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ABSTRACT Although excessive proposals using traditional sliding-window methods or prevailing
anchor-based techniques have been proposed to deal with deep learning-based pedestrian detection, it is still
a promising yet challenging problem. In this paper, we propose a precise, flexible and thoroughly anchor-
free, as well as proposal-free framework named Pedestrian-as-Points Network (PP-Net) for pedestrian
detection. Specifically, we model a pedestrian as a single point, i.e., the center point of the instance, and
predict the pedestrian scale at each detected center point. In order to achieve higher accuracy, we build a
pyramid-like structure based on the backbone as a feature extractor to aggregate multi-level information.
In addition, we construct a deep guidance module (DGM) at the top of the backbone, so that the higher-level
information can be captured in the process of building a feature pyramid network (FPN) to avoid the dilution
of high-level information on the top-down pathway. We further design a feature fusion unit (FFU) to fuse
the fine-level features well with the coarse-level semantic information from the top-down pathway. With
the only post-processing non-maximum suppression (NMS), we achieve better performance than many
state-of-the-arts methods on the challenging pedestrian detection datasets.

INDEX TERMS Pedestrian detection, anchor-free, CNNs, feature pyramid network, deep semantic

information.

I. INTRODUCTION

Deep neural networks (DNNs) based on the fully convo-
lutional neural network have showed great improvements
over systems relying on hand-crafted features [1]-[3] on
benchmark tasks. With the rapid progress in DNNs research
in recent years, it has dramatically facilitated the develop-
ment of computer vision, such as object detection [4]-[6],
image retrieval [7]-[9], scene recognition [10], [11], semantic
segmentation [12]-[14], image classification and inpainting
[15], [16], and so on. In particular, the state-of-the-art works
in object detection continues to grow, including face recogni-
tion [17]-[19], pedestrian detection [20]-[22], vehicle detec-
tion [23], [24], etc. Pedestrians are one of main participants
in the public transportation system, so pedestrian detection
helps to realize an efficient and safe system. In the past few
years, the widely-used anchor-based methods [25]-[29] have
been dominant and have achieved tremendous progress.
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Unfortunately, there are several drawbacks of current
anchor-based approaches. First, anchor-based methods intro-
duce additional hyper-parameters of design choices. Usually
an extensive number of anchors, i.e., bounding boxes of the
potential object are required to ensure a sufficiently high
recall rate and a high Intersection over Union (IoU) rate
with the ground-truth objects. Moreover, detectors encounter
difficulties to manually design object candidates with large
variations of size and aspect ratio of each anchor box. Second,
the preset anchor boxes hinder the generality of detectors,
that is, the designed choice based on a specific dataset is not
always applicable to other datasets. Last but not least, another
point that cannot be ignored is most of these anchor boxes are
labelled as negative samples during training, leading to the
imbalance between positive and negative samples.

To this end, anchor-free methods have been gradually
increasing. Keypoint-based object detection [30]-[32] is a
sort of methods that generate pedestrian bounding boxes by
detecting and grouping their keypoints. CSP [33] detector,
the state-of-the-art among them, uses the vanilla ResNet-50
network [34] to extract multi-level feature maps and then
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concatenate them for predicting the center heatmaps and
corresponding scale maps, i.e., detects the central points and
size of the bounding boxes. CSP detector has achieved bril-
liant accuracy on challenging CityPersons [35] with a simple
design that eliminates the need of anchor boxes.

Unfortunately, when look closely at the operations of CSP
detector, we find that the detection performance can be further
improved. Specifically, after conduct feature extraction, the
author of CSP simply fuses the multi-scale feature maps,
which are from different stages of the backbone network,
into a single one. The principle lays here is that shallower
feature maps contain more accurate localization information,
while the deeper ones are able to provide more semantic
information as the receptive field has enlarged. However,
large semantic gaps between feature maps from different
depths are introduced by in-network feature hierarchy. On
account of this inherent property, concatenating multi-depth
feature maps directly harms their representational capacity
for subsequent detection.

A large number of structures [36]-[38], which are helpful
for alleviating the above problem, have been proposed. In that
U-shape based structures [39], [40] can construct enriched
feature maps via building top-down pathways upon basic
network, they get a lot of attention. Thus, in this paper, we
intuitively leverage the pyramidal shape of a ConvNet’s fea-
ture hierarchy by creating a feature pyramid network (FPN)
[40], where each level has strong semantic and localiza-
tion information with regardless of scale. More specifically,
we depend on the architecture that aggregates the features
with low-resolution but strong semantic information and the
ones with high-resolution yet weak semantic information
through a top-down pathway and lateral connection. Taking
a step further, different from the standard FPN, we inves-
tigate how to preferably solve the problem of multi-scale
feature fusion when building each pyramidal level. In general,
we incorporate a feature fusion unit (FFU) into our model to
fuse features with different resolutions.

There is still a large room for refining existing feature pyra-
mid network. First of all, as pointed out in [41], the seman-
tic information captured by deep layers will be gradually
diluted on the top-down pathway of the FPN architecture.
Second, as mentioned in [42], the size of receptive field of a
convolutional neural network (CNN) fails to be proportional
to its layer depth. There are several kinds of approaches
aim at addressing aforementioned problems, such as recur-
rently refining feature maps [43], [44], drawing attention
mechanisms [45], [46] into FPN architectures, etc.

Inspired by PoolNet [41], we improve the vanilla fea-
ture pyramid network. We propose to adopt a deep
guidance module (DGM) upon the bottom-up pathway,
i.e., adding a residual unit on the top of the bottom-up
pathway. Profiting from this operation, a higher-level fea-
ture map I with abundant semantic information can be
obtained. Then, the captured information is transferred to
feature maps at all pyramid levels by fusing I with them,
respectively. Specifically, the deeper feature map contains
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extensive semantic information, thus alleviating the sparsity
in top-down pathway of FPN.

In summary, the main contributions of this work can be
highlighted as follows:

(1) We construct a structure in the shape of existing FPN
based on ResNet-50 [34] network to obtain multi-scale
features, which means that we can detect pedestrians in
various scales. Then our newly-proposed feature fusion
unit (FFU) together with the built feature pyramid net-
work (FPN) can solve the problem of ignoring the
large semantic gap between multi-layer features when
directly fusing them.

(2) Based on the U-shaped architecture, we further build
a novel deep guidance module (DGM) upon the
bottom-up pathway, which aims to provide the location
information of potential objects for layers at differ-
ent feature levels. Therefore, we tackle the dilemma
of information sparsity by expanding the role of deep
features in U-shape based architectures.

(3) We develop a novel and unique framework called
Pedestrian-as-Points Network (PP-Net) for real-time
pedestrian detection, which can effectively utilize the
semantic information of images at low resolution along
with details at high-resolution.

(4) The anchor-free method achieves higher performance
compared with state-of-the-art methods on CityPersons
[35] and Caltech [47] datasets.

Il. RELATED WORKS
Object detection has been extensively studied over the past
few decades, and great progress has been made with the
emergence of deep convolutional neural networks. Object
detection algorithms can be classified into anchor-based and
anchor-free detectors.

A. ANCHOR-BASED DETECTORS

Anchor-based detectors inherit and further expand the ideas
from traditional sliding-window strategy [22] and proposal
based detectors such as Fast R-CNN [47]. Pedestrian detec-
tion has been significantly improved due to the use of dense
predefined anchors with preset scales and aspect ratios.
Modern CNN-based detectors are categorized into two-stage
and one-stage detectors. Within the two-stage framework,
classical Faster R-CNN [26] utilizes an anchor mechanism
in the branch dedicated to generating proposals, i.e., Region
Proposal Network (RPN). Afterwards, dozens of methods
[27], [48]-[50] have been developed.

Following Faster R-CNN, Mask R-CNN [48] adds a mask
branch parallel to the branch of classification and regression
for performing mask predicting. For the sake of prevent-
ing Faster R-CNN from heavy region-wise CNN compu-
tational cost, R-FCN [49] proposed efficient region-wise
fully convolutions without accuracy loss. Cascade R-CNN
[27] extends the architecture of Faster R-CNN to multiple
stages. [llumination-aware faster R-CNN [50] addresses the
problem of fusing color and thermal modalities for detecting
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multispectral images. In the one-stage stream, a considerable
number of approaches [51]-[55] which use anchor mech-
anism are proposed after SSD [25]. They aim at improv-
ing performance, including multi-stage refinement [51],
[52], adaptive anchors [53] and loss function improvement
[54], [55].

B. ANCHOR-FREE DETECTORS

Most recently, a lot of papers about anchor-free [56]-[60]
have published, which has a great momentum of transforming
the period of anchor-based detector.

CornerNet [56] predicts two groups of corners of bounding
box, i.e., top-left and bottom-right points and then divides
the corners belonging to the same object into a group based
on the distance between the corner embedding by Grouping
Corners, which is inspired by the Associative Embedding
method [57]. Corner pooling is used for better localizing
the corners. CornerNet-Lite [58] is a combination of two
efficient variants of the CornerNet and thus improves effi-
ciency without sacrificing accuracy. Compared to CornerNet,
the ExtremeNet [59] detects four extreme points and central
points of bounding box instead of corners. More specifically,
top, left, bottom and right points are predicted and then
grouped to form the final detected bounding box. FCOS
[60] predicts the bounding boxes by making full use of the
advantages of all points in a ground truth bounding box. And
the low-quality detected bounding boxes are suppressed by
the proposed “‘center-ness’ branch. The detector considers
location of object as training sample rather than anchor box,
which is same as semantic segmentation.

Following anchor-free pipeline, our work aims to predict
the precise center points and the corresponding pedestrian
scales. We try to explore whether the results of such a simple
method of localizing pedestrians by simply detecting the
center points can be more competitive than other complex
methods.

C. FEATURE PYRAMID NETWORKS

Feature pyramid constructing module are applied many com-
puter vision applications required multiscale processing as
the basis of solutions. Furthermore, the feature pyramid
representation module can be easily modified and insert
into most deep neural networks based detectors. SPPNet
[61] eliminates ConvNet’s requirements for fixed input by
introducing spatial pyramid pooling layer. Recently, PFPNet
[62] extends the idea to build multiple parallel SPPNets
for generating feature pools with different sizes, then the
elements in the feature pool are rescaled to a uniform size
and their context information aggregated to generate each
level of the final feature pyramid. M2det [63] employs mul-
tiple U-shaped modules after a backbone model and thus
build stronger feature pyramid representations. NAS-FPN
[64] introduces the Neural Architecture Search (NAS) mech-
anism and discovers the fresh feature pyramid architecture
in a novel scalable search space covering all cross-scale
connections.
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D. PEDESTRIAN DETECTION

As a critical part of general object detection, pedestrian
detection receives considerable interests. Nowadays, the field
of pedestrian detection is almost dominated by deep learning
[28], [65]-[67].

A jointly learning framework is proposed by [65]. In
addition, [63] adds extra features to improve performance.
A cascaded prediction is performed by [28] to stimulate the
potential of one-stage detectors. [66], [67] focus on study-
ing and overcoming the impact of occlusion. [66] is the
first one operates full and visually body of a pedestrian
regression simultaneously. Reference [67] employs attention
mechanism into framework for enhancing the features of
pedestrian.

In our work, we aim at putting up with multi-scale
problems of pedestrian detection by refining feature pyramid
network [68]-[71]. Reference [68] enhances the semantic
information of low-level features by applying multiple con-
volution operations and increases resolution of high-level
features by getting rid of pooling layer. Reference [69] applies
feature pyramid network, equipped with refined attention
modules to strengthen the representation ability of features.
Reference [70] enhances feature pyramid network by intro-
ducing a cross-scale feature aggregation module. In [71], the
structure of convolution neural network is summarized.

lll. PROPOSED METHOD

As is known to all, high-level features with rich semantic
information help to discover specific locations of objects.
Meanwhile, low- and mid-level features with plenty of loca-
tion information are also essential for refining the coarse
features extracted from deep layers. Based on the above
knowledge, we propose in this section a pyramid-like network
named Pedestrian-as-Points Network (PP-Net) as illustrated
in Fig. 1, which has two complementary modules that can
detect the exact positions of pedestrians and simultaneously
predict their sizes.

A. OVERALL PIPELINE

We build our architecture in a one-stage manner. It takes
advantages of the widely-adopted feature pyramid network
(FPN) [40], which is a kind of classic U-shaped architectures
designed in a bottom-up and top-down manner for finely
fusing multi-level features as shown in Fig. 4a.

For the bottom-up pathway, we adopt ResNet-50 [34] as
the forward baseline network unless otherwise stated, which
consists of five stages made up with Conv layers (convo-
lutional layer followed by batch normalization and ReLU).
It is worth noting that feature tensors with the same scale
belong to a network stage. It is natural for us to choose the last
feature map of each stage as our reference set of feature maps,
which we will enrich to generate our pyramid-like structure,
because the feature map with the strongest representation
ought to exist in the deepest layer of each stage. The output
feature maps of different stages in the forward streamline
are down-sampled by 2, 4, 8, 16, 32 w.r.t. the input image.
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FIGURE 1. The overview of our proposed framework named Pedestrian-as-Points Network (PP-Net). PP-Net models a pedestrian as a single
point, i.e., the center point of the instance, and predicts the pedestrian scale at each detected center point. A pyramid-like structure is built to
aggregate multi-level information. The deep guidance module at the top of the backbone can provide the higher-level information, thereby
avoiding the dilution of high-level information on the top-down pathway. The proposed feature fusion unit fuses fine-level features well with

coarse-level semantic information from the top-down pathway.

In practice, the output of stage 5 is kept as 1/16 of the input
image size by utilizing the dilated convolutions. We denote
the last feature map of each stage as C;, where i corresponds to
the stage within the backbone hierarchy. Concretely, the last
feature maps of stage 2, 3, 4 and 5 are denoted as Cp, Cs,
C4 and Cs, in which the shallower feature maps contain
more accurate localization information, while the deeper ones
can provide more semantic information with larger receptive
fields. We do not include stage 1 into the building of pyramid
due to its large memory footprint.

As shown in the Fig. 1, we add a deep guidance mod-
ule (DGM) to address the feature dilution on the top of the
bottom-up pathway. More specifically, we explicitly trans-
form the guidance information from DGM to the layers at
different feature levels by merging the high-level information
extracted by DGM with feature maps at each feature level.
After then, we actually go one step further and introduce
a feature fusion unit (FFU) to ensure that feature maps at
different resolutions can be concatenated seamlessly.

The features with higher resolution are generated in
top-down pathway via up-sampling spatially coarser yet
semantically stronger feature maps from higher pyramid levels.
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For the efficient design of FPN, we aim to make the pyramid
pathways lightweight by reducing their channel capacity.
To be specific, the channel capacity which is significantly
lower than the number of channels of the final stage in the
backbone pathway is used, yielding the computationally-
effective multiple pathways because the computation cost of a
weight layer scales quadratically with its channel dimensions.

In detail, we first attach a 1 x 1 convolutional layer on Cs
to produce the coarsest resolution map Cs’. Here, the 1 x 1
convolutional layer is used for reduce channel dimensions to
fixed number, denoted as d (d = 256 in the paper). Then,
the feature maps Cs’ and Cg (output of GMM) are fed into
FFU, creating a feature map P5. Then we reduce the number
of channels of C4 to d via a 1 x 1 convolutional layer and
feed the output along with Ps and Cg into FFU for generating
P4. This process is iterated until the finest resolution map P>
is obtained. It is noteworthy that if the resolution among the
inputs of FFU is different, we are going to rescale the coarser
ones by apply up-sampling rate 2 on them through bilinear
interpolation. Last but not least, the number of channels is
reduced to d by applying 1 x 1 convolution operation before
sent into the feature fusion module.
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Finally, we append a detection head, which is crucial in
the whole detection system, to the generated feature map P>
to parse it into the final detection results. The structure of the
head is shown in the Fig.1. First, the number of channels is
reduced to 256 by a 3 x 3 convolutional layer. Then, the cen-
ter heatmap and scale map are produced separately via two
parallel 1 x 1 convolutional layers. The predicted heatmaps
are with the same size as the concatenated feature maps. Note
that more complicated detection head like [52], [55] can be
explored to further improve the detection performance, but it
beyond the scope of this work.

The following two reasons can explain why anchor-free
detection is superior to anchor-based one, i.e., why detecting
centers is more effective than bounding box proposals. First,
from CornerNet [56] we can know that directly predicting the
center points is a more efficient way for densely discretiz-
ing the space of boxes, because O (thz) possible anchor
boxes can be represented by only O(wh) centers. Second,
the anchor-free way has a smoother prediction, which can
empirically improve the generalization performance of the
network. Third, the anchor-free method avoids a large amount
of IOU calculation between GT boxes and anchor boxes,
so that the training process takes up less memory.

Subsequently, we will describe the architectures of the two
modules mentioned above, namely Deep Guidance Module
(DGM) (Sec.3.2) and Feature Fusion Unit (FFU) (Sec.3.3),
and describe their functions in detail.

B. DEEP GUIDANCE MODULE

There are two main noticeable issues caused by constructing
top-down pathway of U-shaped structure based on the
bottom-up backbone. One of them is the dilution of the
deep semantic information in the top-down transportation
way. The other is the misalignment between receptive field
in practice and theory. In particular, it is not sufficient for
the small virtual receptive field of the CNNs to cover the
entire input images. To this end, we propose a deep guidance
module (DGM) for providing deeper and richer information,
which is in a plug-and-play manner.

As shown in Fig.2 (c), the structure of the DGM is adapted
from the residual stage of original ResNet. Inspired by DetNet
[72], our proposed deep guidance module consists of a dilated
bottleneck with 1 x 1 convolution projection and two sub-
sequent dilated bottleneck identical connection. To be more
specific, as shown in the Fig.2a and Fig.2b, we apply bot-
tleneck with dilation as a basic unit of DGM for efficiently
exploring deep semantic information while enlarging the
receptive filed without changing fixed spatial size of feature
map after stage 5.

C. FEATURE FUSION UNIT

In order to fuse feature maps with different resolutions for
constructing feature pyramid structure, we propose a simple
while effective feature fusion module. As shown in Fig.3,
the inputs of feature fusion module are three feature maps
with different scales. More precisely, they represent the
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FIGURE 2. (a) The overview of Dilated bottleneck, (b) The overall structure
of Dilated bottleneck with 1 x 1 convolution projection, (c) Architecture of
our proposed deep guidance module (DGM), where A denotes Dilated
bottleneck and B is Dilated bottleneck with 1 x 1 convolution projection.
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FIGURE 3. The whole architecture of developed feature fusion unit (FFU).

feature maps fused to build a pyramidal level in the top-down
pathway of our new structure, i.e., feature maps Fy,F, and F3
with sizes C;yxH; x Wi, CoxHy x Wy and C3xHjz x Ws.
Note that F3 is with doubled spatial size of F| and F,. In other
words, the resolution of F; is equal to the one of feature
map F,.

For F(F>), we first double the resolution of F|(F;) via a
deconvolution layer, leading to the same size as feature map

F3. Then a L2-normalization layer is used to rescale
the norm of the resized feature map for following fusion
operation.

As for F3, since there is no necessity of changing spatial
size, we merely carry out the L2-normalization for adjusting
the norm to the same as the one of processed F.
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FIGURE 4. lllustration of generation process of bounding box. The green
dots denote the central point of each pedestrian. The green line h
represents the height of the pedestrian. The green dotted line w is the
corresponding width of the pedestrian. The orange box is the final
bounding box.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we first describe the details of training the
framework. Then, we introduce the implementation details,
the used datasets and the evaluation metrics of the experi-
ment. Next, we exhibit the experiment results and the com-
parison among previous state-of-the-art methods. Finally, we
demonstrate the effectiveness of each module we proposed
through a series of ablation studies.

A. TRAINING

We can generate ground truth map of center and scale with
the bounding box annotations. For the center ground truth,
if a location is the center point of a pedestrian, it is defined as
positive, and vice versa.

As for scale, it can be defined as the height and width
of pedestrians. Following the CSP detector [33], we only
predict the height of each pedestrian, and then the bounding
box can be obtained by the preset aspect ratio because we
define that the high-quality ground-truth bounding boxes are
automatically generated by a uniform aspect ratio of 0.41.
Additionally, the values of log(h;) corresponding to the
k-th object are allocated to the k-th positive locations and the
negatives within a radius 2 of the positives (for alleviating
ambiguity), while all other locations are assigned as zero.
Specifically, the framework directly predicts a 1D vector,
i.e., the height information of the object plus a class category
at each positive location on a level of feature maps. As shown
in Fig. 4, the four sides of a bounding box (shown as orange
box in the figure) can be obtained through 1D vector (shown
as vertical green solid line).

We adopt the classification loss in [31] which can be
formulated as:

LY IO
Log=—2 2,7 >0 ei(1=pplog@p) (1)

where
~ ij» if yij=1
P = Dij if Yij ' )
1 —pjj, otherwise,
1, if vii=1
= , Ti= 3)
(1-My)”, otherwise,
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In the equation, p;; = 1 if the center point of object pedes-
trian is located in the coordinate (i, j) while otherwise 0. And
vij € {0, 1} denote the ground truth label. In addition, M is
the mask map and is calculated by using a 2D Gaussian mask
G(-), which is proposed for relieving the ambiguity of nega-
tive samples surrounding the positive ones, it is formulated as
in CSP detector [33].

On the whole, the final loss function is:

L = AcisLeis + )\regLreg + AoLoffset 4

Here, Lieg and Loffser are both adapted from the smooth
L1 loss function.

B. EXPERIMENTAL SETUP

1) IMPLEMENTATION DETAILS

Our proposed framework is implemented in Keras [73].
Totally, our network is trained for 150 epochs in total and the
optimizer is Adam [74] with an initial learning rate of 2e-4.
By default, the backbone is pre-trained ResNet-50 and the
rest modules are randomly initialized. During the test phase,
we extract the results from the models trained with 50 to
150 epochs respectively unless otherwise stated.

2) DATASETS

For verifying the availability of PP-Net, we use two challeng-
ing datasets CityPersons [35] and Caltech [47], which can
provide central point annotations and aspect ratios of bound-
ing boxes. CityPersons contains 2975 images for training
and 500 images for testing, to demonstrate the performance
of proposed framework. The images of CityPersons are in
extremely large sizes and the types of occlusions are many
and varied. Caltech consists of 42782 training images and
4024 testing images, which are the frames extracted from a
2.5-hour auto-driving video.

Compared to other datasets, the annotations of these two
selected datasets highly fit for our method as they contain
normalized aspect ratio and central body line annotation.

Before training, some methods of data augment are used,
such as random brightness, random crop and color jittering.

3) METRICS

Follow the CSP detector [33], we choose the log-average miss
rate against false positives per image (MR-FPPI) (ranging
in [10_2, 100]), which we denote as MR, for evaluating the
detection results. The calculation of the miss rate can be seen
in [22]. Also, we use average precision (AP) for supplement.
Note that the higher the value of average precision (AP),
the higher the accuracy of the pedestrian detected by the
detector. While the value of miss rate (MR) is about low,
which means that the number of pedestrians missed by the
detectors is less.

C. COMPARISON WITH STATS-OF-THE-ART METHODS
1) CityPersons
In this section, we compare our proposed framework with

several previous state-of-the-art methods in CityPersons
dataset [35], including FRCNN [35], FRCNN+Seg [35],
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TABLE 1. Comparison with state-of-the-art methods on CityPersons.

Miss Rate
Method AP
Reasonable Heavy

FRCNN+Seg[35] 14.80% - 93.80%

TLL+MRF[77] 14.40% 52.0% -
RepLoss[76] 13.20% 56.9% 94.70%
AdaptiveNMS[78] 12.90% 56.4% 95.30%

OR-CNN[75] 12.80% 55.7% -

PBM+Mask[79] 12.30% 53.3% -
DCS+NMSJ[6] 11.70% - 95.20%
CSP[33] 14.02% 56.9% 90.47%
PP-Net 12.12% 52.9% 93.78%

]
FRCNN+Seg
Csp
L]
RepLoss ¢
DCSHNMS
(]
PP-Net 0
AdaptiveNMS
1 1 1 1 1 J
0.91 0.92 0.93 0.94 0.95 0.96
AP

FIGURE 5. Comparison with the state of the arts on CityPersons. MR
denotes miss rate on reasonable set.

OR-CNN [75], RepLoss [76], TLL+MRF [77] and CSP
detector [33]. For fair comparisons, the final detection results
of aforementioned methods are directly provided by authors
except our closest competitor CSP detector, i.e., CSP detector
is re-implemented by the original code released by the authors
with Keras [73]. In the table I, it is can be found that our pro-
posed method (denoted as PP-Net in the table) outperforms
most methods above, especially main comparison object CSP
detector. In other words, we reach a competitive performance
of pedestrian detection in the challenging dataset in spite of
the various occlusions and scales.

Moreover, as illustrated in Fig.5, form the horizontal axis,
PP-Net performs barely satisfactory. Fortunately, it is close
to the number one DCS+NMS [6]. That is to say, the AP
of PP-Net is just passable. From the vertical axis, PP-Net
performs well and is superior to most methods.

In brief, our proposed PP-Net combines accuracy with
strong object capture capability.

Several qualitative results are shown in Fig. 6. It indicates
that our proposed PP-Net can detect great majority of pedes-
trians even some of them are crowded, highly overlapped,
small and large.
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FIGURE 6. Several detection results on CityPersons.

TABLE 2. Comparison with state-of-the-art methods on Caltech.

Thresholds 0.40 0.45 0.50 0.55 0.60

MR(CSP[33]) 7.38% 738%  1037% 13.14%  17.58%

MR(PP-Net) 7.45% 8.13% 9.54%  12.56%  17.24%
197

= (CSP = PP-Net

L 1 1 J

0.45 0.5 0.55 0.65 0.65
Threshold

FIGURE 7. Curves of miss rate across various NMS thresholds.

2) CALTECH
Table 2 and corresponding Fig.7 show the comparisons with
state of the arts on Reasonable setting across multiple NMS
thresholds. We also re-implement the CSP detector [33] for
the sake of fairness. Our PP-Net achieves passable result,
which is comparable with the main competitor CSP detector.
Because there are not sufficient training samples for the
model to be fully trained, the improvement is slightly inferior
to that on the CityPersons dataset. In PP-Net, each prediction
point is not associated with a particular reference shape, and it
directly predicts the bounding boxes with the predicted height
information. Since PP-Net allows specific aspect ratios, it can
capture the entire body of a pedestrian in a similar shape.
From Fig.7, we can draw a conclusion that our PP-Net
is less sensitive to the NMS thresholds because its curve is
smoother than that of baseline.
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FIGURE 8. (a) Standard U-shaped FPN structure [25] (b) The overview of
Nearest-fused architecture proposed for reducing semantic gaps among
different levels. Fuse-nearest denotes the result of our proposed
structure in Fig.4b.

D. ABLATION STUDY

In this subsection, we demonstrate the effectiveness of
different components which we introduce in our proposed
framework with different settings. To reach the goal, we con-

struct several variants and evaluate them on convincing
CityPersons [35] and Caltech [47] datasets.

1) U-SHAPED STRUCTURE

We put to use U-shaped structure upon the basic ResNet-50
for narrowing the semantic gaps between different-depth fea-
tures. Meanwhile, we also design another alternative structure
for the same purpose. As is shown in the Fig.8b, we gradually
fuse the feature maps from the nearest two stages instead
of directly fusing all feature maps, termed as Nearest-fused
architecture. The results on different datasets are compared
as displayed in Table 3 (a) and (b) respectively. Besides,
we directly construct these two feature fusion structures
on the backbone network of initial CSP detector, so as to
eliminate the influence of the deep guidance module. And
the results comparisons with various datasets are shown
in Table 3 (c) and (b).

From the results above, it is suggested that the proposed
alternative architecture is inferior to U-shaped FPN structure.
We can see from Table 3 (a) and III (c) that on CityPersons
dataset, the U-shaped structure improves baseline method
by reducing the miss rates (MR) by 0.69% and 1.15%
with and without deep guidance module respectively while
Nearest-fused architecture only correspondingly reduces by
0.64% and 0.89%, which demonstrates the effectiveness of
FPN.

In addition, from the Table 3 (b) and III (d), it can be
observed that on Caltech dataset, the U-shaped structure
improves baseline method by reducing miss rates (MR) by
0.66% and 0.16% with and without deep guidance mod-
ule respectively while Nearest-fused architecture hurts the
performance.
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TABLE 3. (A) Ablation study of U-shaped structure with DGM on
CityPersons. (B) Ablation study of U-shaped structure without DGM on
Caltech. (C) Ablation study of U-shaped structure with DGM on
CityPersons. (D) Ablation study of U-shaped structure without DGM on

Caltech.

(a
Structure Miss Rate
Baseline 12.81%
Nearest-Fused 12.17%
U-shape 12.12%
(b)
Structure Miss Rate
Baseline 10.20%
Nearest-Fused 10.22%
U-shaped 9.54%
(©
Structure Miss Rate
Baseline 14.02%
Nearest-Fused 13.13%
U-shaped 12.87%
(@)
Structure Miss Rate
Baseline 10.37%
Nearest-Fused 12.68%
U-shaped 10.21%

2) DEEP GUIDANCE MODEL (DGM)
For proving the performance improvement brought by the
proposed deep guidance module (DGM), we add DGM upon
the backbone of the feature extraction part of CSP detector
[33]. We then concatenate the feature maps from stage 3, 4,
5 and DGM for following detection. For verification, we take
DGM away from our proposed framework and test the per-
formance (Note that we only detect the feature map from the
bottom level of FPN-like network for simplicity). The result
on two datasets are shown in the Table 4 (a) and (b). We can
observe that DGM plays an important role in our detector.
For further exploration, we employ atrous spatial pyramid
pooling (ASPP) from DeepLab V3 [13] to substitute the
original deep guidance module (DGM). The ASPP consists of
several parallel branches of atrous convolution with different
dilated rates to capture multi-scale context. Following the
configurations in [13], ASPP consists of one 1 x 1 convolution
and three 3 x 3 convolutions with rates = (6, 12, 18) when
output stride = 16 (all with 256 filters and batch normal-
ization), and the image-level feature obtained by operating a
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TABLE 4. (A) Ablation study of deep guidance model on CityPersons.
(B) Ablation study of deep guidance model on Caltech.

(@

Deep Guidance Model U-shape Structure Miss Rate *
14.02%
N 12.81%
v 12.87%
N N 12.80%
(b)
Deep Guidance Model U-shape Structure Miss Rate *
10.37%
v 10.20%
N 10.21%
v v 9.94%

1 x 1 convolution with 256 filters on the last feature map of
the model. The dilated convolutions with same kernel size and
different dilated rate possess different receptive field. In terms
of previous work and theory, ASPP can provide multi-scale
representation with deep information if it replaces our deep
guidance module (DGM).

The result comparisons on two datasets are shown
in Table 5 (a) and (b). On CityPersons, it can be found from
the table that our DGM brings about reduction of 1.35% in
MR while ASPP promotes by 0.22%, which means our DGM
is able to provide more semantic information beneficial for
the final prediction while operating multi-branch dilated con-
volutions on final feature maps may generate redundant fea-
ture information which greatly disturbs the detection results.
On Caltech dataset, our DGM reduces MR by 0.67%, while
ASPP reduces by 0.58%, showing that both ASPP and our
DGM help to improve results, but our DGM brings more
growth.

To further test and verify our point and remove interference
brought by feature fusion architecture (i.e., U-shaped FPN
structure), we conduct experiment on vanilla CSP detector
without follow-up FPN. As in Table 5 (c¢) and (d), it is
suggested that on CityPersons, our DGM improves MR of
the baseline method by 1.21% while ASPP degrades the
performance instead, which implies that not all modules can
provide semantic information that is helpful for detection
performance.

In addition, on Caltech, we can also draw similar conclu-
sion that our DGM is helpful to improve the vanilla CSP
detector [33] with 0.17% reduction of MR, while the ASPP
has a negative effect.

3) FEATURE FUSION UNIT (FFU)
We consider that our feature fusion module is superior to pre-
vious operation which fuses multi-scale feature maps directly.
To this end, we conduct the removal of FFU module.

The numerical results in Table 6 (a) and (b) indicate that
the absence of FFU module is harmful for the performance of
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TABLE 5. (A) Comparison between different DGM with FPN on
CityPersons. (B) Comparison between different DGM with FPN on Caltech.
(C) Comparison between different DGM without FPN on CityPersons.

(D) Comparison between different DGM without FPN on Caltech.

(@
Structure Miss Rate
Baseline 13.47%
DGM 12.12%
ASPP 13.69%
(b)
Structure Miss Rate
Baseline 10.21%
DGM 9.54%
ASPP 9.65%
©
Structure Miss Rate
Baseline 14.02%
DGM 12.81%
ASPP 14.12%
(d)
Structure Miss Rate
Baseline 10.37%
DGM 10.20%
ASPP 11.28%

our approach by increasing MR by 0.45% on CityPersons and
0.09% on Caltech because the various norms of multi-scale
feature maps play a negative role in the process of feature
fusion. Compared with the existing feature fusion module,
our FFU is simple and pragmatic.

4) AGGREGATE ALL LEVELS OR NOT

While building the U-shaped structure, we intuitively face
with two related choices. More concretely, which level of the
structure is the feature with finest resolution, i.e., the bottom
level should be P, or P3 ?

The other one is whether we should detect the feature
maps via fusing all levels of FPN-like network or the one
from the bottom level? In order to make the most beneficial
decision to improve performance, we conduct the comparison
experiments and the results on two datasets can be seen in the
Table 7 (a) and (b) separately.

It is demonstrated that we should build P, as the bottom
level in the top-down pathway, and concatenate all levels of
U-shaped network for subsequent detection.
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TABLE 6. (A) Ablation study of feature fusion unit on CityPersons.
(B) Ablation study of feature fusion unit on Calech.

(a)
Structure Miss Rate
Baseline 14.02%
PP-Net(w/o FFU) 12.57%
PP-Net 12.12%
(b)
Structure Miss Rate
Baseline 10.37%
PP-Net(w/o FFU) 9.63%
PP-Net 9.54%

TABLE 7. (A) Comparison of aggregate all levels and only bottom level of
FPN on CityPersons. (B) Comparison of aggregate all levels and only
bottom level of FPN on Caltech.

(a)
P2 o Aggregation Miss Rate *
v 12.80%
v v 12.12%
N 12.85%
N N 12.87%
(b)
P2 ps Aggregation Miss Rate *
v 9.94%
v v 9.54%
v 15.08%
N N 14.27%

Note that the definition of symbols in table are same as Table VII (a).

V. CONCLUSION

In this paper, we have proposed an anchor-free pedestrian
detector which finds a better trade-off between accuracy
and efficiency. We have established a U-shaped architecture
to eliminate the semantic gaps between multi-level fea-
ture maps. In addition, we propose a deep guidance mod-
ule to extract deep semantic information for addressing the
information dilution in the top-down pathway. We further
propose a feature fusion unit (FFU) for multi-feature con-
catenation. By plugging these modules into the FPN-like
network, we can achieve significant performance. The detec-
tion results on the challenging CityPersons and Caltech
datasets demonstrate that our framework is competitive with
the state-of-the-art methods. In our future work, we will
pursue better performance by exploring superior detection
heads.
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