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ABSTRACT In this paper, a finite-time command filtered backstepping (FTCFB) adaptive trajectory
tracking control strategy is proposed for a quadrotor unmanned aerial vehicle (UAV) with quantized inputs
and external disturbances. For the position subsystem and attitude subsystem, a finite-time command filter
is introduced to faster approximate the derivative of virtual control signal, which can effectively avoid the
problem of explosion of complexity inherent in the traditional backstepping design procedure. The fractional
order error compensation mechanism is designed to remove the filter error, and it further improves control
performance. From the Lyapunov stability theory, the boundedness of all signals in the closed-loop system
is rigorously proved, and the position and attitude tracking errors can converge to a small neighborhood of
the origin in finite-time. Finally, a numerical example is conducted to intuitively show the validity of the
developed control scheme.

INDEX TERMS Quadrotor unmanned aerial vehicle, command filtered backstepping, adaptive quantized
control, finite-time control.

I. INTRODUCTION
In the past decades, the quadrotor unmanned aerial vehi-
cle (UAV) has attracted considerable attention due to its sim-
ple structure, efficient deployment, flexible maneuverability
etc, and various practical applications have been reported
such as aerial photography, urban fire rescue, cargo trans-
portation and so on. However, on the account of the structure
uncertainties and strong coupling nonlinear characteristics of
quadrotor UAV [1]–[4], it is difficult to design an accurate
trajectory tracking control scheme to achieve high quality
flight.

In order to improve the control performances of quadrotor
UAV, various advanced control algorithms such as sliding-
mode control [5]–[7], fuzzy and neural networks-based

The associate editor coordinating the review of this manuscript and

approving it for publication was Juntao Fei .

intelligent control [8]–[10] and backstepping-based adap-
tive control [11]–[13] have been proposed, respectively.
By combining the tracking differentiator and extended state
observer strategies, the issue of attitude tracking control for
quadrotor UAV was solved in [14]. Note that the above-
mentioned adaptive backstepping control algorithms might
have a shortcoming ‘‘explosion of complexity’’ caused by
the repeated derivatives of virtual control signals. Fortunately,
the dynamic surface control (DSC) technique, which was
firstly proposed in [15], was established to avoid ‘‘explosion
of complexity’’ by introducing a first-order filter for virtual
control signals. Subsequently, many researchers focused on
developing the trajectory tracking control schemes of quadro-
tor UAV based on DSC technique, see [16]–[20] and refer-
ences therein. In [18], adaptive DSC algorithm was proposed
under time-varying output constraints and model uncertain-
ties. The adaptive prescribed performance DSC scheme was
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given in [20], which made the tracking error satisfy the
predefined performance indexes. It should be pointed out
that the better control performance can not be obtained since
the effect of first-order filter error is unconsidered. Recently,
the command filtered backstepping (CFB) approach was pre-
sented to deal with the ‘‘explosion of complexity’’ and the
filter error simultaneously. By introducing the command filter
and the error compensation mechanism (ECM), the ‘‘explo-
sion of complexity’’ was avoided and the filter error was
removed in [21]–[23]. Based on CFB technique, a new tra-
jectory tracking control algorithm for quadrotor UAV was
firstly proposed in [24]. Afterwards, several adaptive CFB
control schemes have been developed in [25]–[28]. Neverthe-
less, these works can only achieve asymptotic convergence,
and this means that the tracking error will converge to zero
when the time approaches to infinity. In order to increase
convergence speed of the position and attitude tracking errors,
the finite-time trajectory tracking control strategy is more
desirable. So far, few results on finite-time command filtered
backstepping (FTCFB) adaptive trajectory tracking control
schemes for quadrotor UAV have been reported, which is one
motivation of this paper.

On the other hand, the position and attitude signals in the
control of quadrotor UAV are generated by the computer and
transmitted in communication channel, and they are required
to be quantized before passing through the communication
channel. Therefore, it is important to consider the quantized
control for quadrotor UAV to achieve exact trajectory tracking
control performance. Due to the strong coupling and nonlin-
ear characteristics of quadrotor UAV, many significant adap-
tive control approaches have been proposed for nonlinear
systems with quantized inputs from a theoretical perspec-
tive [29]–[31], where [29] for single-input and single-output
nonlinear systems, [30] for interconnected nonlinear systems,
and [31] for stochastic nonlinear systems. For quadrotor UAV
with quantized input signals, in [32], a backstepping-based
adaptive finite-time tracking control algorithmwas presented.
In [33], a composite adaptive quantized controller was con-
structed based on DSC technique for quadrotor UAV. Note
that the control design methods in [32] and [33] are based
on the backstepping and DSC technique, respectively, so the
problem of ‘‘explosion of complexity’’ exists in [32], and
the better control performance may not be obtained in [33].
Besides, although the adaptive quantized control strategies
are developed [32] and [33], the prior information of quan-
tization parameters should be required, which further limits
their scope of applications.

Motivated by the abovementioned discussions, the FTCFB
adaptive trajectory tracking control for quadrotor UAV with
quantized inputs is investigated in this article. The designed
finite-time controllers guarantee the position and attitude
tracking errors converge to a small neighborhood of the origin
in finite time. Compared with the existing results, the main
contributions of this paper are concluded as follows.
1) Compared with the asymptotic convergence comm-

and filter used in [24]–[28], a novel command filter

is introduced, which can not only approximate the
derivative of virtual control signal but also realize the
finite-time convergence.

2) Unlike the existing ECM results in [24]–[28] without
considering the rapid convergence, the modified frac-
tional order ECM is designed to quickly remove the
effect of filter error. Meanwhile, in contrast to the sym-
bolic function-based ECM proposed in [34], the mod-
ified fractional order ECM are constructed by the
nonsmooth signal, so the chattering phenomenon is
attenuated.

3) Different from the quadrotor UAVwith quantized inputs
results in [32] and [33], the prior information of the
quantization parameters for position subsystem and atti-
tude subsystem is not required via adaptive compensa-
tion technique, which is more convenient for practical
applications.

The rest of the paper is organized as follows. In Section II,
the dynamic model of quadrotor UAV and some useful
assumptions and lemmas are given. The finite-time adaptive
control design scheme is constructed in Section III, and the
stability analysis is strictly proved in Section IV. In SectionV,
the simulation results are illustrated to highlight the effec-
tiveness of the proposed finite-time control algorithm. The
conclusion is provided in Section VI.

II. PROBLEM FORMULATION
The simplified dynamic model of quadrotor UAV stated in
[35] is given as

ẍ =
τF

m
(cosφ sin θ cosψ + sinφ sinψ)−

Gx ẋ
m
+ dx

ÿ =
τF

m
(cosφ sin θ sinψ − sinφ cosψ)−

Gyẏ
m
+ dy

z̈ =
τF

m
(cosφ cos θ)− g−

Gzż
m
+ dz

φ̈ =
`

Jx
τφ + θ̇ ψ̇

Jy − Jz
Jx

−
Gφ`
Jx

φ̇ + dφ

θ̈ =
`

Jy
τθ + φ̇ψ̇

Jz − Jx
Jy

−
Gθ`
Jy
θ̇ + dθ

ψ̈ =
`

Jz
τψ + φ̇θ̇

Jx − Jy
Jz

−
Gψ`
Jz

ψ̇ + dψ

whereφ, θ, ψ are roll angle, pitch angle and yaw angle; x, y, z
represent positions. m is the weight of quadrotor UAV; ` is
the distance from the center of mass of the body to the pro-
peller shaft; g is the acceleration of gravity. Jx , Jy, Jz are the
moments of inertia of quadrotor UAV. For i = x, y, z, φ, θ, ψ ,
Gi is the air drag coefficients of the model, and di is the exter-
nal disturbance. τF , τφ, τθ , τψ are control inputs of quadrotor
UAV.

For the sake of controller design, the abovementioned
model with quantized inputs is divided into the attitude
subsystem and position subsystem, which are described as
follows

4̈i = giq(τi)+ fi + di, i = 1, 2, 3 (1)

4̈i = q(τi)+ fi + di, i = 4, 5, 6 (2)
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where (41, 42, 43, 44, 45, 46) = (φ, θ, ψ, x, y, z), (g1, g2,
g3) = ( `Jx ,

`
Jy
, `Jz

), (τ1, τ2, τ3) = (τφ, τθ , τψ ), (τ4, τ5, τ6) =
( τFm (cosφ sin θ cosψ + sinφ sinψ), τF

m (cosφ sin θ sinψ −
sinφ cosψ), τFm (cosφ cos θ )), (f1, f2, f3) = (θ̇ ψ̇ Jy−Jz

Jx
−

Gφ`
Jx
φ̇, φ̇ψ̇

Jz−Jx
Jy
−

Gθ `
Jy
θ̇ , φ̇θ̇

Jx−Jy
Jz
−

Gψ`
Jz
ψ̇), (f4, f5, f6) =(

−
Gx ẋ
m ,−

Gyẏ
m ,−g−

Gz ż
m

)
.

The input q(τi) takes the quantized values, and the follow-
ing hysteretic quantizer [29] is adopted

q(τi) =



τmsgn(τi),
τm

1+ δi
< |τi| ≤ τm, τ̇i < 0, or

τm < |τi| ≤
τm

1− δi
, τ̇i > 0

τi(1+ δi)sgn(τi), τm < |τi| ≤
τm

1− δi
, τ̇i < 0, or

τm

1− δi
< |τi| ≤

τm(1+ δi)
1− δi

,

τ̇i > 0,

0, 0 ≤ |τi| <
τmin

1+ δi
, τ̇i < 0, or

τmin

1+ δi
≤ |τi| < τmin, τ̇i > 0

q(τi(t−)), othercases

where τm = ρ
1−m
i τmin,m = 1, 2, . . ., τmin > 0, 0 < ρi < 1,

and δi =
1−ρi
1+ρi

; q(τi) is the set U = {0,±τm,±τm(1 + δi)}.
Based on the results in [31], q(τi) is decomposed in the
following form

q(τi) = Hi(τi)τi(t)+ Li(t) (3)

where

Hi(τi) =


q (τi)
τi

, |τi| > τmin

1, |τi| ≤ τmin

Li(t) =

{
0, |τi| > τmin

−τi, |τi| ≤ τmin

and Hi(τi) and Li(t) satisfy

1− δi ≤ Hi(τi) ≤ 1+ δi, |Li(t)| ≤ τmin. (4)

The main control objective of this paper is to design a
FTCFB adaptive quantized control scheme for quadrotor
UAV, which enables the output of quadrotor UAV faster track
the desired reference trajectories yd,x , yd,y, yd,z, yd,ψ , and
the finite-time boundedness of all signals in the closed-loop
system is guaranteed.
Assumption 1: For i = x, y, z, ψ , the desired trajectories

yd,i and its first derivative ẏd,i are known and bounded.
Assumption 2: The external disturbance di is bounded, and

it satisfies |di| ≤ di,max.
Lemma 1 ([34]): For a nonlinear system ẋ = f (x), there

exist a continuous positive definite function z(x) and scalars
µ1 > 0, µ2 > 0, 0 < ς < 1, 0 < ι <∞ such that ż(x) ≤
−µ1z(x)−µ2z(x)ς+ι, then the solution of ẋ = f (x) is prac-
tical finite-time stable, where the setting time Tr is bounded

by Tr ≤ max{t0 + 1
$0µ1(1−ς )

ln $0µ1z1−ς (t0)+µ2
µ2

, t0 +
1

µ1(1−ς)
ln η1z

1−ς (t0)+$0µ2
$0µ2

}, and$0 satisfies 0 < $0 < 1.
Lemma 2 ([36]): Assume that F(X ) is a continuous func-

tion defined on a compact set �. For any given constant
ε > 0, there exists a fuzzy logical systemW>S(X ) such that

sup
X∈�
|F(X )−W>S(X )| ≤ ε

where W = [W1, . . . ,WN ]> ∈ RN is the weight vec-
tor; S(X ) = [S1(X ), S2(X ), . . . , SN (X )]>/

∑N
i=1 Si(X ) ∈

RN , and Si(X ) is the commonly Gaussian function

defined by Si(X ) = exp
[
−

(X−µi)>(X−µi)
η2i

]
with µi =

[µi,1, µi,2, . . . , µi,n]> and ηi being the center vector and the
width of the Gaussian function, respectively.
Lemma 3 ([37]): Suppose that α > 0, β > 0, and

λ(p, q) > 0 is a real valued function, the following inequality
holds

|p|α|q|β ≤
αλ(p, q)|p|α+β

α + β
+
βλ(p, q)−

α
β |q|α+β

α + β
.

Lemma 4 ([38]): For ξi ∈ R, i = 1, . . . ,M , and
0 < ν ≤ 1, one has( M∑

i=1

|ξi|

)ν
≤

M∑
i=1

|ξi|
ν
≤ M1−ν

( M∑
i=1

|ξi|

)ν
.

III. POSITION AND ATTITUDE CONTROLLERS DESIGN
In this section, a novel finite-time adaptive trajectory tracking
control scheme for quadrotor UAV is proposed via FTCFB
method, where the position controller and attitude controller
are designed, respectively.

Firstly, the tracking errors are constructed as follows

χi,1 = 4i − yd,i (5)

χi,2 = 4̇i −3i,1 (6)

where yd,i is the corresponding desired trajectory; 3i,1 is the
output of finite-time command filter with the virtual control
signal 3i,1 as filter input signal. The finite-time command
filter borrowed from [39] is given as

φ̇i,1 = φi,2

φ̇i,2 =
1

ε2i

(
− ai,1 arctan

(
φi,1 −3i,1

)
− ai,2 arctan

(
εiφi,2

) ) (7)

where εi, ai,1 and ai,2 are positive constants, 3i,1 = φi,1
˙3i,1 = φi,2. There exist contants τ > 0, ρ > 0 such that

φi,1 −3i,1 = Oi(ε
ρτ
i ) (8)

where Oi(ε
ρτ
i ) denotes the degree of approximation between

φi,1 and 3i,1.
Remark 1: Note that the command filters in [24]–[28] can

merely ensure the asymptotic convergence, so the output
signal of command filter can not faster approximate the

VOLUME 8, 2020 179365



W. Yang et al.: Finite-Time Adaptive Fuzzy Quantized Control for a Quadrotor UAV

derivative of virtual control signal. Although the command
filter in [34] has the characteristic of finite-time convergence,
the chattering phenomenon may arise. For the command
filter in (7), the finite-time convergence is achieved and the
chattering phenomenon is also attenuated at the same time.

Furthermore, define the compensated tracking errors

νi,1 = χi,1 − κi,1 (9)

νi,2 = χi,2 − κi,2 (10)

where the compensated signal κi,1 and κi,2 will be given later.

A. CONTROLLER DESIGN FOR ATTITUDE SUBSYSTEM
Step i, 1: According to the error transformations (5),
(6) and (9), the time derivative of νi,1 (i = 1, 2, 3) is given
as

ν̇i,1 = χi,2 +
(
3i,1 −3i,1

)
+3i,1 − ẏd,i − κ̇i,1. (11)

The virtual control signal 3i,1 is designed as

3i,1 = −ci,1χi,1 + ẏd,i − si,1ν
γ

i,1 (12)

where ci,1, si,1 are positive design parameters; 1/2 < γ =

γ1/γ2 < 1, γ1, γ2 are positive odd integers. The compensated
signal κi,1 is chosen as

κ̇i,1 = −ci,1κi,1 + κi,2 +
(
3i,1 −3i,1

)
− hi,1κ

γ

i,1 (13)

where hi,1 > 0 is a design constant, and the initial condition
is κi,1(0) = 0.

Choose the Lyapunov function candidate Vi,1 = 1
2ν

2
i,1 +

1
2κ

2
i,1. Based on (11) and (13), the time derivative of Vi,1 is

calculated as

V̇i,1 = −ci,1ν2i,1 − si,1ν
1+γ
i,1 + νi,1νi,2 + hi,1νi,1κ

γ

i,1

−ci,1κ2i,1 − hi,1κ
1+γ
i,1 + κi,1

(
3i,1 −3i,1

)
+ κi,1κi,2. (14)

Step i, 2: In light of (1), (6) and (10), the time derivative of
νi,2 is obtained

v̇i,2 = giHi(τi)τi + giLi + fi + di −
˙3i,1 − κ̇i,2. (15)

Given that fi is an unknown nonlinear function, so the
designed controller cannot contain fi due to the realizability.
From Lemma 2, for any given constant εi > 0, a fuzzy logical
systemW>i Si(4) is applied to identify the function fi such that
fi = W>i Si(4) + 1i(4), |1i(4)| ≤ εi, 4 = [4̇1, 4̇2, 4̇3].
By using Young’s inequality, one has

νi,2fi = νi,2W>i Si + νi,21i

≤
νi,2

2
‖Wi‖

2S>i Si
2l2i

+
1
2
l2i +

1
2
ν2i,2 +

1
2
ε2i (16)

where li > 0 is a design parameter. Define unknown constants
2i =

{
‖Wi‖

2
}
, i = 1, 2, 3, and 2̃i = 2i− 2̂i is the estimate

error.
The compensated signal κi,2 is chosen as

κ̇i,2 = −ci,2κi,2 − κi,1 − hi,2κ
γ

i,2 (17)

with ci,2 and hi,2 being positive design parameters. Define
bi = gi(1 − δi), pi = 1

bi
, i = 1, 2, 3, and p̃i = pi − p̂i is the

estimate error. The actual controller τi is designed as

3i,2 = ci,2χi,2 + χi,1 + si,2ν
γ

i,2 −
˙3i,1

+
νi,22̂iS>i Si

2l2i
+

3
2
νi,2

τi = −
νi,2p̂2i3

2
i,2√

ν2i,2p̂
2
i3

2
i,2 + ω

2
i

(18)

where si,2, ωi are positive design parameters. The parameter
update laws 2̂i and p̂i are constructed as follows

˙̂
2i =

miν2i,2S
>
i Si

2l2i
− σi2̂i (19)

˙̂pi = niνi,23i,2 − rip̂i (20)

where mi, ni, ri and σi are positive constants.
Consider the following Lyapunov function Vi = Vi,1 +

1
2ν

2
i,2 +

1
2κ

2
i,2 +

1
2mi
2̃2
i +

bi
2ni
p̃2i . The time derivative of Vi is

computed as

V̇i = V̇i,1 + νi,2
(
giHiτi + giLi + fi + di −

˙3i,1 − κ̇i,2
)

+ κi,2κ̇i,2 −
1
mi
2̃i
˙̂
2i −

bi
ni
p̃i ˙̂pi. (21)

From Assumption 2, equation (4) and Young’s inequality,
the following inequalities hold

νi,2di ≤
1
2
ν2i,2 +

1
2
d2i,max (22)

νi,2giLi ≤
1
2
ν2i,2 +

1
2
g2i τ

2
min. (23)

According to the fact 0 ≤ |ε| − ε2√
ε2+η2

< η, one yields

νi,2giHiui = −giHi
ν2i,2p̂

2
i3

2
i,2√

ν2i,2p̂
2
i3

2
i,2 + ω

2
i

≤ −bi
ν2i,2p̂

2
i3

2
i,2√

ν2i,2p̂
2
i3

2
i,2 + ω

2
i

≤ bi
(
ωi − p̂i|νi,23i,2|

)
. (24)

Thus, it follows that

νi,2giHiτi + νi,23i,2 −
bi
ni
p̃i ˙̂pi

≤ bi
(
ωi − p̂i|νi,23i,2|

)
+ νi,23i,2 − bip̃iνi,23i,2 +

ribi
ni
p̃ip̂i

= biωi +
ribi
ni
p̃ip̂i. (25)

By substituting (16)–(20) and (22), (23), (25) into (21), one
has

V̇i ≤ −
2∑
j=1

(
ci,jν2i,j + si,jν

1+γ
i,j + ci,jκ

2
i,j + hi,jκ

1+γ
i,j

− hi,jνi,jκ
γ
i,j

)
+ κi,1

(
3i,1 −3i,1

)
179366 VOLUME 8, 2020
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+
σi

mi
2̃i2̂i +

ribi
ni
p̃ip̂i + biωi +

1
2
g2i τ

2
min

+
1
2
d2i,max +

1
2
l2i +

1
2
ε2i . (26)

Based on |3i,1 − 3i,1| = Oi(ε
ρτ
i ) and Young’s inequality,

the following inequality can be obtained

κi,1
(
3i,1 −3i,1

)
≤

1
2
κ2i,1 +

1
2
Oi

(
ε
2ρτ
i

)
. (27)

By applying Lemma 3 to the term hi,jνi,jκ
γ
i,j, one has

hi,jνi,jκ
γ
i,j ≤

hi,j
1+ γ

|νi,j|
1+γ
+
γ hi,j
1+ γ

|κi,j|
1+γ . (28)

Substituting (27)–(28) into (26) results in

V̇i ≤ −
2∑
j=1

ci,jν2i,j −
2∑
j=1

(
si,j −

hi,j
1+ γ

)
ν
1+γ
i,j

−

(
ci,1 −

1
2

)
κ2i,1 − ci,2κ

2
i,2 −

2∑
j=1

hi,j
1+ γ

κ
1+γ
i,j

−
σi

2mi
2̃2
i −

ribi
2ni

p̃2i +
σi

2mi
22
i +

ribi
2ni

p2i

+
1
2

(
Oi

(
ε
2ρτ
i

)
+ g2i τ

2
min + d

2
i,max + l

2
i + ε

2
i

)
+ biωi. (29)

B. CONTROLLER DESIGN FOR POSITION SUBSYSTEM
Step i, 1: On the basis of (5), (6) and (9), taking the time
derivative of νi,1 (i = 4, 5, 6) yields

ν̇i,1 = χi,2 +
(
3i,1 −3i,1

)
+3i,1 − ẏd,i − κ̇i,1. (30)

The virtual control signal3i,1 and compensated signal κi,1
are given as

3i,1 = −ci,1χi,1 + ẏd,i − si,1ν
γ

i,1 (31)

κ̇i,1 = −ci,1κi,1 + κi,2 +
(
3i,1 −3i,1

)
− hi,1κ

γ

i,1 (32)

where ci,1, si,1 and hi,1 are positive constants; 1/2 < γ =

γ1/γ2 < 1, γ1, γ2 are positive odd integers, and the initial
condition of κi,1 is set as κi,1(0) = 0.
Choose the Lyapunov function candidate as Vi,1 = 1

2ν
2
i,1+

1
2κ

2
i,1, and the time derivative of Vi,1 is computed as

V̇i,1 = −ci,1ν2i,1 − si,1ν
1+γ
i,1 + νi,1νi,2 + hi,1νi,1κ

γ

i,1

− ci,1κ2i,1 − hi,1κ
1+γ
i,1 + κi,1

(
3i,1 −3i,1

)
+ κi,1κi,2. (33)

Step i, 2: From (2), (6) and (10), the time derivative of νi,2 can
be alternated as

v̇i,2 = Hi(τi)τi + Li + fi + di −
˙3i,1 − κ̇i,2. (34)

Consider the estimate errors 2̃i = 2i − 2̂i, where
unknown constants are defined as 2i =

{
‖Wi‖

2
}
,

i = 4, 5, 6. Similar to (16), the following inequality can be
obtained

νi,2fi = νi,2W>i Si + νi,21i

≤
νi,2

2
‖Wi‖

2S>i Si
2l2i

+
1
2
l2i +

1
2
ν2i,2 +

1
2
ε2i (35)

with li > 0 being a design constant.
The compensated signal κi,2 is designed as

κ̇i,2 = −ci,2κi,2 − κi,1 − hi,2κ
γ

i,2 (36)

where ci,2 > 0, hi,2 > 0. For i = 4, 5, 6, define bi = 1 − δi,
pi = 1

bi
, and p̃i = pi − p̂i. Construct the actual controller τi

as follows

3i,2 = ci,2χi,2 + χi,1 + si,2ν
γ

i,2 −
˙3i,1

+
νi,22̂iS>i Si

2l2i
+

3
2
νi,2

τi = −
νi,2p̂2i3

2
i,2√

ν2i,2p̂
2
i3

2
i,2 + ω

2
i

(37)

where si,2 > 0, ωi > 0 are design parameters. The parameter
update laws 2̂i and p̂i are selected as

˙̂
2i =

miν2i,2S
>
i Si

2l2i
− σi2̂i (38)

˙̂pi = niνi,23i,2 − rip̂i (39)

where mi, ni, ri and σi are positive constants.
Consider the following Lyapunov function Vi = Vi,1 +

1
2ν

2
i,2 +

1
2κ

2
i,2 +

1
2mi
2̃2
i +

bi
2ni
p̃2i . The time derivative of Vi is

calculated as

V̇i = V̇i,1 + νi,2
(
Hiτi + Li + fi + di −

˙3i,1 − κ̇i,2

)
+ κi,2κ̇i,2 −

1
mi
2̃i
˙̂
2i −

bi
ni
p̃i ˙̂pi. (40)

Obviously, the following inequalities hold

νi,2di ≤
1
2
ν2i,2 +

1
2
d2i,max (41)

νi,2Li ≤
1
2
ν2i,2 +

1
2
τ 2min. (42)

According to (37) and based on the fact that 0 ≤ |ε| −
ε2√
ε2+η2

< η, one gets

νi,2Hiτi = −Hi
ν2i,2p̂

2
i3

2
i,2√

ν2i,2p̂
2
i3

2
i,2 + ω

2
i

≤ −bi
ν2i,2p̂

2
i3

2
i,2√

ν2i,2p̂
2
i3

2
i,2 + ω

2
i

≤ bi
(
ωi − p̂i|νi,23i,2|

)
. (43)

Furthermore, one has

νi,2Hiui + νi,23i,2 −
ri
ni
p̃i ˙̂pi

≤ bi
(
ωi − p̂i|νi,23i,2|

)
+ νi,23i,2 − bip̃iνi,23i,2 +

ribi
ni
p̃ip̂i

= biωi +
ribi
ni
p̃ip̂i. (44)
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Similarly to the processing method (26)–(28) in subsec-
tion III-A, it is easily verified that

V̇i ≤ −
2∑
j=1

ci,jν2i,j −
2∑
j=1

(
si,j −

hi,j
1+ γ

)
ν
1+γ
i,j

−

(
ci,1 −

1
2

)
κ2i,1 − ci,2κ

2
i,2 −

2∑
j=1

hi,j
1+ γ

κ
1+γ
i,j

−
σi

2mi
2̃2
i −

ribi
2ni

p̃2i +
σi

2mi
22
i +

ribi
2ni

p2i + biωi

+
1
2

(
Oi

(
ε
2ρτ
i

)
+ τ 2min + d

2
i,max + l

2
i + ε

2
i

)
. (45)

In the design of double closed-loop controller, the desired
signals of roll angle and pitch angle can be obtained by
the control input of position subsystem and the reference
trajectory of given yaw angle

τ6 =
τF

m
(cosφ cos θ) (46)

τ4 =
τF

m
(cosφ sin θ cosψ + sinφ sinψ) (47)

τ5 =
τF

m
(cosφ sin θ sinψ − sinφ cosψ) . (48)

Based on (46)–(48), the desired roll angle and pitch angle are
given as

θd = arctan
(
τ4 cosψ + τ5 sinψ

τ6

)
(49)

φd = arctan
(
τ4 sinψ − τ5 cosψ

τ6
cos θd

)
(50)

and the total lift force is calculated as

τF =
mτ6

cosφd cos θd
. (51)

Remark 2: In previous works [24]–[28], the traditional
ECM is designed to remove the effect of filter error. However,
it is difficult to ensure faster convergence rate. In our results,
themodified fractional order ECM is designed to fleetly elim-
inate the effect of filter error. In particular, when the design
constant hi,k is set as hi,k = 0, the modified fractional order
ECM reduces to the traditional ECM. Therefore, the proposed
modified fractional order ECM contains the traditional ECM
as a special case, which is more effective.

IV. STABILITY ANALYSIS
Theorem 1: For the quadrotor UAV with quantized inputs

when the Assumptions 1–2 satisfied, the actual controllers
(18), (37) with the virtual control signals (12), (31) and the
parameter update laws (19), (20), (38), (39) together with
finite-time command filter (7) guarantee that all signals in
closed-loop system are bounded in finite-time, and the track-
ing errors will converge to a sufficiently small neighbor-
hood of the origin in finite time by tuning properly design
parameters.

Proof: Choose the Lyapunov function V =
6∑
i=1

Vi. In light of

(29) and (45), the time derivative of V is given as

V̇ ≤
6∑
i=1

{
−

2∑
j=1

ci,jν2i,j −
2∑
j=1

(
si,j −

hi,j
1+ γ

)
ν
1+γ
i,j

−

(
ci,1 −

1
2

)
κ2i,1 − ci,2κ

2
i,2 −

2∑
j=1

hi,j
1+ γ

κ
1+γ
i,j

−
σi2̃

2
i

2mi
−
ribi
2ni

p̃2i − ki

(
2̃2
i

2mi

) 1+γ
2

+ ki

(
2̃2
i

2mi

) 1+γ
2

− λi

(
bip̃2i
2ni

) 1+γ
2

+ λi

(
bip̃2i
2ni

) 1+γ
2

+
σi2

2
i

2mi
+ biωi

+
ribi
2ni

p2i +
1
2

(
Oi

(
ε
2ρτ
i

)
+ d2i,max + l

2
i + ε

2
i

)}
+

1
2

3∑
i=1

(
g2i + 1

)
τ 2min (52)

where ki and λi are positive constants.

By applying Lemma 3 to the terms
(
2̃2
i

2mi

) 1+γ
2

and(
bip̃2i
2ni

) 1+γ
2

, there exists a constant ϑ satisfied 0 < ϑ < 1

such that(
2̃2
i

2mi

) 1+γ
2

≤
ϑ

2mi
2̃2
i +

(1−γ )
2

(
ϑ−1(1+γ )

2

) 1+γ
1−γ

(53)

(
bip̃2i
2ni

) 1+γ
2

≤
ϑbi
2ni

p̃2i +
(1−γ )

2

(
ϑ−1(1+γ )

2

) 1+γ
1−γ

. (54)

Thus, the inequality (52) can be rewritten as

V̇ ≤
6∑
i=1

{
−

2∑
j=1

ci,jν2i,j −
2∑
j=1

(
si,j −

hi,j
1+ γ

)
ν
1+γ
i,j

−

(
ci,1 −

1
2

)
κ2i,1 − ci,2κ

2
i,2 −

2∑
j=1

hi,j
1+ γ

κ
1+γ
i,j

− (σi − kiϑ)
2̃2
i

2mi
− (ri − λiϑ)

bip̃2i
2ni

− ki

(
2̃2
i

2mi

) 1+γ
2

− λi

(
bip̃2i
2ni

) 1+γ
2

+
σi2

2
i

2mi

+
ribi
2ni

p2i + (ki + λi)
(1− γ )

2

(
ϑ−1(1+ γ )

2

) 1+γ
1−γ

+
1
2

(
Oi

(
ε
2ρτ
i

)
+ d2i,max + l

2
i + ε

2
i

)
+ biωi

}
+

1
2

3∑
i=1

(
g2i + 1

)
τ 2min

≤ −µ1V − µ2V
1+γ
2 + ι (55)
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where µ1 = min{2ci,j, 2(ci,1 − 1
2 ), σi − kiϑ, ri − λiϑ}, µ2 =

min{2
1+γ
2 (si,j −

hi,j
1+γ ), 2

1+γ
2

hi,j
1+γ , ki, λi}, ι =

∑6
i=1(

σi2
2
i

2mi
+

ribi
2ni
p2i + (ki + λi)

(1−γ )
2 (ϑ

−1(1+γ )
2 )

1+γ
1−γ +biωi + 1

2 (Oi(ε
2ρτ
i )+

d2i,max + l
2
i + ε

2
i ))+

1
2

∑3
i=1(g

2
i+1)τ

2
min.

Therefore, (55) is changed as follows

V̇ ≤ −$0µ1V − (1−$0)µ1V − µ2V
1+γ
2 + ι (56)

or

V̇ ≤ −µ1V −$0µ2V
1+γ
2 − (1−$0)µ2V

1+γ
2 + ι (57)

where 0 < $0 < 1.With help of (56), if V > ι/((1−$0)µ1),
then V̇ ≤ −$0µ1V − µ2V

1+γ
2 . Based on Lemma 1, νi,j, κi,j

and 2̃i, p̃i will converge into the following region(
νi,j, κi,j, 2̃i, p̃i

)
∈

{
V ≤

ι

(1−$0)µ1

}
(58)

in finite time Ti,1 ≤ (2/($0µ1(1− γ ))) ln(($0µ1V
1−γ
2 (0)+

µ2)/µ2). In light of (57), V̇ ≤ −µ1V − $0µ2V
1+γ
2 is

obtained when V
1+γ
2 > ι/((1 − $0)µ2). In the same way,

νi,j, κi,j and 2̃i, p̃i are driven into the following region

(
νi,j, κi,j, 2̃i, p̃i

)
∈

{
V ≤

(
ι

(1−$0)µ2

) 2
1+γ
}

(59)

within finite time Ti,2 ≤ (2/(µ1(1− γ ))) ln((µ1V
1−γ
2 (0)+

$0µ2)/$0µ2). Thus, the finite-time boundedness of all sig-
nals νi,j, κi,j and 2̃i, p̃i in closed-loop system is achieved.
It means that νi,1 and κi,1 will converge into the region

|νi,1| ≤min


√

2ι
(1−$0)µ1

,

√√√√2
(

ι

(1−$0)µ2

) 2
1+γ

 (60)

|κi,1| ≤min


√

2ι
(1−$0)µ1

,

√√√√2
(

ι

(1−$0)µ2

) 2
1+γ

 (61)

within finite time Ti = max {(2/($0µ1(1− γ ))) ln(($0µ1

V
1−γ
2 (0) + µ2)/µ2), (2/(µ1(1 − γ ))) ln((µ1V

1−γ
2 (0)+

$0µ2)/$0µ2)}. For t ≥ Ti, χi,1 finally enters into the
following region

|χi,1| ≤ |νi,1| + |κi,1|

≤ min

2
√

2ι
(1−$0)µ1

, 2

√√√√2
(

ι

(1−$0)µ2

) 2
1+γ

 .
(62)

From (62), the tracking error χi,1 can be regulated arbitrar-
ily small in finite time by choosing the appropriate design
parameters. �

V. SIMULATION RESULTS
In this section, a simulation example is carried out to show the
effectiveness of the proposed finite-time adaptive trajectory
tracking control scheme. The model parameters of quadrotor
UAV are shown in TABLE 1.

TABLE 1. Model parameters.

In the simulation, the desired position trajectories are
given as xd = sin

(
π
15 t
)
, yd = cos

(
π
15 t
)
, zd = 1

6 t ,
and the expected yaw angle is selected as ψd = π

4 .
The initial condition of the quadrotor UAV is chosen as
[φ(0), θ(0), ψ(0), x(0), y(0), z(0)]=[0, 0, 0, 0.8, 0.2, 0]. The
design parameters of the actual controllers, virtual control
signals, parameter update laws and the finite-time command
filters are provided in TABLE 2.

TABLE 2. Design parameters.

The simulation results are shown in Figs. 1–7. Fig. 1 shows
the trajectory tracking curves of quadrotor UAV in 3-D space.
The curves of the actual trajectories and the desired trajecto-
ries are shown in Figs. 2–3. It can be seen from Figs. 1–3
that the developed finite-time control strategy can faster and
accurately track the desired trajectories. Figs. 4–5 show the
curves of the parameter update laws 2̂i and p̂i. Figs. 6–7 plot
the trajectories of the control input τi and quantized output
signal q(τi), respectively.

Finally, the comparative simulation between FTCFB con-
trol algorithm and CFB control scheme in [22] is used to
show the merits of proposed finite-time control strategy. The
design parameters of CFB control scheme are the same as
FTCFB control algorithm except that si,1 = si,2 = hi,1 =
hi,2 = 0. The simulation comparison results of position
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FIGURE 1. The curves of trajectory tracking in 3-D space.

FIGURE 2. The curves of desired and actual states φ, θ and ψ .

FIGURE 3. The curve of desired and actual states x , y and z .

and attitude tracking errors are shown in Figs. 8–9. From
Figs. 8–9, it can be seen that the proposed FTCFB control
algorithm can achieve desired performance with a smaller
tracking error and a faster convergence speed. Nevertheless,

FIGURE 4. The curves of parameter update laws 2̂i and p̂i (i = 1,2,3).

FIGURE 5. The curves of parameter update laws 2̂i and p̂i (i = 4,5,6).

FIGURE 6. The curves of control input τi and quantized output signal
q(τi ) (i = 1,2,3).

there are still some shortcomings, such as relatively larger
control energy and more design parameters, which will be
improved in the future.
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FIGURE 7. The curves of control input τi and its quantized output signal
q(τi ) (i = 4,5,6).

FIGURE 8. The curves of tracking errors of attitude subsystem.

FIGURE 9. The curves of tracking errors of position subsystem.

VI. CONCLUSION
This paper has proposed a new FTCFB adaptive quantized
control scheme to solve trajectory tracking problem for a
quadrotor UAV, which enables the finite-time convergence.
The finite-time control algorithm has been designed for posi-
tion subsystem and attitude subsystem via the CFB technique
and finite-time control theory. Different from the previous
results, the design does not need the priori information of
quantization parameters associated with position subsystem

and attitude subsystem. Finally, a simulation example has
confirmed the effectiveness of the developed finite-time con-
trol approach. Our future works will concentrate on the
observer-based FTCFB adaptive control for quadrotor UAV,
as well as study the FTCFB distributed consensus control
for multiple quadrotor UAVs based on the results of [40]
and [41].
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