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ABSTRACT Simulating biological intelligence has been proved to be an effective way to design intelligent
robots, and simultaneously can solve the problems existing in machine learning methods. For creatures,
their motor skills achieving is the first stage of learning. By combining two important cognitive elements:
orientation and curiosity, this article proposes a new neurobiologically-inspired sensorimotor developmental
learning method for the mobile robot. In this method, curiosity promotes robot’s exploration of the
environment, while orientation enhances robot’s exploitation knowledge of the environment. The orientation
cognitive algorithm is designed based on Skinner’s operant conditioning theory, and its rationality is proved.
The balance of exploration and exploitation, which is a key problem for all the cognitive learning method,
is solved in this method. The developmental learning process can avoid fixed sensorimotor mapping space
problem, and help reduce learning waste as well as computing waste. All of the developmental learning
method’s characters are finally verified via simulations on a virtual mobile robot.

INDEX TERMS Artificial curiosity, autonomous robot, developmental learning, orientation, sensorimotor
skill.

I. INTRODUCTION
Humans and animals could autonomously acquire knowledge
and skills through their interaction with the environment,
and all these derive from their strong sensorimotor ability.
The psychologist Piaget pointed out that the first stage of
human’s cognitive development was the acquisition of their
sensorimotor skills [1], which showed the importance of the
sensorimotor system for biological learning. In the opinion
of neurophysiology, the motor skills of humans and animals
are gradually formed and developed during their continu-
ous interaction with the environment through their organs.
Research in robotics make much of the embodied cognition,
whose core is motor [2]. All above from different perspectives
point out the importance of sensorimotor system in cognitive
learning process.

Research in biology related fields showing that sensorimo-
tor learning is not simple reactive processes, but driven by
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orientation, curiosity, emotion and so on [3]. These elements
all play important roles during sensorimotor learning but
work in different ways. Understanding these elements’ work-
ing principles and simulating them from artificial aspects will
greatly improve our ways in designing cognitive models for
robots.

On the basis of sensorimotor system, and combining
related learning mechanism in cognitive psychology, design-
ing cognitive models and duplicating them to robots has
been a useful way to achieve autonomous robots. In this
article, we will consider orientation and curiosity in artificial
sensorimotor system’s cognitive model designing, and finally
realize the robot’s developmental learning.

II. RELATED WORKS
A. ARTIFICIAL SENSORIMOTOR SYSTEM
There have been a lot of research show that the realiza-
tion of biological intelligence depends on the realization
of biological nervous system, and it has been more than
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20 years since the study of artificial sensorimotor system.
As early as in 1995, Webb [4] established a set of auditory
sensorimotor system for machine cricket. The cricket had
an auditory sensor on each leg to act as ear, and two bump
sensors (microswitches) as well as two infrared sensors to
detect obstacles ahead at a range of about 30 m. All these
together formed the perception unit of the machine cricket.
The motor unit consisted of two wheels propelled by two
independent motors, and a third ball-bearing castor wheel in
front. The motor unit had three states: forward, backward,
and stop. Thus, the sensorimotor cycle ‘‘perception-hearing
the sound-considering in the context of action-finding the
sound’’ was formed. Based on ‘‘if-then’’ rule, they success-
fully simulated the female cricket’s tendency behavior to
the male cricket through ‘‘calling song’’. In 2006, captur-
ing essential features of biological systems, Kuniyoshi and
Sangawa established a model of neuro-musculo-skeletal sys-
tem, which consisted of skeleton, muscles, spindles, tendon
organs, spinal circuits, medullar circuits (CPGs) and a basic
cortical model. Through a series of experiments with a mini-
mally simple bodymodel, it was shown that themodel had the
capability of generating partially ordered behavior, a mixture
of chaotic exploration and ordered entrained patterns. On the
other hand, results showed the possibility that a rich variety
of meaningful behavior could be discovered and acquired
by the neural-body dynamics without predefined coordinated
control circuits [5]. In 2015, Laflaquière et al. [6] simulated
a redundant robotic arm with a retina installed at its end-
point, and thus formed a visual sensorimotor system. Then
they designed algorithms from the perspective of control
science, and enabled the robot to learn the configuration
space of its retina and to gradually develop perceptual notions
starting from scratch. In the brain, Gain-Field (GF) neurons
in the parietal cortex are involved in computing the necessary
spatial transformations for aligning the tactile, visual and
proprioceptive signals. And in reaching tasks, these GF neu-
rons exploit a mechanism based on multiplicative interactive
for binding simultaneously touched events from the hand
with visual and proprioception information. Based on GF
neurons, in 2019, Pugach et al. [7] proposed a neural model to
integrate tactile events with arm postures and visual locations
for constructing hand-and target-centered receptive fields in
the visual space.

At present, the research related to artificial sensorimotor
system, as mentioned above, in the cycle of ‘‘perception-
cognition-motion-perception’’, is more focused on the phys-
ical realization of the sensor (such as vision, hearing, touch,
smell, etc.) or the motor (such as arm, foot, wheel, etc.),
and the algorithms that used are mostly aimed at engineering
realization, rarely involving cognitive factors.

B. SENSORIMOTOR COGNITIVE MECHANISMS
Research shows that the sensory-motor process is not a simple
input-output information transfer, but contains a large number
of cognitive processes, which relate to the cognitive neurons
as well as cognitive mechanisms in the nerve center.

1) BEHAVIORIST MECHANISM
In 1938, American psychologist and behaviorist Skinner
researched on animals’ behaviors, and put forward the con-
cept of ‘‘operating conditioning (OC),’’ which has been
proved to be an important learning mechanism in human
and animal’s nervous system [8]. There are also a lot of
application examples of OC in robot systems. In 2005,
Itoh et al. put forward a new behavior model under the OC
theory, which helped the robot WE-4RII learn the handshake
skill [9]. In 2017, Zhang et al. designed a learning algo-
rithm under OCmechanism, and with discrete motion spaces,
a two-wheeled robot learned the skill of self-balancing [10].
In 2018, Arena et al. [11] proposed an insect-inspired body
size learning algorithm, and adopted it to a humanoid robot
and a control system who was composed of a series of layers
developed using spiking neurons. The final processing layer
was considered to be a gate to determine if an object is
reachable or not depending on its estimated distance, and
the correct decision was therefore learned through an operant
conditioning method. To demonstrate the potential applica-
tion of the learning method, a Darwin-OP robot equipped
with an extended hand was used. The robot could freely move
in an environment to discover objects. Both of the results in
dynamic simulation environment and with the Darwin-OP
robot proved that using operant conditioning, the learning
scheme was able to enable the robot to learn which objects
could be reached via estimating the objects’ distances by
varying the length of the equipped tool. Cyr’s team has a
deep accumulation in the artificial research ofOC theory [12].
In 2019, Cyr’s team proposed an artificial spiking neural
network (SNN) sustaining the cognitive abstract process of
spatial concept learning, and embedded it in virtual and
real robots [13]. Results showed that based on OC theory,
robots could learn the relationship of horizontal/vertical and
left/right visual stimuli, regardless of their specific pattern
composition or their location on the images. After acquisition
learning phase, tests with novel patterns and locations were
also successfully completed, which proved that the SNN
could adapt its behavior in real time when the rewarding rule
changes.

2) INTRINSIC MOTIVATION MECHANISM
OC theory builds up the relationship between skill learning
and external rewards. However, research in biology shows
that in addition to the external rewards, creature’s sensori-
motor learning process is also driven by intrinsic motiva-
tion, such as orientation, curiosity, emotion, belief and so
on. Intrinsic motivation can drive creature to learn skills
autonomously without external motivation, and is considered
as the power and source of all cognition [3]. In 2004, Barto
and Singh firstly presented computational study results of
intrinsically motivated learning aiming at allowing artificial
agents to construct and extend hierarchies of reusable skills
that were needed for competent autonomy [14]. The core
of the model was mainly based on reinforcement learning
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framework, later then, the research on intrinsic motivation
became more and more diversified.

In terms of artificial curiosity, Oudeyer’s team has achieved
very representative research results. In 2007, after discussing
related research coming from developmental psychology,
neuroscience, developmental robotics, and active learning,
they presented an intrinsic motivation system named Intel-
ligent Adaptive Curiosity (IAC), which could push a robot
towards situations in which it could maximize its learning
progress [15]. Applying IAC to a physical robot which was
placed on a baby mat with objects that the robot could learn
to manipulate, experimental results showed that the robot
first spent time in situations which were easy to learn, then
shifted its attention progressively to situations of increasing
difficulty, meanwhile avoiding situations in which nothing
could be learned. In 2014, to achieve the robot’s skill learning,
Oudeyer’s team continued to combine intrinsic motivation
learning with imitation learning, and put forward an archi-
tecture called SGIM-D (Socially Guided Intrinsic Motiva-
tion by Demonstration), which allowed effective learning of
high-dimensional continuous sensorimotor inverse models in
the robot [16]. Experiments were taken on a robot arm with
the learning task of using a flexible fishing line. Results
proved that SGIM-D efficiently combined the advantages of
social learning, intrinsic motivation and benefits from human
demonstration properties to learn how to produce varied out-
comes in the environment, while developing more precise
control policies in large spaces. In 2019, Oudeyer et al.
extended Universal Value Function Approximators (UVFA),
and proposed CURIOUS which enabled intrinsically moti-
vated agents to learn to achieve both of multiple tasks and
multiple goals within a unique policy, leveraging hindsight
learning [17]. Putting the robot in an open environment, then
the robot needed to autonomously choose the object that it
will practice, here the CURIOUS algorithmwas used to influ-
ence UVFA and target task learning mechanism. Experiment
results showed that the robot could realize self-organization
of target learning by paying attention to the targets with
different complexity in sequence and focusing on the for-
gotten targets again. In 2018, Ren et al. proposed a new
neurobiologically-inspired cognitive computational model:
C-DCCM (Curiosity-Driven Cognitive Computing Model),
and implemented the effect of curiosity to the balance learn-
ing problem of the two-wheeled robot [18]. Verification was
conducted via simulation on a computing system of sustained
dopamine modulation mechanism and its effects on the cere-
bral cortex.

In the aspect of orientation, in 2016, Sadeghi et al. stud-
ied it in a plant-inspired robot named Plantoid with soft
differential bending capabilities [19]. In 2018, this team
presented a plant root behavior-based approach to define
the control architecture of a plant-root-inspired robot, which
was composed of three root-agents for nutrient uptake and
one shoot-agent for nutrient redistribution [20]. With the
previously proposed orientation-inspired control, the root-
agents could ideally and autonomously grow at the best

speed, exploit nutrient distribution and improve performance,
in terms of exploration capabilities and exploitation of
resources.

During agents’ learning, both of external motivation such
as in OC and intrinsic motivation play important roles. Inte-
grating different cognitive mechanisms can help to improve
the robot’s learning ability more effectively, and there have
been many researchers who put forward new research ideas
based on this thought. In 2011, on the basis of Singh
and Barto’s work about intrinsically motivated reinforce-
ment learning (IMRL), and combining with the emotional
appraisal, Sequeira et al. introduced four common evalua-
tion dimensions which are novelty, motivation, valence and
control to IMRL, and proposed a new intrinsic motivation
learning framework, and successfully simulated the forag-
ing behavior [21]. In 2012, based on Distributed Adaptive
Control (DAC), Mathews et al. proposed an artificial senso-
rimotor system named PASAR with a single framework [22].
PASAR integrated the elements of prediction, anticipation,
sensation, attention, and response. Simulation experiment
and real world task results verified PASAR’s feasibility in
solving complex real world problems and building world
model with limited resources.

Simultaneously considering the external OC behaviorist
mechanism and orientation as well as curiosity intrinsic moti-
vation mechanisms, this article proposed a new cognitive
method to help mobile robots learn its environment and fulfill
the path planning task in a developmental way.

III. VIRTUAL ROBOT AND SIMULATION ENVIRONMENT
A. THE VIRTUAL ROBOT
A virtual robot as shown in Fig. 1 is used to show the prop-
erties of our developmental learning method. For simplicity,
the robot is in circle shape with the radius of r = 0.1 m.
Five sonar sensors are supposed uniformly distributed in the
front of the robot to measure its distances to obstacles. The
robot’s moving is realized by differentially driving the two
wheels on its both sides. While moving, the robot is supposed
to turn firstly, and then move forward with a fixed speed of
v = 0.1 m/s. So during the robot’s sensorimotor process,
the learning objective can be described as choosing different
steering angles 1θ under different sensory situations. Sup-
posing that the robot’s positions and its heading angles to the
x axis before and after each moving step are (xo, yo, θo) and
(xn, yn, θn) respectively, then the robot’s kinematic model can
be described as in (1).θn = θo +1θ,xn = xo + v× ts × θn,

yn = yo + v× ts × θn.
(1)

where ts = 0.5 s is the sampling time, and the steering angle
1θ can be realized by:

1θ =
vr − vl
r
× ts. (2)

In (2), we can see that for steering angle, counter-clockwise
direction is the positive direction.
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FIGURE 1. The schematic diagram of the mobile robot.

FIGURE 2. The simulation environment.

B. THE SIMULATION ENVIRONMENT
In simulations, the robot is situated in a rectangular region
with the size of 5 m × 5 m as shown in Fig. 2. Obstacles
scattered inside are blue, and with different shapes. The green
circle represents the robot and the red star is the target. The
robot’s task is to find an effective path to the target point
without collision all by its own learning.

IV. SENSORIMOTOR DEVELOPMENTAL LEARNING
METHOD
The sensorimotor developmental learning method that
designed aiming at mobile robots with the task of path plan-
ning works as bellow.

Step 1: The sensorimotor mappings definition.
Before learning, robot’s sensorimotor mappings need to be

defined firstly. At every learning time, the robot will sense its
current situation Si, including its position situation Spos(j) in

the environment as well as its heading angle situation Sang(k).
In the simulations of this article, the environment in Fig. 2 is
divided into 20 equal parts along both of the horizontal axis
x and vertical axis y. So the number of position situation
Spos is Npos = 20 × 20 = 400. For turning, we define the
robot’s steering angle space which is also its motion space
as M = {−60◦,−30◦, 0◦, 30◦, 60◦}. So the robot’s heading
angle situation Sang can be divided every 30◦, and the number
of Sang is Nang = 360◦/30◦ = 12. Finally the total number
of sensory situations S for the robot is NS = Npos × Nang =

4800, and the number of the robot’s motion space is NM = 5.
In most autonomous learning methods, the sensorimotor

mappings are one-to-one corresponding relations as in [9],
and there is connection between every sensory situation and
every motion. If in this way, the number of the sensorimotor
mappings for the robot above will be NS × NM = 24000.
At every learning time, the robot in sensory situation Si needs
to update the connection between Si and all the motions inM ,
which actually causes a lot of waste in both of calculating and
learning, especially when one motion for the current situation
has been proved to be unexpected. So in this article, we design
the developmental learning method, which can effectively
avoid the problem above, and greatly saves the calculating
and learning cost. At the same time, we will find that its
learning process is more biomimetic.

In this developmental learning methods, corresponding to
Si(i = 1, 2, · · · ,NS), Mi, M̄i and RMi are defined. The
motions that the robot has explored from M will be placed
either in Mi or M̄i, while the motions that the robot has not
learnt will be in RMi. The motions inMi are the motions that
have been proved effective for the situation Si, and can lead
the robot to the target. The motions in M̄i are the motions that
will lead the robot far from the destination, or some motions
that not good enough although they also can lead the robot to
the target. Obviously, we have:

Mi + M̄i + RMi = M . (3)

If the sizes of Mi, M̄i and RMi are ni, nī and nRi respectively,
then

ni + nī + nRi = NM. (4)

At one learning time t , the robot must be in one situation,
supposing to be Si, then the robot may: 1© explore RMi, or
2© exploit Mi. While 1©, if the motion m that the robot
explores at time t is proved effective for Si, then at time t+1,
m will be moved from RMi to Mi, or m will be moved to M̄i.

The sensorimotor mappings we defined in this article are
between Si and Mi as in Fig. 3 instead of between Si and
M . And between every Si and Mi, we define the orientation
vector Oi(t) = [oi1(t), oi2(t), · · · , oini (t)], in which oij(t)(i =
1, 2, · · · ,NS, j = 1, 2, · · · , ni) represents the robot’s prefer-
ence in sensory situation Si to choose the motion mij inMi at
the learning time t . Although all the motions in Mi can lead
the robot to the target, we hope that the robot can learn a better
one. Sowhile 2©,Oi will update according to the result at time
t+1. Here, if some oij is lower than the threshold value, then
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FIGURE 3. The sensorimotor mappings for the developmental learning
method.

move the related motion mij from Mi to M̄i. We can find that
M is fixed, butMi can develop.Oi here is what the robot needs
to learn, and for eachOi at any learning time t , 0 ≤ oij(t) ≤ 1

and
ni∑
j=1

oij(t) = 1.

For more efficient learning, the curiosity vector Ci is intro-
duced to avoid the local optimal strategy problem which
easily happens only based on orientation. Curiosity is a
concept from neuropsychology, and there is already a lot
of works proving its important role in biological learning.
As the same as Oi, in this developmental learning method,
Ci(t) = [ci1(t), ci2(t), · · · , cini (t)] is also defined between Si
andMi, and cij(t) means the degree of the robot’s curiosity to
explore mij in Mi while the robot is in sensory situation Si at
the learning time t . As the number nij that the motion mij is
learned increases, the robot’s curiosity for mij will decrease.
So the curiosity function is defined as:

cij(t) =
1

1+ ec1×(nij−c2)
, (5)

where the curiosity function parameters are set as c1 = 0.5,
c2 = 1.

Step 2: State evaluation function definition.
For the orientations’ updating, we define a function named

SEF to evaluate the robot’s sensory situation. In mobile
robots’ navigation task, SEF(t) is with higher value while
the robot is closer to the target, and with lower value while
the robot is closer to the obstacles. Meanwhile, the robot
takes precedence on obstacles avoiding, and then target
navigation. With the principles above, SEF(t) is defined
as:

SEF(t) = (a1 − a2 × d2g (t))− a3 × e
a4−a5×do(t), (6)

where dg(t) means the robot’s distance to the target, and
do(t) = min(d1(t), d2(t), · · · , dn(t)) represents the mini-
mum distance of the robot to the obstacles, while di(t)(i =
1, 2, · · · , n) is the robot’s distance to the ith obstacle, and n
is the number of the obstacles. In the environment in Fig. 2,
n = 8. The SEF parameters are set as a1 = 20,

FIGURE 4. The SEF energy diagram for the environment in Fig. 2.

a2 = 0.3, a3 = 0.2, a4 = 5, a5 = 12 respectively. The
energy diagram of SEF is then as shown in Fig. 4.

Step 3:Motion chosen and execution.
At the learning time t , the robot estimates its sensory sit-

uation supposing to be Si. Then for motion chosen, the robot
may: 1© explore RMi or 2© exploit Mi. Considering the dif-
ferent conditions of Mi and RMi, three cases may happen.

Case I. Mi is empty.
This case happens while the sensory situation Si has not

been experienced by the robot, or it has been experienced but
no effective motions are learnt. In such case, the robot will
explore a motion in RMi randomly and execute it.
Case II. RMi is empty.
That RMi is empty means that all the motions in M has

been explored under the current sensory situation Si. In this
case, the robot will exploitMi. Here orientation and curiosity
will take effect. Orientation means the preference of the
robot for different motions, and the robot tends to choose the
motion with higher value of orientation. Curiosity means the
robot’s will to explore one motion, and the degree of curiosity
relates to the number nij that this motion has been learned
under sensory situation Si. As nij increases, cij will decrease.
At one learning time t , the robot will show its curiosity to
one motion supposing to be mik (k ∈ {1, · · · , ni}) randomly,
then cik (t) is activated and calculated according to (5). For
simplicity, we define C ′i (t) = [c′i1(t), c

′

i2(t), · · · , c
′
ini (t)],

where c′ik (t) = cik (t), and for the rest motions in Mi, c′ij(t) =
0(j = {1, · · · , ni}, and j 6= k).

For motion chosen in motion space Mi, operate function
OPi(t) is defined:

OPi(t) = σOi(t)+ (1− σ )C ′i (t). (7)

0 < σ < 1 is the OP(t) function parameter, which decides
howmuch that orientation and curiosity will affect the motion
chosen. The bigger σ is, the greater influence orientation
will make. Thus the robot will experience short exploration
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stage and enter exploitation stage rapidly. On the contrary,
the smaller σ is, the greater influence curiosity will make.
Then the robot will explore the motion space Mi more to
get better choice, but the convergence procedure then will
be slow. For the environment in Fig. 2, σ is set as 0.3.
The balance of exploration and exploitation is an important
problem faced by all intelligent learning methods. OP func-
tion here can achieve smooth as well as intelligent transition
between exploration and exploitation stage, which improves
the robot’s learning property in some aspects. The motion
chosen strategy in case II is winner-take-all, which means the
robot will choose the motion with the biggest value of op(t).
Case III. both of Mi and RMi are not empty.
In this case, the robot may: 1© explore RMi space with

probability
nRi

ni+nRi
, or 2© exploit Mi space with probability

ni
ni+nRi

. If 1©, the robot will act as in case I, while 2©, act as in
case II.

Here it is easily proved, whenMi is empty, ni = 0, the robot
will explore the RMi space with probability 1. The same,
when RMi is empty, nRi = 0, the robot will definitely exploit
the Mi space. On the other hand, it can be found that more
motions have not been explored, with greater probability the
robot will explore the RMi space.
Step 4: Sensorimotor mapping evaluation.
At the learning time t , the robot executes one motion under

sensory situation Si with SEF(t), then at the learning time
t + 1, the robot will place itself in a new sensory situation
with SEF(t + 1). Here we define the sensorimotor mapping
evaluation function SMF as in (8) to evaluate whether this
motion is good or not under Si, and at the same time to realize
the updating of Oi.

SMF(t + 1) = SEF(t + 1)− SEF(t). (8)

If SMF(t+1) ≥ 0, it means themotion that the robot executed
at time t will lead the robot to a better sensory situation,
in other words, this motion is an effective one for Si. On the
contrary, if SMF(t+1) < 0, this motion should be abandoned
under Si.

Step 5: Developmental learning.
Cases I-III in step 3 are stated separately in this part tomore

clearly clarify the developmental learning process. At time t ,
the robot is supposed to be in sensory situation Si.
In case I, the robot chooses a motion m from RMi. At the

learning time t + 1, if SMF(t + 1) < 0, move m to M̄i,
if SMF(t+1) ≥ 0, do Extension Development as step 5.1.1 to
step 5.1.4.

In case II, the robot chooses a motion supposed to be
mik (k ∈ {1, 2, · · · , ni}) from Mi, then at time t + 1, Oi will
be updated according to (9).

oik (t + 1) =
oik (t)+ oik (t)× (1− e−η×SMF(t+1))
1+ oik (t)× (1− e−η×SMF(t+1))

,

oik ′ (t + 1) =
oik ′ (t)

1+ oik (t)× (1− e−η×SMF(t+1))
.

(9)

0 < η < 1 is the orientation parameter. In this article
η = 0.05. At the same time, after updating Oi at the learning

time t + 1, if oib(t + 1) < 1
3×ni

(b = {1, 2, · · · , ni}), then do
Reduction Development as step 5.2.1 to step 5.2.4.
In case III, case I and case II will happen in probability.

If any case happens, just do the same as stated above.
The details of Extension Development and Reduction

Development are as follows.

A. EXTENSION DEVELOPMENT
For extension development, a new motion m in RMi will be
moved to Mi. At the learning time t + 1, Mi as well as its
properties such as Oi and Ci are needed to be updated.
Step 5.1.1: extend m to be the ni + 1 motion of Mi.

Mi = [Mi,m]. (10)

Step 5.1.2: update the orientations of Mi.
oi(ni+1)(t + 1) =

1
ni + 1

,

oij(t + 1) =
ni

ni + 1
oij(t), j = {1, · · · , ni}.

(11)

Step 5.1.3: active the curiosity of the new motion mi(ni+1).
ni(ni+1) = 1,

ci(ni+1) =
1

1+ ec1×(ni(ni+1)−c2)
.

(12)

Step 5.1.4: update the size of Mi.

ni = ni + 1. (13)

B. REDUCTION DEVELOPMENT
For reduction development, a motionmib (b ∈ {1, 2, · · · , ni})
will be moved out ofMi. At the learning time t+1,Mi as well
as its properties are updated as follows.

Step 5.2.1: update the orientations of Mi.

oij(t + 1) =
oij(t)

1− oib(t)
, (j = {1, 2, · · · , ni}, and j 6= b).

(14)

Step 5.2.2: move mib out of Mi.

Mi = [mi1, · · · ,mi(b−1),mi(b+1), · · · ,mini ]. (15)

For b = 1, Mi = [mi2, · · · ,mini ], and for b = ni, Mi =

[mi1, · · · ,mi(ni−1)].
Step 5.2.3: update Mi.{

mij← mij, 1 < j < b;
mij← mi(j+1), b ≤ j ≤ ni − 1

(16)

The orientation as well as curiosity are the properties of the
motions, and will change along with the motions.

Step 5.2.4: update the size of Mi.

ni = ni − 1. (17)

Step 6: Learning termination judgement.
If the learning process fits the termination condition, then

learning ends, or turns to Step 3. The flowchart of this devel-
opmental learning method can be shown in Fig. 5.
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FIGURE 5. The flowchart of the developmental learning method (ED represents Extension Development and RD represents
Reduction Development).

V. ALGORITHM ANALYSIS
The developmental characteristics of this method react in that
the motion space Mi will change during the learning process
according to Extension Development and Reduction Devel-
opment. And the learning characteristics of the method react
in the updating of the orientation vectors Oi. To guarantee
the effectiveness of the learning, the orientations oij should

satisfy condition 1©: 0 ≤ oij ≤ 1 as well as
ni∑
j=1

oij = 1,

and condition 2©: updating according to operant conditioning
theory during all the learning process. Here we give the
proof that the method’s developmental process can satisfy
condition 1©, and the updating of oij satisfies condition 1©
and 2© simultaneously.

Proof I: Extension Development satisfies condition 1©.
At one learning time,Mi gets its first motion mi1. Accord-

ing to (11),

0 ≤ oi1 =
1

0+ 1
= 1 ≤ 1. (18)

For Oi, supposing at the learning time t ,


0 ≤ oij(t) ≤ 1, (j = {1, 2, · · · , ni}),
ni∑
j=1

oij(t) = 1. (19)
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FIGURE 6. Free learning processes.

FIGURE 7. The sensorimotor mapping numbers during the free learning
process as in Fig. 6(a).

Then at the learning time t + 1, one new motion is added,
the orientations are:

0 ≤ oi(ni+1)(t + 1) =
1

ni + 1
≤ 1,

0 ≤ oij(t + 1) =
ni

ni + 1
oij(t) ≤ 1, (j = {1, · · · , ni}),

(20)

and
ni+1∑
j=1

oij(t + 1) = oi(ni+1)(t + 1)+
ni∑
j=1

oij(t + 1)

=
1

ni + 1
+

ni
ni + 1

ni∑
j=1

oij(t)

=
1

ni + 1
+

ni
ni + 1

= 1. (21)

By mathematical induction, Extension Development
always satisfies condition 1©.
Proof II: Reduction Development satisfies condition 2©.
Before every time of Reduction Development, Oi is built

up by Extension Development. According to Proof I, con-
dition 1© is satisfied at learning time t , then at the learning

FIGURE 8. The sensorimotor mapping numbers from step 1 to step 30 of
the free learning process as in Fig. 6(a).

time t + 1,

0 ≤ oij(t+1) =
oij(t)

1−oib(t)
=

oij(t)
oij(t)+(1−oib(t)−oij(t))

≤ 1,

(22)

and
b−1∑
j=1

oij(t + 1)+
ni∑

j=b+1

oij(t + 1)

=

b−1∑
j=1

oij(t)
1− oib(t)

+

ni∑
j=b+1

oij(t)
1− oib(t)

=
1− oib(t)
1− oib(t)

= 1. (23)

By mathematical induction, Reduction Development
always satisfies condition 1©.

Proof III: the updating of oij satisfies condition 1©.
Mi is built up by Extension Development, so before Oi

updates according to (9), oij satisfies condition 1©. Supposing
at the learning time t , the robot chooses one motion mik from
Mi, then at time t + 1, Oi will update according to (9). As the
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FIGURE 9. The 2nd round of free learnings.

motion mik is an effective motion, so SMF(t + 1) ≥ 0. While
0 < η < 1, we have 0 < 1 = (1−e−η×SMF(t+1)) ≤ 1. Then,

0 ≤ oik (t + 1) =
oik (t)+ oik (t)×1
1+ oik (t)×1

≤ 1,

0 ≤ oik ′ (t + 1) =
oik ′ (t)

1+ oik (t)×1
≤ 1,

(24)

and
ni∑
j=1

oij(t + 1) = oik (t + 1)+
ni∑

j=1,j 6=k

oij(t + 1)

=
oik (t)+ oik (t)×1
1+ oik (t)×1

+

ni∑
j=1,j 6=k

oik ′ (t)
1+ oik (t)×1

=

oik (t)+
ni∑

j=1,j 6=k
oik ′ (t)+ oik (t)×1

1+ oik (t)×1

=
1+ oik (t)×1
1+ oik (t)×1

= 1. (25)

By mathematical induction, the updating of oij always
satisfies condition 1©.
Proof IV: the updating of oij satisfies condition 2©.
Operant conditioning has two meanings: (I) rewards help

improve orientations, and (II) greater reward gets greater
improvement in orientations.

For the updating of Oi, if one motion mik is chosen,
(I) according to (24),

oik (t + 1)− oik (t)

=
oik (t)+ oik (t)×1
1+ oik (t)×1

− oik (t)

=
oik (t)×1× (1− oik (t))

1+ oik (t)×1
≥ 0. (26)

So oik (t + 1) ≥ oik (t), which means the orientation for mik
will improve when getting a reward SEF(t + 1) ≥ 0.

(II) Based on (26),

d(oik (t + 1)− oik (t))
d(SMF(t + 1))

= oik (t)× (1− oik (t))×
ηe−η×SMF(t+1)

(1+ oik (t)×1)2
≥ 0. (27)

So the difference between oik (t+1) and oik (t) is proportional
to SMF(t + 1), which means greater reward will get greater
improvement in orientations.

VI. SIMULATION EXPERIMENTS
Here we give the simulation results as well as analysis to
further elaborate the characteristics of the developmental
learning method.

For most learning based methods, they always make a
lot of trials and errors, which in practice will cause much
waste in learning as well as calculation. Here learning waste
means the repeated explorations of those ineffective sen-
sorimotor mappings, and calculation waste happens for Oi
updating when the sensorimotor mapping that ineffective or
no longer expected is chosen. But for the method in this
article, the robot extends only the effective motions to Mi,
and at the same time deducts the motions that no longer
expected out of Mi so as to improve the learning efficiency.
In such way, the learning waste will happen only once for
each ineffective sensorimotor mapping when it is explored
from RMi.

A. FREE LEARNING
For animals or humans, when they are in an unknown environ-
ment, they will wander around to familiarize themselves with
the environment so as to finally fulfill the task. Free learning
here means that the robot moves freely in the environment
without collision, which is for the robot fully cognizing the
environment. In free learning phase, the learning termination
condition is the learning steps. Here we set as 10000. When
the robot learn 10000 steps, then learning ends. Fig. 6 shows
4 different learning processes. Firstly it can be found that the
paths that the robot moves are different. This is just the nature
of biological learning. As for different learners, their learning
‘‘habits’’ are different. What’s more, different learning pro-
cesses will lead to different final paths. This will be shown
in later Path Learning simulation experiments. Secondly we
can see that after the robot learns to a degree, it will keep
moving around the target point. This is because that the robot
has learned the knowledge of the target point, and prefers to
stay around to get rewards until achieving the learning steps
that have been set.
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FIGURE 10. Path optimization process.

Taking the learning process of Fig. 6(a) as an example,
we give the descriptions of the two developmental modes in
this method. As shown in Fig. 7, the blue line is the total
sensorimotor mapping number that the robot has explored
fromRMi at every learning step, here we define it asNUMRMi .
The red line is the sensorimotor mapping number that the
robot has developed inMi at each learning step, and is defined
as NUMMi . From Fig. 7, it can be found that as the robot
explores RMi more and more, more effective motions will
be developed to Mi. What’s more, the blue line is always
higher than the red line, which means during the exploration
of RMi, there exit many ineffective motions which are moved
to M̄i. The difference between the blue line and the red line
is that the blue line will not decrease all the time while
the red line may decrease sometime because of Reduction
Development.
To more elaborately clarify the two developmental modes,

we take out the data from step 1 to step 30 as shown in Fig. 8.
Four representative periods are chosen to explain the devel-
opmental learning process. In the rectangle a, we can see
NUMRMi increases 1 from the learning step 24 to 25, and at
the same time NUMMi also increases 1. This process means

FIGURE 11. Different path learning results.

that at the learning step 24, the robot explores a new motion
from RMi, and at the learning step 25, this motion is proved to
be an effective motion for the current sensory situation, so it
is developed to Mi. In the rectangle b, we can see NUMRMi

keeps increasing from the learning step 2 to 11, but NUMMi

always stays the same. This means that during this process,
although the robot explores RMi at every learning step, all the
motions are ineffective, so Mi is not developed. In rectangle
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FIGURE 12. Learning ability test results.

c and d, we can see NUMRMi does not increase, which means
the robot does not explore RMi during this period, so it must
exploitMi and update Oi. The difference between rectangle c
and d is that, in c, NUMMi does not change, which means the
values of all the oij at next step are bigger than the threshold
value. But in d, after updating, one motion’s orientation value
is lower than the threshold value, so the robot does reduction
development and moves the motion out of Mi.

B. ROUNDS OF LEARNING
Rounds of learning means that the robot will begin a new
round of learning from the start point based on the knowledge
it has learnt in the previous round. From Fig. 7 we find
that after about the 3000th learning step, the sensorimotor
mapping numbers hardly change, that is because the robot
basically stays around the target point then, and only learns
limited sensorimotor mappings. To let the robot fully learn
the environment so as to find more reasonable path, here
we let the robot do ‘‘rounds of learning.’’ In the phase,
the learning termination condition is still the learning steps.
Based on the 1st round of learning in Fig. 6, Fig. 9 shows
their corresponding 2nd round of learning results. It can be
found that, compared to the 1st round of learnings, in the
2nd round, the robot’s wandering behaviors greatly reduce.
Once the robot arrives at the target point, it will stay around.
This in some aspects illustrates the learning stability of this
developmental learningmethod, and this stability comes from
the design of the effective motion space Mi. As in Mi, all
the motions will lead the robot to the target. Once the robot
finishes the exploration of space RMi, all it does is exploiting
Mi. In this way, the robot’s exploration to those ineffective
sensorimotor mappings will be only once, which greatly
reduces the learning waste as well as computing waste.

C. PATH LEARNING
In Fig. 9, we can find that, compared to the 1st round of
learnings, in the 2nd round of learnings, the robot experiences
fewer steps to get to the target point. This proves that the robot
does learn some knowledge. From the 3rd round on, we let
the robot do ‘‘path learning.’’ In ‘‘path learning’’ simulation
experiment, robot’s learning in every round is also based on
the previous round, but the termination condition goes from

TABLE 1. Steps of Different Round of Learnings.

‘‘reach the learning steps that have been set’’ to ‘‘the robot
reaches the target point’’. Fig. 10 records some representative
rounds of path optimization process. The exact steps that the
robot uses in each round of learning are as in TABLE 1.
We can see that as the learning goes on, the steps that the
robot uses are basically going down. That means the learnt
path is better and better. Between round 247 and round 301,
we find the steps sometimes increase, which is because the
curiosity still plays a role, so the robot may explore some new
sensorimotor mappings. From the round 341 on, the steps are
always 149, and corresponding to Fig. 10, the paths are all
the same since the round 341. This indicates that the robot
has learned a stable path.

What’s worth mentioning is that the learning results
in Fig. 10 are just to show the robot’s learning process. For the
robot, its path learning result is not fixed, andmay be different
according to the robot’s learning ‘‘habit’’. Fig. 11 are another
two path learning results.

D. LEARNING ABILITY TEST
To show the learning ability of this developmental learning
method, after the robot’s learning as in Fig. 10, we change
its start position as in Fig. 12. The test results show that after
learning the environment, even though the robot is placed at
new different positions, it can still find useful paths with just
a few rounds of learning.

VII. CONCLUSION
In this article, a new developmental learning method is pro-
posed to help mobile robots fulfill the path planning task
during its sensorimotor process in the environment. In this
method, orientation and curiosity are introduced from the
perspective of cognitive psychology. Orientation decides the
robot’s preference of different motions, and helps the robot
enhance the knowledge that it has learned, while the curiosity
can promote the robot to explore new knowledge. The design
of orientation and curiosity well balances the exploration and
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exploitation which is faced by all the intelligent learning
methods. What’s more, the sensorimotor mappings in this
method are not fixed. The robot only exploits effective senso-
rimotor mappings which it develops toMi. For the ineffective
sensorimotor mappings, the explorations for them are at most
once. This greatly reduces the learning waste as well as
the calculation waste. The analysis of the algorithms of this
method’s every part is given. Simulation experiments are also
done to show the method’s properties of learning as well
as development. In this method, the parameters of the SEF
function are chosen based on the environment in Fig. 2. For
the environments in which the obstacles as well as the target
are with similar distribution, these parameters will also work.
But for total different environments, the parameters of SEF
are usually different. To enable the robot to adapt to dynamic
environments, an adaptive SEF function will be designed in
the following work.

This article introduces behavior mechanism and intrinsic
motivation mechanism simultaneously in artificial learning
method designing, and provides a way to realize autonomous
robots. Although this development learning method is
designed for mobile robots with path planning task, it can also
guide other types of robots with specific tasks. What needs to
do then is redesigning the SEF function and redefining the
sensory situation spaces as well as motion spaces. So this
developmental learning method is broadly applicable.
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