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ABSTRACT A simplified representation of a distribution network offers relevant advantages in limiting
the amount of information processed and reducing the computational burden necessary for its treatment,
in particular in planning studies, real-time simulations, monitoring and control. The identification of the
relevant information for obtaining a correct reduced modeling of a distribution network results from the
Load Area (LA) approach. It is based on the concept of groups of nodes/prosumers whose power injection
has a similar impact on the operating conditions of distribution grids; the groups are identified through
overload and voltage indexes. The paper presents a method for obtaining the reduced equivalent modeling
of unbalanced radial grids in the LA framework, once the LAs have been identified. It is based on the
backward-forward graph navigation technique for radial grids and a generalization of the modeling of
single-phase and two-phase branches. The application and discussion of themethod for five different size test
cases highlight the computational issues related to the representation and solution of the reduced networks.
The results show the feasibility of the proposed method and highlight the computational gains deriving from
its adoption.

INDEX TERMS Distribution network reduced modeling, unbalanced systems, backward-forward methods.

NOMENCLATURE
* Reference case/value.
diag{x} Diagonal matrix whose elements along the

principal diagonal are the components of
vector x.

α̇i_φ,h 1× 2 row factor.
α̇i,h 3× 2 matrix of three factors α̇i_φ,h.
γ̇t,h 3× 2 matrix for the h-th prosumer’s category in

the t-th terminal.
θ̇t 3× 3 matrix for the t-th terminal.
νh,k Number of phases to which the k–th prosumer

of the h–th category is connected.
πi_φ,h,k Connection to the grid of the k–th prosumer

in the h–th category.
ϕ∗h,k Phase angle (assumed constant) of the load

current of the k-th prosumer in the h-th
category.

Ȧh nLA × 2 matrix whose rows are the factors
α̇i_φ,h.

2̇f 6× 6 matrix for the f -th feeder.

The associate editor coordinating the review of this manuscript and

approving it for publication was Lin Zhang .

0̇f ,h 6× 2 matrix for the h-th prosumer’s category
in the f -th feeder.

ȧi 3×1 vector of the transformer phase turns
ratio.

bf Relevant bifurcation nodes.
de Describing nodes.
e Edge nodes.
fh(Ph) Relationship between active and reactive

powers for the h-th category.
in Nodes other than the describing ones.
nc Number of categories of prosumers.
neq Sum of the number of phases in all de busses.
nf Number of branches in the f -th feeder.
nh Number of prosumers in the h–th category.
nLA Sum of the number of phases in all Load

Area busses.
p∗h,k , q

∗
h,k Fixed share of the active and reactive power

injection by the k-th prosumer in the
h-th category.

Ī si , Ī
r
i 3× 1 vectors of the input (at the sending bus)

and output (from the receiving bus) phase
currents for the i-th branch.
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J̄ Injected currents.
J̄ ext Currents from the outside of the Load Area.
J̄p Prosumers’ injected currents.
J̄pi_φ Prosumers’ injected current at the φ–th phase

of the i–th bus.
Ph Active power injection of the h-th category.
Ph,k ,Qh,k Active and reactive power injection by the

k-th prosumer in the h-th category.
Pinji_φ , Q

inj
i_φ Active and reactive power injections in the

φ-th phase of the i–th bus.
PL Active power consumption of the pure load

prosumer’s category.
Ṫi 6× 6 matrix for the i-th branch.
Ū Nodal voltages.
Ūi_φ Voltage of the φ–th phase of the i–th bus.
Ū s
i , Ū

r
i 3× 1 vectors of the phase voltages at the

sending and receiving busses for the
i-th branch.

Ȳ Admittance matrix.
Ẏ si , Ẏ

r
i 3× 3 matrices of shunt admittances,

sending and receiving sides, for the
i-th branch.

Żi 3× 3 matrix of series impedance for the
i-th branch.

I. INTRODUCTION
Distribution systems are profoundly involved in the change
of the electricity industry towards higher flexibility, acces-
sibility, reliability, affordability. Changes involve archi-
tecture, planning, monitoring and control, the role of
users, connectivity among areas, and exploitation of
renewables.

The planning of distribution systems in the changing sce-
nario is based on new approaches requiring a huge amount of
operations simulations [1]; the decision-making support sys-
tem benefits from the reduced computational times deriving
from a compact (yet accurate) grid modeling. The required
new monitoring and control functionalities make available
a very large amount of information [2], [3]; not all this
information needs a detailed consideration, and a significant
reduction in the related treatment burden can be achieved by
considering only the strictly relevant one [4]. The need for
a reduced representation of distribution grids is found also
in real-time simulations useful to utilities to understand the
operational behavior of physical devices without interfering
with the actual grid [5].

To get a model of a distribution system that is accurate as
needed without being unduly detailed, the concept of Load
Area (LA) can be usefully adopted; a LA is a group of
prosumers/nodes whose power injection has a similar impact
on the operating conditions of the grid. Generally speaking,
a LA is a subgrid; nevertheless, a LA can comprise a whole
distribution grid [6]. With the adoption of the LA concept,
only the relevant information can be selected; a compact
yet accurate representation of the relationship between the

relevant quantities can be derived as a reduced representation
of the LA [7].

Network reduction is a classic topic in power systems
[8], and is regularly revisited. Most methods have been
developed for transmission systems; recently, many papers
have been devoted to the simplification of the model-
ing of distribution networks. The present work is focused
on distribution systems within the LA approach, which
allows identifying the homogeneous parts of the grid whose
representation can be simplified by a reduced equivalent
model.

Compared to [1], in the current study lines are fully rep-
resented including line charging capacitances, and injections
are modeled as powers and not currents. In [4], unbalanced
laterals are reduced to the three-phase main feeders, while
in this study the reduction is not focused on feeders, whose
representation can be further compacted, and unbalanced
busses can be retained as representative busses if needed.
Reference [5] proposes a Montecarlo approach to reduce
the grid, while our approach is non-iterative thanks to the
eigenvalue sensitivities [9], [10] the LA approach is based
upon. Reference [11] proposes a general network reduction
method that groups nodes based on congestions only, while
the current study also considers voltage issues and is spe-
cialized for unbalanced radial distribution systems. In [12],
a network segment between two relevant busses is replaced by
a two-port non-linear network; many busses have to be kept in
the reduced model which is not the case in the current study.
In [13], admittance matrix inversion is required for both the
original and reduced network, and there is a choice to bemade
for the reduced impedance matrix as it is not unique; in the
present study, there is no matrix inversion and no choice is
required.

In this paper, a method to get the equivalent reduced mod-
eling of an unbalanced radial distribution network is pre-
sented, starting from the identification process of LA subgrids
proposed in [14]. The method is based on a specialized
approach, which allows obtaining the reduced representation
in a computationally efficient way for large grids. Themethod
is made of a two-stage backward-forward (b&f) graph navi-
gating technique and builds on a generalization of the descrip-
tion of one- and two-phase branches.

This work contributes to the existing literature on network
reduction mainly with:

• uniform treatment of all busses, allowing to keep as
representative busses also one- and two-phase ones;

• no requirement for admittance matrix inversion;
• exploitation of the radiality of the distribution grid to get
a reduced representation;

• retention of the radiality in the reduced model.

The details of the method are presented, and the reduced
relationships among relevant voltages/currents are obtained.
The method is applied to five test cases of different sizes,
highlighting the computational issues related to the reduced
network representation and solution.
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II. LOAD AREA - OVERVIEW
The LA concerns the management of DER flexibility, firstly
proposed in the ADDRESS project [15] which was focused
on the exploitation of the flexibility provided by small pro-
sumers connected to low voltage distribution systems. A LA
is a group of prosumers/nodes whose power injection has a
similar impact on the distribution grid operating conditions;
a whole distribution network can be seen as a composition
of LAs.

The identification of a LA requires the consideration of the
relevant operating limitations in the grid, the evaluation of the
impact of the nodal injection on the relevant operating issues,
the clustering of the nodes with close values of the impact
factors. The above process is described in [7], [16] for bal-
anced radial distribution systems, and in [14] for unbalanced
radial systems.

Once identified, a LA can be represented with a reduced
model, which accounts for the power injections by prosumer
categories within the LA and describes the grid within the LA
with a reduced model. The reduced models of the LAs are
then composed to get the reduced model of the whole grid.
For unbalanced systems, the representation of a LA is briefly
recalled in the following; the reader is referred to [14] for
more details.

A. PROSUMERS
In a given LA, similar prosumers (residential, commercial,
etc.) are grouped in categories [7], [17]. The active power
injection by the k-th prosumer in the h-th category can be
assumed to be a fixed share of the active power injection of
the whole category:

Ph,k = p∗h,kPh. (1)

The reactive power injection by the same prosumer can be put
as:

Qh,k = q∗h,k fh(Ph)Ph; (2)

for example, for a pure load category it would be:

q∗h,k = tanϕ∗h,kp
∗
h,k , fh(Ph) = 1, h ≡ pure loads. (3)

The relationships between active and reactive powers for
different prosumers’ categories can be found in [14].

B. NODAL INJECTIONS
In the remaining of the paper, the terms proposed in [18] are
used: a ‘‘node’’ is a single phase in a bus, and a ‘‘bus’’ is a
group of nodes (one to three).

The prosumers’ injected current in the φ–th phase of the
i–th bus can be expressed as:

J̄pi_φ =
Pinji_φ − j Q

inj
i_φ

Ûi_φ

=
1

Ûi_φ

nc∑
h=1

[
π∗i_φ,h −jρ

∗
i_φ,h

] [ 1
fh(Ph)

]
Ph, (4)

where symbol̂ represents the complex conjugate.
In (4), it is:

Pinji_φ =
nc∑
h=1

nh∑
k=1

πi_φ,h,kPh,k

=

nc∑
h=1

Ph

nh∑
k=1

πi_φ,h,k p∗h,k

=

nc∑
h=1

π∗i_φ,hPh, φ = 1, 2, 3,

Qinji_φ =
nc∑
h=1

nh∑
k=1

πi_φ,h,kQh,k

=

nc∑
h=1

fh(Ph)Ph
nh∑
k=1

πi_φ,h,k q∗h,k

=

nc∑
h=1

ρ∗i_φ,h fh(Ph)Ph, φ = 1, 2, 3,

π∗i_φ,h =

nh∑
k=1

πi_φ,h,kp∗h,k ,

ρ∗i_φ,h =

nh∑
k=1

πi_φ,h,kq∗h,k ,

πi_φ,h,k =



1/νh,k if the k–th prosumer of the h–th
category is connected in the
i–th grid bus to the φ − th
phase;

0 otherwise.

(5)

By assuming that voltages do not change too much with
respect to a reference case:

Ūi_φ ≈ Ū∗i_φ, (6)

eq. (4) becomes:

J̄pi_φ ≈
1

Û∗i_φ

nc∑
h=1

(
π∗i_φ,h − jρ

∗
i_φ,h fh(Ph)

)
Ph

=

nc∑
h=1

α̇i_φ,h

[
1

fh(Ph)

]
Ph, (7)

where

α̇i_φ,h =
1

Û∗i_φ

[
π∗i_φ,h − jρ∗i_φ,h

]
. (8)

C. LOAD AREA NETWORK REPRESENTATION
A reduced model of the LA can be envisaged, which retains
only some nodes/busses of the original network. Based on the
results of the LA identification, phase voltages of the edge
busses and the currents injected in them from the outside are
relevant describing quantities to represent the LA. Retaining
other busses within the LA can be necessary to preserve the
radiality of the compact model (namely the bifurcations in the
subtree connecting edge or other relevant nodes/busses [7]),
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or for monitoring and control purposes (such as the busses
where OLTC or voltage-controlled DG are installed, possibly
aggregated as in [19]).

For a LA, injected currents are the sum of the prosumers’
currents given by (7), and the currents from the outside
accounting for the connection of the LA to the remainder of
the grid:

J̄ = J̄ ext + J̄p =

 [J̄e0
]

0

+ J̄p = [ J̄de
0

]
+ J̄p, (9)

where the meaning of the symbols is apparent.
Thewell-known relationship between injected currents and

nodal voltages based on nodal admittance matrix can be
written as [14]:

J̄ = Ẏ Ū ⇒
[
J̄de
0

]
+

nc∑
h=1

[
Ȧde
Ȧin

]
h

[
1

fh(Ph)

]
Ph

'

[
Ẏde,de Ẏde,in
Ẏin,de Ẏin,in

] [
Ūde
Ūin

]
, (10)

where the meaning of symbols is apparent; the approximation
embedded in (10) is due to the assumption (6).

A Gaussian elimination allows to get a representation of
the LA network based only on de nodes/busses:

J̄de =
[
J̄e
0

]
= ẎeqŪde −

nc∑
h=1

0̇eq,h

[
1

fh(Ph)

]
Ph, (11)

where

Ẏeq = Ẏde,de − Ẏde,inẎ
−1
in,inẎin,de,

0̇eq,h = Ȧde,h − Ẏde,inẎ
−1
in,inȦin,h, (12)

with

dim{Ẏeq} = neq × neq,

dim{0̇eq,h} = neq × 2. (13)

It is noteworthy that this general formulation allows to
retain as de busses also unbalanced busses, as phases are
explicitly taken into account and represented.

The approximation coming from (6) can be reduced by
taking into account the actual value of phase voltages of de
busses:

J̄de = ẎeqŪde − diag

{
Û∗de
Ûde

} nc∑
h=1

0̇eq,h

[
1

fh(Ph)

]
Ph; (14)

note that (14) is a load-flow equation (see [14] for more
details). The approximation due to (6) for the eliminated
in nodes still involves errors; but, they are very low and
acceptable from a practical point of view (see [6], [7], [14]).

III. LOAD AREA REPRESENTATION FOR RADIAL
NETWORKS - COMPONENTS
The general reducedmodel of a LA network expressed in (14)
is not specialized to exploit specific aspects of the network,
such as its topology.

In the paper, the approach proposed in [20] is adopted;
it is conceived for radially operated distribution networks
and avoids the calculation of the inverse in (12), fostering
the computational efficiency in the case of large size grids.
A two-stage graph navigation technique is adopted to get
compact relationships among the quantities pertaining to the
describing busses of the LA.

Any grid is obtained by assembling four basic elements:
injections, branches, feeders, and forks; a brief description
of the modeling of each one is recalled in the following. For
one- and two-phase branches, a modeling is proposed to get
the same formal representation as three-phase branches while
not introducing any approximation.

A. INJECTIONS BY THE PROSUMERS
Injections by the prosumers are expressed by (7)-(8).

B. BRANCHES
Three-phase branches are described with a well-known π
model. Virtual phases are added to one- and two-phase
branches to get the same formal model as the three-phase
ones; no approximation is introduced due to the addition.
In this way, the notation is highly simplified, and information
treatment as well. Indeed, the virtual connection is such that it
simply mirrors the voltage(s) of the upstream phase(s) which
is (are) missing downstream.

1) THREE-PHASE BRANCHES
A three-phase branch can be described by a three-phase π
model connecting sending and receiving busses [21]; each
phase is put in series with an ideal single-phase transformer
that accounts for the possible regulation of voltage amplitude
and/or phase shifting. The electrical circuit is depicted in
Fig. 1. For the i-th branch, the following matrix relationship
holds:[

Ū s
i
Ī si

]
= Ṫi

[
Ū r
i

Ī ri − J̄
p
i

]
= Ṫi

[
Ū r
i
Ī ri

]
− Ṫi

nc∑
h=1

[
0
α̇i,h

] [
1

fh(Ph)

]
Ph, (15)

where Ṫi is

Ṫi=
[

(I + ŻiẎ ri ) diag{ȧi} Żi diag{ȧi}
(Ẏ si+Ẏ

r
i+Ẏ

s
i ŻiẎ

r
i )(diag{âi})

−1 (I+Ẏ si Żi)(diag{âi})
−1

]
;

(16)

matrix Ẏ si contains half of the total line charging admittance,
while matrix Ẏ ri contains half of the total line charging admit-
tance, possibly with the addition of the admittance of shunt
elements located at the receiving node.

179934 VOLUME 8, 2020



G. M. Casolino, A. Losi: Reduced Modeling of Unbalanced Radial Distribution Grids in Load Area Framework

FIGURE 1. Generic i -th branch.

FIGURE 2. A two-phase branch.

2) ONE- AND TWO-PHASE BRANCHES
Let us consider a two-phase branch, and assume that
phase 3 is the missing one; the circuit representation of such
a line with a π model is depicted in Fig. 2. Let a virtual
connection be added as phase 3 between the sending and the
receiving busses, with the following characteristics:

Ẏ si,33 = 0, Ẏ ri,33 = 0,

Ẏ si,13 = Ẏ si,31 = 0, Ẏ ri,13 = Ẏ ri,31 = 0,

Ẏ si,23 = Ẏ si,32 = 0, Ẏ ri,23 = Ẏ ri,32 = 0,

Żi,31 = Żi,32 = 0,

Żi,13 = any value,

Żi,23 = any value,

Żi,33 = any value; (17)

it is appropriate to put Żi,13 = Żi,23 = 0 in order to preserve
the symmetry of matrix Żi. The virtual three-phase line has a
π circuit representation reported in Fig. 3. With the values in
(17), it follows that:

• for phase 3, with neither a load nor a downstream
connection at the receiving bus, it is Ī si,3 = 0
and Ū s

i,3 = Ū r
i,3;

• there is no need for special values of Ż3,3, such as 0 or
very big.

The virtual three-phase branch has the same behavior as
the actual two-phase one. Its representation differs from that
of the actual branch due to the addition of a phase voltage,
namely phase 3, at the receiving bus; this voltage simply
mirrors that at the sending bus, with no modification of the
voltages/currents of the actual phases of the actual branch.
The model in Fig. 3 can be considered as the three-phase
virtual equivalent of the actual two-phase branch.

FIGURE 3. The virtual three-phase branch of a two-phase branch.

FIGURE 4. A feeder as a string of branches.

For a single-phase branch, a similar procedure can be
adopted with the addition of two virtual connections between
sending and receiving busses. Also, in this case, a three-phase
virtual equivalent is obtained.

With the virtualization, all busses are treated in the same,
uniform way in the specialized method; the feature of the
general formulation in Sect. II-C of possibly retaining as de
busses also one- and two-phase busses is maintained.

C. FEEDERS
A feeder is an ordered sequence of branches, such as the one
in Fig. 4. For two subsequent branches of a feeder, it is:

Ū r
i = Ū s

i+1,

Ī ri = Ī si+1. (18)

For the entire f -th feeder, the recursive application of
Eqs. (15) and (18) results in[

Ū s
f
Ī sf

]
= 2̇f

[
Ū r
f
Ī rf

]
−

nc∑
h=1

0̇f ,h

[
1

fh(Ph)

]
Ph, (19)

with

2̇f =

nf∏
i=1

Ṫi,

0̇f ,h =

nf∑
i=1

i∏
j=1

Ṫj

[
0
α̇i,h

]
. (20)

D. FORKS
For a fork with m output feeders, it holds that

Ū r
0 = Ū s

j , ∀j = 1, . . . ,m

Ī r0 =
m∑
j=1

Ī sj , (21)

where the subscript ‘0’ denotes the incoming feeder.
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FIGURE 5. The reduced terminal branch.

IV. LOAD AREA REPRESENTATION FOR RADIAL
NETWORKS - MODEL REDUCTION
The models presented in Sect. III are adopted in combination
with two-stage graph navigation to get the reduced modeling
of the LA network.

The radiality of the network is exploited, and a radial
reduced model is obtained for the LA. It is made of the
describing nodes: edge nodes, other nodes to be explicitly
considered for monitoring and control purposes, and relevant
bifurcations [7], [20]. The radiality of the reduced LA model
allows continuing using specialized algorithms and tools for
radial distribution networks [22]–[26].

The two stages of the navigation technique are called back-
ward and forward; they are described in the following.

A. BACKWARD STAGE
The backward stage starts from the terminal nodes and pro-
ceeds upstream through the graph towards the source bus.
Voltage and current related to a terminal node are reported
to the nearest upstream node.

For the t-th branch ending in a terminal node, it is Ī rt = 0.
From (15), (16), the following expression can be obtained:[

Ū s
t
Ī st

]
=

[
Ṫt,11 Ṫt,12
Ṫt,21 Ṫt,22

] [
Ū r
t
0

]
−

nc∑
h=1

[
Ṫt,11 Ṫt,12
Ṫt,21 Ṫt,22

] [
0
α̇t,h

] [
1

fh(Ph)

]
Ph

=

[
Ṫt,11
Ṫt,21

]
Ū r
t −

nc∑
h=1

[
Ṫt,12
Ṫt,22

]
α̇t,h

[
1

fh(Ph)

]
Ph

=

[
Ṫt,11
Ṫt,21

]
Ū r
t −

nc∑
h=1

[
0̇t,h,1
0̇t,h,2

] [
1

fh(Ph)

]
Ph, (22)

where

0̇t,h,1 = Ṫt,12 α̇t,h,

0̇t,h,2 = Ṫt,22 α̇t,h,
(23)

and the meaning of Ṫt,·· is apparent. By simple algebra, from
(22), (23) it can be written:

Ū r
t = Ṫ−1t,11

(
Ū s
t +

nc∑
h=1

0̇t,h,1

[
1

fh(Ph)

]
Ph

)
,

FIGURE 6. Reduction stages for the three relevant cases.

Ī st = Ṫt,21Ṫ
−1
t,11

(
Ū s
t +

nc∑
h=1

0̇t,h,1

[
1

fh(Ph)

]
Ph

)

−

nc∑
h=1

0̇t,h,2

[
1

fh(Ph)

]
Ph

= θ̇t Ū s
t −

nc∑
h=1

γ̇t,h

[
1

fh(Ph)

]
Ph, (24)

with

θ̇t = Ṫt,21Ṫ
−1
t,11,

γ̇t,h = 0̇t,h,2 − Ṫt,21Ṫ
−1
t,110̇t,h,1. (25)

Equation (24) indicates that the sending bus of a terminal
branch sees an equivalent circuit made of an admittance in
parallel with an injection, as in Fig. 5. These elements can be
included in the description of the upstream branch as follows.
Let u denote the upstream branch; from (15) and (24), it is

easy to show that[
Ū s
u
Ī su

]
=

[
Ṫu,11 Ṫu,12
Ṫu,21 Ṫu,22

] [
1 0
θ̇t 1

] [
Ū r
u
0

]
−

nc∑
h=1

[
0̇∗u,h,1
0̇∗u,h,2

] [
1

fh(Ph)

]
Ph, (26)

where

0̇∗u,h,1 = Ṫu,12(α̇u,h + γ̇t,h),

0̇∗u,h,2 = Ṫu,22(α̇u,h + γ̇t,h). (27)

Equation (26) is formally similar to (22), meaning that the
reduction process can continue. The reduction starts from
terminals and ends when the receiving node of the upstream
branch is a describing node (which has to remain explicitly
represented). The entire backward stage ends when all termi-
nals have been processed.
Figure 6 shows the three relevant cases of the location of

the describing nodes and the results of the reduction at the end
of the backward stage; note the presence of a bf -bifurcation
in case a).

B. FORWARD STAGE
The forward stage continues the reduction process of the
backward stage. Starting from the source bus and proceeding
towards the terminals, the reduction operates on the feeders,
eliminating all non-describing nodes between the describing
ones (see Fig. 6).
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TABLE 1. Mean times to get the compact representation and to solve the power-flow problem (max error = 10−6).

For a feeder between two describing nodes, Eqs. (19)–(20)
hold and become[

Ū s
f
Ī sf

]
= 2̇

β
f

[
Ū r
f
Ī rf

]
−

nc∑
h=1

0̇
β
f ,h

[
1

fh(Ph)

]
Ph, (28)

with

2̇
β
f =

nf∏
i=1

Ṫ βi ,

0̇
β
f ,h =

nf∑
i=1

i∏
j=1

Ṫ βj

[
0
α̇
β
i,h

]
, (29)

where β is meant to refer to the reduced network obtained
at the end of the backward stage. The results of the forward
stage, which are those of the complete reduction process, are
depicted in Fig. 6 for the three relevant cases.

Eventually, to reduce the approximation introduced by (6),
the expression of the equivalent injected currents in (28) can
be modified as follows (see (14)):[
Ū s
f
Ī sf

]
=2̇

β
f

[
Ū r
f
Ī rf

]
−

diag {Û∗rf /Û r
f

}
0

0 diag
{
Û∗rf /Û

r
f

}
×

nc∑
h=1

0̇
β
f ,h

[
1

fh(Ph)

]
Ph. (30)

V. NUMERICAL RESULTS
The case studies illustrate the methods discussed in
Sect. III-IV for grids of various sizes, which include pure
loads and distributed generation (DG). Network data are
derived from the IEEE Test feeder [27] and the OpenDSS
Simulation Tool [18], and refer to unbalanced three-phase
systems; balanced systems are treated in [20].

After the identification of the LAs (upon the procedure
presented in [14]), the method of Sect. IV applies to obtain
the radial reduced representation of the networks. The results
illustrate the networks at the end of the backward stage and
the end of the entire b&f reduction process, highlighting the
successive reductions of the grid.

The errors in nodal voltages between the reduced model
(with either (28) or (30)) and the complete one, for different
values of the load both with and without DG, provide an esti-
mate of the approximation introduced by the reduced model
versus the loading conditions. When DG is considered, its
total amount equals 20% of the total reference load; the num-
ber of DG generators is about 20% of network load busses and
they are located in the 20% most loaded three-phases busses.
Numerical tests with different sizes and locations of DG show
voltage errors of the same magnitude as the ones presented in
the following.

According to [4], the modeling error is judged admissible
if it is less than the one due to the smallest tap changer step
of OLTCs in the grid; for a 32-step voltage regulator with a
range of a±10% a one-step tap-change equals 0.006250 p.u.

A. SMALL-SIZE GRID
The small test grid is a realization of the IEEE 13-bus test
feeder; Figure 7-a illustrates the network scheme, where the
bus 670 is the equivalent load of the distributed load on line
632–671 and the bus rg60 includes the voltage regulators on
the three phases [18]. It is assumed that the switch along the
path 671-675 is closed and that the three-phase transformers
are all wye-wye, with neutrals grounded. Assuming the rele-
vance of voltage concerns only, the LA identification process
results in the presence of three LAs (see also [14]), with only
three describing busses de, the edges of the three LAs; they
are the source, rg60, and 671 busses, highlighted in Fig. 7-b
as empty blue circles.

The two-stage graph navigation technique of Sect. IV
applies to find the describing relationships among the de
busses. Figure 7-c illustrates the network resulting at the
end of the backward stage; the absence of bf -bifurcations,
in this case, is apparent. Finally, Figure 7-d shows the network
resulting at the end of the entire process, with all in busses
eliminated in the reduced representation.

Figure 8 reports in log scale the maximum errors in the
nodal voltage (modulus) introduced by the models (28) or
(30), for different values of the load with and without DG;
the acceptability limit is indicated by a red dash-dot line. For
each node, the voltage error is computed against the voltage
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FIGURE 7. Small-size grid – (a) topology; (b) busses on the LA borders (empty circles); (c) grid after backward reduction; (d) grid after entire
backward-forward reduction.

computed on the unreduced grid. Figure 8 shows that the
maximum voltage error with (30) always assumes acceptable
values, while with (28) it assumes much higher values and
also non-admissible ones.

Table 1 shows some mean computational times, obtained
with repeated runs on a desktop computer equipped with an
Intel
 CoreTM i7 CPU 4780 with 32 GB of RAM run under
Windows 10 64-bit operating system and Matlab R2016b.
The time to get the reduced representation is evaluated for
both themethods of [14] and the present one; the time to solve
the load-flow is evaluated for the reducedmodel solved with a
b&f method, and for the full model solved with a b&f method
and a classical Newton-Raphson algorithm.

Results show that to get the reduced model for this small
scale network the method [14] is preferable to the presented
one; this is due to the time required to account for the network
topology, which is relevant compared to the one of [14] in
which only a small matrix needs to be inverted in (12).

The grid model obtained with the new method can be
solved with the efficient b&f technique, which makes the new
method preferred as concerns the time to solve the network.

B. MEDIUM-SIZE GRID
The second test network is obtained from the 123-bus IEEE
test grid.

FIGURE 8. Max error in voltages for the small grid.

The representation of the network is depicted in Fig. 9-a,
where the busses 9r, 25r, and 160r are added to represent the
presence of the voltage regulators [18]. Also, for this grid,
it is assumed that the three-phase transformers are all wye-
wye, with neutrals grounded.

Assuming the presence of two overloaded lines, 23–25 and
97–101, and that the voltage is of concern, the LA identifica-
tion process ends with five LAs (see [14]), with the five edge
busses 149, 25, 101, 80 and the source bus, highlighted in
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FIGURE 9. Medium-size grid – (a) topology; (b) busses on the LA borders (empty circles); (c) grid after backward reduction; (d) grid after
entire backward-forward reduction.

FIGURE 10. Max error in voltages for the medium-size grid.

Fig. 9-b as blue empty circles. Also, in this case, the methods
of Sect. 3-IV are applied to get the describing relationships
among the describing busses. The network resulting after
the backward stage is depicted in Fig. 9-c; the presence of
two bf -bifurcations (busses 13 and 67) is apparent (empty
circles highlighted in red). The result of the forward stage
is illustrated in Fig. 9-d; it shows seven describing nodes
(5 edges + 2 bf -bifurcations).

Figure 10 reports in log scale the maximum errors in the
nodal voltage (modulus) of the reduced models versus the
total load, with and without DG. Also, in this case, it can be
noticed that the maximum voltage errors with (30) are much
lower than the errors with (28). Despite the size of the grid,
the errors are smaller than the ones of the small-size grid; it
is likely due to the lesser unbalance of the medium-size grid
with respect to the small-size one, as confirmed by numerous
numerical experiments.

Also, in this case, the computational time required to get
the LA representation is in favor of the method [14] (see
Tab. 1); indeed, also for this case, the size of the matrix
to be inverted in (12) is too small to appreciate significant
differences, while the time to describe the network structure
is substantially the same as for the small grid. In contrast, the
time to solve the power flow with the b&f technique applied
to the grid obtained with the newmethod is consistently lower
than the one for the original network (and similar to the one
for the small grid).

C. LARGE-SIZE NETWORKS
The case study on larger networks is built by repeatedly
replicating the IEEE 123 bus test grid (from the same origin),
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FIGURE 11. Max error in voltages for the large-size grid (×3, ×5, ×10).

to increase the overall number of busses while maintaining
the structure of the original network. Specifically, the tests
have been carried out by replicating the original network 3,
5, and 10 times. For simplicity, the identification of LAs is
conducted assuming the relevance of voltage issues alone;
this leads to the identification of only three busses for each
network replica (150, 149, 80). No significant difference in
the voltage errors emerged between the medium-size and
large-size grids (see Fig. 10 and Fig. 11); in contrast, the time
needed to solve the network appears deeply influenced by the
grid size, in particular for the original model (see Tab. 1). The
time required to obtain the reduced representation is still in
favor of [14] for the cases ×3 and ×5 size networks, while
the new method performs better for the biggest grid; this is
because the time needed to invert the matrix in (12) becomes
increasingly relevant. The computational time with the b&f
technique is definitely in favor of the grid obtained with the
new method.

D. A COMPARISON
As regards the time to get the reduced representation alone,
it can be seen that the method [14] should be the preferred
choice for small to moderate-size grids, while for big grids
the new method would be preferred. On the other hand, the
choice of the method to adopt could be driven not only by the
time to get the reduced representation, but also by the time
needed to solve the resulting network.

By looking at both the two aspects, the new method allows
solving the reduced grid with the efficient b&f technique;
then, the new method is by large the preferable one, as, for
example, in planning studieswhere a large number of network
solutions are required.

VI. CONCLUSION
In this paper, within the LA approach, a specialized method
for obtaining a reduced representation of radial unbalanced
distribution systems is proposed. The method is made of
a two-stage graph navigation technique and is based on a
generalization of the modeling of unbalanced one- and two-
phase branches, which allows treating all busses in the same,

uniform way. The method is applied to five unbalanced test
cases of different sizes. The results confirm the viability of
the proposed method, which is always the preferred choice
for large grids; it has to be preferred also for small-to-medium
grids if both the time to get the representation and the one to
solve the grid are accounted for.

Future work will deal with the requirement of retaining
additional nodes within the LA whose injection depends
on/controls the voltage such as switching capacitors, OLTCs,
DG inverters, and their possible aggregation.
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