
Received September 5, 2020, accepted September 16, 2020, date of publication September 30, 2020,
date of current version November 2, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.3027858

An Effective Adaptive Gain Dynamics for
Time-Delay Control of Robot Manipulators
JUNYOUNG LEE 1, (Member, IEEE), PYUNG HUN CHANG 2, (Member, IEEE),
BYEONGGI YU 2, (Student Member, IEEE), KAP-HO SEO3, (Member, IEEE),
AND MAOLIN JIN 1, (Senior Member, IEEE)
1Human-Centered Robotics Research Center, Korea Institute of Robotics and Technology Convergence, Pohang 37553, South Korea
2Department of Robotics Engineering, Daegu–Gyeongbuk Institute of Science and Technology, Daegu 42988, South Korea
3Interactive Robotics Research and Development Division, Korea Institute of Robotics and Technology Convergence, Pohang 37553, South Korea

Corresponding authors: Pyung Hun Chang (phchang@dgist.ac.kr) and Maolin Jin (mulimkim@kiro.re.kr)

This work was supported in part by the Industrial Technology Innovation Program funded by the Ministry of Trade, Industry, and Energy
(MOTIE), South Korea, under Grant 20011170.

ABSTRACT The time-delay control (TDC) has recently been spotlighted as an effective solution owing to
model-free, efficient, and robust properties thanks to a time-delay estimation (TDE) technique. The gain of
TDC, usually denoted by M̄, is crucial for its stability and performance, and it is reported that the constant
gain of TDC does not always guarantee the best performance. To cope with this problem, this paper proposes
an effective gain adaptation together with a nonlinear desired error dynamics and a new sliding variable. The
resulting adaptive gain dynamics is combined with the TDC to form the proposed control, whose closed-loop
stability is proved. Through simulation and experiment, we have shown that the proposed control enables to
transfer M̄ from an unstable initial value to a stable one, better than a best-tuned gain by trial and error. As a
result, the proposed control is model-free, able to achieve time responses as fast as the inclusive enhanced
TDC (IETDC) – arguably the fastest TDC – and tracking accuracy better than the IETDC. The proposed
method has shown a strong potential to significantly relieve the burden of gain selection.

INDEX TERMS Adaptive control, robot manipulator, sliding mode control, time-delay estimation.

I. INTRODUCTION
Robot manipulators widely employed for various
tasks [1]–[4] require accurate motion control, which is very
challenging to control engineers. For robot manipulators
inherently include highly nonlinear and coupled dynamics
such as Coriolis and centrifugal torque, nonlinear friction,
and gravitational torque [5], [6].

As an effective solution to this challenging problem,
TDC has been drawing attention for its simplicity and
robustness [7]–[9]. To estimate robot dynamics, the TDC
adopts a time-delay estimation (TDE) technique, which inten-
tionally employs time-delayed states at the previous sam-
pling instant [10]–[12]. Thanks to the TDE technique, TDC
becomes simple, efficient, and robust [10]–[12] and is widely
applied to the various fields [13]–[19].

Despite its extraordinary strength and extensive appli-
cability, the TDC and all TDE-based controls have an
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important issue – perhaps the most crucial one – in common:
the selection of a control gain, usually denoted by M̄. The
appropriate value of M̄ is crucial because of its direct impact
on the performance and stability of any TDC-based closed-
loop system. A larger gain generally yields faster response,
a smaller gain slower response; an excessive one even causes
instability. The selection issue is further complicated by the
fact that even an appropriately chosen gain subsequently
becomes either excessive or too small. These situations occur
as the robot inertias vary owing to the changes in payloads
or kinematic configurations. Furthermore, the gain needs
to be selected by trial and error, unless robot inertias are
precisely known. In practice therefore it is manually tuned
by trial and error [20], [21], taking substantial time and
effort.

No wonder, auto-gain tuning methods or gain adaptation
methods have been reported as follows. A Nussbaum tech-
nique was applied to the TDC in order to secure its stability
by auto-gain tuning and demonstrated in a one-link arm simu-
lation [22]; however, the gain adaptation is restricted within a
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regionwhere the stability condition is alreadymet, generating
a small M̄ and providing weak performance.

As another research, an adaptive TDC with a linear sliding
variable has been proposed and applied to leg joints of a
humanoid [23] in order to improve the tracking accuracy.
Although they have achieved an auto-tuning gain for the
TDC, the adaptive control gain is intentionally bounded in
a specific region by a saturation function to avoid an unstable
response. For this reason, this control method requires a
saturation function and a small initial value of the gain.

As different studies, in an attempt to improve tracking
accuracy, two TDCmethods have been proposed with respec-
tive adaptive rules using sliding variables [24], [25]. In these
methods, M̄ consists of two parts, a constant part called bias
and a variable part to be adapted. Since the adaptation ismade
only by the variable part taking a very small portion of M̄,
the gain variation is significantly restricted. Besides, the bias
taking a major portion of M̄, it must be carefully tuned by trial
and error; otherwise, the closed-loop system could become
oscillatory or go unstable.

Recently, an adaptive TDC with a gain dynamics has
improved accuracy and robustness under significant payload
variations for robot manipulators [26]. However, this method
also requires an arbitrarily selected small initial value for the
gain M̄ in order to avoid unstable or oscillatory response.
To summarize, there have been five previous studies that

employed adaptive M̄ for the TDC. While [22] addressed
the adaptation for stability, the rest aimed at improving the
tracking error by adaptation, which nevertheless imply sta-
bility – the adaptation effort to minimize the tracking error
includes the effort to avoid larger tracking errors coming from
instability.

Among these studies, one of the essential differences lies
in how to prepare the initial value of M̄. To elaborate, [22]
and [23] use a priori knowledge of the initial value: the former
employs the restricted region within which the adaptation
starts; the latter the upper bound and lower bound of the
saturation function. References [24] and [25] obtain the initial
values of the bias by trial and error. Reference [26], on the
other hand, needs an arbitrary small initial value. One thing
in common, though, is that they need to carefully select the
initial values.

To prepare an initial value of M̄ is difficult and care
demanding – usually, a sufficiently small value tends to be
more stable – because a small value for one system is not
small enough for other systems. Hence, it would be desirable
to have a gain adaptation method that does not demand a
stable initial value. To our knowledge, however, there has
been no such method, yet.

In this paper, we propose a gain adaptation method that can
start with an unstable M̄ and change it to a stable value that
also achieves an improved tracking performance. To this end,
we are going to improve our previous work [27], by adopting
the nonlinear desired error dynamics(DED) [28] for the faster
response, by designing a new sliding variable based on this
DED, and by analyzing its Lyapunov stability. The result will

be an enhanced adaptive TDC in conjunctionwith an adaptive
gain dynamics.

The contribution we intend to make, therefore, is to pro-
pose an adaptive TDC that enables the stable gain adapta-
tion regardless of its initial value, while achieving the fast
response coming from the nonlinear DED and possessing the
model-free property of the TDE. The intended capabilities
will be tested through the simulation with a one-link arm and
the experiment with a robot manipulator.

The rest of this paper is organized as follows. In Section
II, the original TDC using a constant gain is reviewed with
a focus on the stability condition. Section III presents the
proposed adaptive TDC and its structure. In Section IV and
Section V, we test the effectiveness of the proposed method
through simulation and experiment. Finally, Section VI con-
cludes this paper with the findings.

II. REVIEW OF TIME-DELAY CONTROL
In this section, we are going to make a brief review of the
time-delay control (TDC) to the extent necessary to propose
our new control approach. A more complete exposition will
be found in [7], [8].

The dynamics of an n-degree-of-freedom (n-DOF) rigid
robot manipulator can be written as follows:

M(q)q̈+ C(q, q̇)+G(q)+ F(q, q̇)+ τ d = τ , (1)

where q, q̇, q̈ ∈ <n are vectors of the joint displace-
ment, velocity, and acceleration, respectively; M(q) ∈
<
n×n denotes the symmetric positive definite inertia matrix;

C(q, q̇) ∈ <n is the vector of the Coriolis and centripetal
torques; G(q) ∈ <n is the gravitational vector; F(q, q̇) ∈ <n

is the vector of friction torques; τ d ∈ <n is the vector of
disturbances; τ ∈ <n is the vector of applied joint torques.
For simplicity, the time variable •t is omitted.
Using the positive diagonal gain matrix M̄ ∈ <n×n, we can

reformulate the robot dynamics (1) as

M̄q̈+ N(q, q̇, q̈) = τ , (2)

where N(q, q̇, q̈) ∈ <n includes nonlinear terms such as
the vectors of Coriolis/centripetal torques, the gravitational
torques, the friction torques, and disturbances; it can be writ-
ten as

N = [M− M̄]q̈+ C+G+ F+ τ d , (3)

where the arguments q, q̇, and q̈ are omitted for simplicity.

A. TIME-DELAY ESTIMATION
Central to the TDC is the time-delay estimation (TDE),
an ingenious scheme to estimate the nonlinear term N for
compensation [10]–[12] as follows:

N ≈ N̂ = Nt−L = τ t−L − M̄q̈t−L , (4)

where N̂ denotes the estimation of N; •t−L a intentional
time-delayed value of •; and L the predefined small time-
delay, which is often set to the sampling period in digital
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implementation. IfN is continuous or piecewise continuous –
which is true in most cases – the value of N at time t is close
to that of N at time t − L for sufficiently small time-delay L.
It has been widely observed that the TDE scheme (4) reduces
computational complexity of robot dynamics, both effec-
tively and efficiently.

B. TDC WITH LINEAR DESIRED ERROR DYNAMICS
The desired linear error dynamics for the TDC [7], [12] is
written as

ë+KDė+KPe = 0, (5)

where e ∈ <n represents the vector of joint errors, given as
e = qd − q; qd ∈ <n is the desired joint displacement;
and KD,KP ∈ <

n×n are the positive diagonal feedback
gain matrices for the desired damping and desired stiffness,
respectively.

With (4) and (5), the control law of TDC is obtained as

τ = τ t−L − M̄q̈t−L︸ ︷︷ ︸
TDE

+ M̄(q̈d +KDė+KPe)︸ ︷︷ ︸
Injecting linear desired dynamics

. (6)

First-term in the right-hand-side of (6) compensates for the
nonlinear robot dynamics and the second term inserts the
linear desired error dynamics to the closed-loop system.
Notice that the second part can be replaced with another
formulation to provide fast response [25], [28], which is dealt
with Section III.

C. GAIN M̄
Combining (2)–(6) leads to the following closed-loop
dynamics:

ë+KDė+KPe = M̄−1[N− Nt−L]. (7)

(7) displays that the constant diagonal matrix M̄ apparently
affects the control performance. In fact it has been our obser-
vation that M̄ is the most dominant and crucial parameter for
the performance of the TDC-based system.

In addition to the performance, M̄ is crucial to the stability
of the closed-loop system, which is made plain by the well
established condition for the stability of TDC [7], [8]:∥∥∥I−M−1(q)M̄∥∥∥ < 1. (8)

When the stability condition (8) is met, the right-hand side
N−Nt−L of (7) is bounded [7], [20]. The bounded TDE error
vector ε is defined as follows:

ε
1
= N(q, q̇, q̈)− Nt−L . (9)

For this reason, the selection of M̄ is very important for the
closed-loop stability of the TDC-based system.

M̄ can be theoretically derived from (8), provided that the
exact value of M̄ is known. But in practice, the exact value of
M̄ is difficult to estimate and M̄ is varying according to the
posture of the robot. As a result, in practical applications M̄ is
manually tuned by a trial-and-error. A well tuned M̄ guaran-
tees stability, whereas improperly selected M̄ easily puts the

system at risk from instability. The gain selection becomes an
intricate problem because even an appropriately chosen value
gets excessive afterwards, depending on the variation of robot
inertias. The effort and time for gain selection and its intricacy
justify and call for the TDC with an adaptive gain dynamics.

III. ADAPTIVE GAIN DYNAMICS AND PROPOSED
CONTROL
Out of the necessity for an adaptive M̄ that ensures stability,
we are going to propose an adaptive gain dynamics, the core
of this article, for that purpose. In conjunction, performance
enhancement is attempted by introducing a nonlinear DED to
speed up the response and a suppressing term to TDE error
in (9).

For the fast-tracking response, the linear desired error
dynamics (DED) in (5) is substituted with the nonlinear DED
in [28] as follows:

ë+KDsig(ė)α +KPsig(e)β = 0, (10)

where

sig(ė)α =
[
|ė1|α1 sgn(ė1), · · · , |ėn|αn sgn(ėn)

]T
, (11)

sig(e)β =
[
|e1|β1 sgn(e1), · · · , |en|βn sgn(en)

]T
, (12)

with α, β denoting exponent vectors, respectively (αi > 0,
βi > 0). This DED being reduces to (5) when αi = 1 and
βi = 1, it may be regarded as a generalized form of (5). The
details are referred in [28].

A. DESIGN OF ADAPTIVE GAIN DYNAMICS
Using the TDE (4) and the nonlinear DED (10), we can design
the control law as follows:

τ = τ t−L − M̄q̈t−L
+M̄[q̈d +KDsig(ė)α +KPsig(e)β ]. (13)

Since the gain matrix M̄ is to be adapted, it is no more
a constant, but a variable. Our approach is to make it a
function of s, M̄ = M̄(s), where s denotes a sliding variable
vector, which roughly stands for the tracking error. Thus, the
adaptation is to be carried out, monitoring the tracking error
and suppressing it.

Let us select a new sliding variable according to the DED
in (10) as follows:

s =
∫ [

ë+KDsig(ė)α +KPsig(e)β
]
dt (14)

where the initial value of s is set to zero. This variable s
represents fast converging dynamics, differently from the s
based on the linear error dynamics (5).

This sliding variable is applied to an adaptation scheme we
previously proposed in [27], whose time derivative is written
as

˙̄M ii = γiiM̄2
ii |si| sgn(|si| −

M̄2
ii

δi
). (15)

Here •i and •ii denote the i-th element of a vector and the ii-th
element of a diagonal matrix, respectively; γii the element of
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FIGURE 1. Block diagram of the proposed TDC with an effective gain dynamics for robot manipulators.

the positive diagonal matrix, which we term the adaptation
gain; and δi a normalizing factor between si and M̄2

ii . The
term M̄2

ii/δi is defined as the acceptance layer, which will
be detailed later.

By introducing s in (14), we have created in effect a version
of adaptive gain dynamics for faster convergence, a gain
adaption dynamics that pushes the M̄(s) toward a stable range
while meeting the requirement of faster convergence.

Let us elaborate on the adaptation mechanism embedded
in (15). Facing large tracking errors, si becomes larger so
that |si| > M̄2

ii/δi, making sgn() positive and increasing M̄ii,
until it becomes large enough to compensate for the tracking
errors. When the errors are small enough, on the other hand,
si becomes smaller, leading to |si| < M̄2

ii/δi, making sgn()
negative, and decreasing the value of M̄ii to avoid excessively
large gain. This procedure is very much like the concept
of variable boundary layers in sliding mode control (SMC).
Consequently, as the adaptation proceeds, the variable |si|
converges to the vicinity of M̄2

ii/δi.
Clearly, the term M̄2

ii/δi sets the limit of s for the adaptation
and determines the tracking error e. Notice that the larger δ
is, the smaller both s and e become. In this paper, M̄2

ii/δi is
used to get an appropriate gain M̄(s) that meets the stability
condition.

On the other hand, the adaptive gain M̄ii is bounded to be
M̄ii <

√
|si| δi when M̄ii increases – |si| > M̄2

ii/δi, and M̄ii >√
|si| δi when M̄ii decreases – |si| < M̄2

ii/δi by sgn() in (15).
Thus, M̄ii is bounded by the proposed gain dynamics (15).

B. THE PROPOSED CONTROL
Before we propose the final control, let us explain the addi-
tional term in it to suppress the TDE error. It was demon-
strated in (7) that the closed-loop dynamics due to the linear

DED is affected by the TDE error (9). In the same way,
it is easy to prove that the one from the nonlinear DED,
too, is influenced by the TDE error. Specifically, just as the
linear DED yields the closed-loop dynamics in (7), so does
the nonlinear DED the following closed-loop dynamics:

ë+KDsig(ė)α +KPsig(e)β = M̄(s)−1ε, (16)

where the LHS is equivalent to s according to (14). Thus,

ṡ = M̄−1(s) · ε. (17)

Clearly, (17) show that the TDE error ε has a direct effect on
both s and the tracking error and that its suppression is impor-
tant for better tracking accuracy. To suppress the TDE error,
the additional term λsig(s)ψ is combined with (13), absorbing
the residual energy perturbed by the TDE error [28].

As a result, the proposed enhanced control law can be
written as

τ =τ t−L − M̄(s)q̈t−L︸ ︷︷ ︸
TDE

+ M̄(s)︸︷︷︸
Adaptive Gain

· λ · sig(s)ψ︸ ︷︷ ︸
Suppression of TDE error

+M̄(s) · [q̈d +KDsig(ė)α +KPsig(e)β︸ ︷︷ ︸
Nonlinear DED

], (18)

and the closed-loop error dynamics becomes

ṡ+ λsig(s)ψ = M̄
−1

(s) · ε. (19)

One can clearly see the proposed control does not use a robot
model at all; it is model-free. Notice that the effect of the TDE
error is attenuated since (19) can be regarded as a first-order
low pass filter – the input ε and output s. Illustrated in Fig. 1
is a closed-loop system with the TDE, the gain dynamics, the
nonlinear DED, and the TDE error correction.
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C. STABILITY ANALYSIS
We are going to prove that the closed-loop system with gain
dynamics (15) is uniformly ultimately bounded.
Assumption 1: The upper bound of εi is denoted by ε+i .

It has been proven in [9], [29] that the TDE error εi is
bounded, if the gain M̄ii meets the sufficient condition for the
stability (8).
Assumption 2: The sliding variable si is close to zero at

the time t = 0 since it is a common practice that the desired
trajectory is generated based on the initial posture of a robot
manipulator.

Since si and M̄ii are interrelated, we employed the above
two assumptions. When si ≈ 0 at t = 0, M̄ii is rapidly
approaching

√
|si| δi by γii of the gain dynamics (15) and si

is governed by the closed-loop error dynamics (19).
Theorem 1: The closed-loop system is uniformly ulti-

mately bounded if the following condition is satisfied such
that

ε+i < γii. (20)

proof: First, the range is assumed as ∀ |si| > M̄2
ii/δi.

With consideration of (15), a Lyapunov-like candidate is
defined as

V =
1
2
sTs+

1
2

n∑
i=1

(
1

M̄ii
)
2
. (21)

where M̄ii > 0.
According to (15), when ∀ |si| > M̄2

ii/δi, the adaptive gain
M̄ii increases and the time derivative of V can be rewritten as

V̇ = sTṡ−
n∑
i=1

(M̄−3ii ) ˙̄M ii

= sT (−λ · |s|ψ · sgn(s)+ M̄
−1
ε)−

n∑
i=1

[γiiM̄
−1
ii |si|]

≤

n∑
i=1

[−λii|si| · |si|ψ + |si| M̄
−1
ii {|εi| − γii}]. (22)

If |εi| < γii, V̇ is negative definite. Thus, the closed loop
system is Lyapunov stable when ε+i < γii.
When ∀ |si|< M̄2

ii/δi, the solution of a given closed-loop
system is close to a sliding manifold, but it does not exactly
reach |si| = 0, owing to the acceptance layer M̄2

ii/δi. Since the
closed-loop system is uniformly ultimately bounded, V̇ is not
considered in ∀ |si|< M̄2

ii/δi.

IV. SIMULATION
In this section and next, we are going to present simulations
and experiments in a complementary way in order to show
both the characteristics and effectiveness of the proposed
adaptation method. Through simulations on a simple one-link
arm, we intend to display the essential nature of our method in
a transparent way; experiments on a three-degrees of freedom
spatial robot demonstrate its capability and performance in
more realistic and complicated environments.

FIGURE 2. (a) One-link robot manipulator. (b) Desired trajectory.

FIGURE 3. Simulation results of the proposed control: (a) adaptive
gain (solid) and the upper bound (dashed) by stability condition (8).
(b) Tracking error. (c) Control input.

A. SIMULATION SETUP
The simulation with a one-link arm shown in Fig. 2 (a) is
conducted to investigate if the proposed adaptation transfers
the gains to the stable range determined by (8). The arm
dynamics is given as follows:

τ = I q̈+ G(q)+ F(q̇), (23)

where I = ml2, G(q) = mlgcos(q), and F(q̇) = fV q̇ +
fCsgn(q̇) where fV and fC denote the coefficients for the vis-
cous friction and Coulomb friction, respectively. The param-
eters in (23) are set to be m = 1.0 kg, l = 1.0 m, fV =
5.0 N·m·s, fC = 5.0 N·m, and g= 9.8 m/s2, respectively. The
desired displacement is shown in Fig. 2 (b).

The nonlinear DED is determined as ë+20 · sig(ė)95/100+
100 · sig(e)95/105 = 0. For the suppression of TDE error, λ
and ψ are tuned to be λ = 10 and ψ = 0.8, respectively. The
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FIGURE 4. The phase portrait: (a) The proposed adaptive TDC. (b) The TDC
with constant gains [28].

parameters γ and δ are tuned by trial and error as γ = 1800.0
and δ = 140.0 for the gain dynamics (15), respectively.
Notice that δ has to be varied from a small positive value to a
large value because |si| is approaching to M̄2

ii/δ.
The initial value of M̄ (s) is intentionally set to be M̄ = 4

Kg · m2 which is an unstable gain far outside the stable range,
0 < M̄ < 2 determined by (8) – note the dashed line in Fig. 3
(a), which denotes the upper bound for the stable range of M̄ .
The upper bound is also used to discern if the initial value of
M̄ (s) indeed belongs to the unstable range.

To indicate the significance of the proposed control, the
gain M̄ is tuned as constant values – 0.5, 2.1, 2.5, 3.0, and
4.0, respectively. Notice that the proposed method becomes
the same as the one in [28] when the M̄ is set as a constant
value.

B. SIMULATION RESULTS
Simulation results are shown in Fig. 3. Fig. 3 (a) displays how
the gain adaptation changes from the unstable initial value
toward a stable one. The tracking error and the control input
are shown in Fig. 3 (b) and (c), respectively. When large
tracking errors occur mainly due to the Coulomb friction,
they are compensated by the enlarged M̄ (s), which has been
increased by the gain adaptation. In this way, the adaptive gain

FIGURE 5. (a) PUMA-type robot (Faraman-AT2). (b) Desired trajectory of
joints 1, 2, and 3.

dynamics first transfers an unstable gain to the stable range,
and then makes it remain there by resiliently adjusting the
gain according to the variation of tracking errors.

To obtain further insight into the adaptive gain dynamics
in (15), we have plotted the phase portraits of the sliding
variable s and the gain M̄ . Fig. 4 (a) shows the gain adaptation
of the proposed control, whereas Fig. 4 (b) the five gains of
the TDC with fixed gains. Fig. 4 (a) displays that the gain
dynamics brings the initially unstable M̄ to the stable range,
the same trend observed in Fig. 3 (a).
On the other hand, the five constant gains of the TDC with

fixed gains remain unchanged, as shown in Fig. 3 (b), produc-
ing respective response, either stable or unstable, according to
the value of each gain. Specifically, while M̄ with respective
values of 0.5, 2.1, 2.5, 3.0, and 4.0 remains the same, all the
gains cause unstable response on the phase portrait, except
the gain with 0.5 exhibits stable response.

V. EXPERIMENT
A. EXPERIMENTAL SETUP
The effectiveness of the proposed enhanced adaptive TDC
has been demonstrated through the experiment with a
PUMA-type robot in Fig. 5 (a). The maximum continuous
torques of AC servo motors are 0.637, 0.319, and 0.319 Nm,
and each harmonic drive provides gear ratios of 120:1 for
joints 1, 2, and 3, respectively. Resolution of each encoder
is 2048 pulses/rev, which is equivalent to an angular resolu-
tion is 3.66× 10−4 deg at each joint (quadrature encoder).
The control system was operated under Linux RTAI, a real-
time operating system environment. The desired trajectory is
shown in Fig. 5 (b) for joints 1, 2, and 3, respectively. The
sampling period L is set as 0.001 s.
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FIGURE 6. Experimental comparison of proposed TDC with adaptive gain dynamics and the IETDC. (a)–(c) Gains M̄. (d)–(f) Tracking errors.
(g)–(i) Control inputs of joints 1, 2, and 3 (dotted lines: the upper bound by IETDC (upper.); solid lines: proposed TDC with a small initial
value–proposed. (small); dashed lines: proposed TDC with a unstable initial value–proposed. (large)).

1) SCENARIO 1.STABLE GAIN ADAPTATION
For the stable gain adaptation with the proposed enhanced
adaptive TDC (18), the nonlinear DED is selected as ë +
20sig(ė)95/100 + 100sig(e)95/105 = 0, and parameters λ and
ψ are tuned to be λ = 20 ·I and ψ = [0.8, 0.8, 0.8]T ,
respectively. For the gain dynamics, γ and δ in (15) are
tuned as γ = diag(5.0, 3.0, 2.8)×104 and δ = [0.015, 0.008,
0.008]T , respectively. We have selected two sets of initial
values for M̄ (s): M̄large = diag(1.273, 1.273, 0.636), which is
in the unstable range; and M̄small = diag(0.051, 0.051, 0.025)
in the stable range.

In order to show that the adaptive gain using (15) converges
to the stable range, the applicable largest constant gain M̄ is
intentionally tuned as M̄upper = diag(1.069, 0.890, 0.484).
It was tuned by trial-and-error because the inertia matrix is
difficult to estimate. Of the gains thus estimated, the largest
one is assumed as the upper bound, which is used to confirm
that the initial value starts from the unstable range.

2) SCENARIO 2. COMPARISON WITH A PREVIOUS METHOD
The proposed adaptive TDC is compared with the inclusive
enhanced TDC (IETDC) [28], a generalized formulation of
TDC-based controllers with a constant M̄. Note that the

proposed method become the same as the IETDC, when the
adaptive gain M̄(s) becomes a constant. The constant M̄ of
the IETDC is set as M̄ = diag(0.3818, 0.3055, 0.153) which
was a best-tuned gain in [28].

B. EXPERIMENTAL RESULTS
The experimental results of Scenario 1 are shown in Fig. 6.
As shown in Figs. 6 (a)-(c), the adaptive gain ¯M(s) is auto-
matically adjusted by proposed gain dynamics (15). Com-
parison of the gain matrices, ¯M(s) and M̄upper , as shown in
Figs. 6 (a)-(c), reveals that the proposed adaptive gain
approaches stable range of M̄ by the gain dynamics (15).
The dotted lines by M̄upper in Figs. 6 (a)-(c) can be
regarded as the upper bound value found by trial and error.
Figs. 6 (d)-(f) and (g)-(i) displays satisfactory tracking accu-
racy is achieved without noticeable chattering with the pro-
posed method owing to the appropriate gain adaptation of
¯M(s) regardless of initial values in ¯M(s).
To help gain more insights, the phase portraits of M̄ii and

si are shown in Fig 7. The proposed method using the gain
dynamics converges on the stable range of M̄ii even though it
starts at an unstable initial gain. The proposed TDC with the
gain dynamics has provided more appropriate gains accord-
ing to system states.
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FIGURE 7. Proposed adaptive TDC with unstable initial condition. The
phase portraits of M̄ii and si of joints 1, 2, and 3, respectively.

Fig. 8 demonstrates how the adaptive gain goes to the
stable range. The absolute value of the sliding variable si is
converging to the acceptance layer M̄2

ii/δi, which is a similar
concept with the variable boundary layer of adaptive SMC.
When the sliding variable becomes larger than the acceptance
layer, the gain increases by gain dynamics (15), and when the
sliding variable is relatively small, the gain decreases. As a
result, the adaptive gain is regulatedwithout unnecessary high
gain.

In order to test the tracking accuracy of the proposed
method, we have compared it with that of the best-tuned

FIGURE 8. Experimental results of proposed adaptive TDC. (a)–(c)
Absolute values of ‘‘si ’’ (dotted) and acceptance layers (AL) ‘‘(M̄)2/δi ’’
(solid) for joints 1, 2, and 3, respectively.

TABLE 1. RMS values of the tracking errors (×10−3 deg).

IETDC [28], In doing so, we used two initial values for M̄ (s):
an unstable value, denoted by ‘Proposed. (large)’; and a stable
one, ‘Proposed. (small)’.

Fig. 9 shows the comparison results. More specifically,
in Figs. 9 (a)-(c), the two adaptive gains starting from two
different initial values are converging to each other and stay-
ing in the vicinity of the IETDC gain. Their corresponding
tracking errors are displayed in Figs. 9 (d)-(f). The tracking
errors appear very similar with respect to time, showing that
the proposed control produces the response as fast as the
IETDC, which claimed to achieve the fastest response [28].
The magnitude of errors, too, looks very similar, requiring
a close comparison based on the root-mean-square (RMS)
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FIGURE 9. Experimental comparison of the proposed adaptive TDC with small initial values (proposed. (small)) and unstable initial values (proposed.
(large)), and the IETDC with the best-tuned gains (IETDC). (a)–(c) Gains M̄. (d)–(f) Tracking errors of joints 1, 2, and 3 (dotted lines: proposed. (small);
solid lines: proposed. (large); dashed line: IETDC).

error, which is listed in Table 1. Table 1 reveals that the
proposed method achieves better accuracy than the IETDC,
regardless of the initial values.

This comparison clearly supports the efficacy of the pro-
posed method. It is remarkable that, wherever the initial
value may lie, be it in the stable range or unstable one, the
adaptation dynamics enables to find a gain that is not just
stable but better than a best-tuned gain by trial and error.

VI. CONCLUSION
We have proposed an adaptive gain dynamics together with
the TDC for the robot manipulator. We have shown through
simulation and experiment that the proposed control enables
to transfer ¯M(s) from an unstable initial value to a stable
one better than a best-tuned gain. As a result, the proposed
control, which is also model-free, achieves responses as fast
as the IETDC, whereas the tracking accuracy achieved is
slightly better than IETDC. Thanks to the proposed adapta-
tion, the gain selection has become care-free.
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