variety of parotid is much larger than the brain
stem and mandible. Due to the larger error of shape corre-
spondence detection, the segmentation accuracy was reduced
on parotid. Besides, Zhu’s model [23] achieved the best
performance on the left parotid and right submandibular but
performed particularly poorly on the brain stem and chiasm.
With trained on an additional dataset, the segmentation accu-
racy was improved on the brain stem and chiasm, but reduced
on the mandible and optical nerves. These results imply the
instability of Zhu’s method, which achieved multiple OARs
on whole CT images via a single model. In comparison,
the proposed SRSFPANet is more accurate and stable, which
are benefit from the three innovations: SRSF, the justified
inception block with a larger receptive field, and the prior
attention mechanism.

However, this study also has several limitations. 1) as
the results illustrated in Fig.3, the worst results achieved by
SRSFPANet on chiasm and pituitary are worse than SRSFUNet
and SRSF IPNet , although SRSFPANet performed superior in
most of the cases. Considering optical chiasm and pituitary
are very small, which usually appear in only one to two CT
slices, the prior information tends to misguide the further
segmentation. Thus, it is believed that the proposed model
is still sensitive to the prior for small target segmentation
to some extent. 2) PANet training relies on the prior prob-
ability map, which is from the previous segmentation step.
To improve the model stability, the prior probability maps
of all training data were obtained via inner five-fold cross-
validation. Thus, the training procedure is more complex than
the general model. In this study, the time cost for model
training is about 70 hours. In future work, other fast con-
ventional approaches may be employed for obtaining prior
to avoid such a disadvantage. 3) the inception block is not
the only method for achieving a larger receptive field. For
example, the dilated convolution also can achieve a similar
multi-scale effect as the inception block with fewer parame-
ters. However, the gridding problem in dilation convolution
is adverse to small target segmentation. Thus, more feasible
revised approaches, such as the receptive field block, which
combined the ideal of inception block and dilated convolu-
tion, are also worth applying to similar segmentation tasks in
the future work. 4) this study only considers the segmentation
of OARs on H&N in non-contrast CT images. We plan to
apply the proposed method for more segmentation appli-
cations to assist radiotherapy treatment planning in future
works. 5) the size of the evaluation dataset is limited. We are
planning to evaluate the proposed method on more clinical
data on different anatomic sites to provide more clinical
support.

In conclusion, an SRSF framework is developed for
the automatically sequential segmentation of H&N OARs.

Based on the SRSF, a novel PANet is proposed for more
accurate segmentation by balancing the respective felid and
pooling operation and comminating the soft spatial attention
and hard prior attention. The good evaluation results achieved
by SRSFPANet on independent and public testing datasets
both demonstrated that the proposed SRSFPANet could be a
potential tool for automatic OARs contouring in the H&N
cancer radiotherapy.
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