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ABSTRACT Content caching in the current commercial content delivery networks (CDNs) allows reduction
of duplicate traffic and improvement of QoS and QoE but it still suffers from surges of content traffic, network
congestion, high mobility of users and dynamic users’ content request patterns which may result in high
content access latency. With the increasing interest of large companies in providing next-generation mobile
edge applications and services that the users can use despite potentially sparse, non-uniform connectivity,
it is becoming increasingly important to provide efficient, smart content caching services at the edges to
help with scalable storage and processing of local data as well as sharing data both at the edges and in the
cloud. We propose a novel multi-agent deep reinforcement learning approach, CognitiveCache, in which
edges adaptively learn their best caching policies while collaborating with other neighbouring edges to
better understand if they can be usable for cache content placement optimisation problem in dynamic
environments. We show that CognitiveCache can respond and adapt to the spatial-temporal locality of
dynamically changing content workloads and resources, improve the reliability and scalability of content
sharing, enhance QoE for users and decrease operational costs in mobile social community networks.
We perform extensive multi-criteria evaluation of our proposal against four benchmark and competitive
protocols over two different real-world scenarios in New York and London in the face of different mobility
and users’ interest patterns to show that CognitiveCache achieves higher cache hit ratios, lower delays while
reducing resource consumption.

INDEX TERMS Mobile social community networks, edge cloud and fog networks, content caching, deep
reinforcement learning, multilayer spatial-temporal locality.

I. INTRODUCTION

Current large-scale networking systems have been evolving
to adapt to the increasing complexity and dynamics of both
underlying networking infrastructures and applications. Con-
tent caching in content delivery networks (CDNs) [63], [64],
such as AWS Cloudfront [25] and Azure CDN [61], allows
improvement of users QoS and QoE but it still suffers
from sparse network coverage, disconnections, network con-
gestion and highly dynamic users’ mobility and query
patterns [1], [2], [6]. Many applications, such as remote
health care and mobile social networks, need to be sup-
ported by next-generation mobile edge predictive content
services which allow localized content storing and processing
close to the users interested in it [1], [6], [7], [32]-[34].
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State-of-the-art edge services hosted in the mobile edge
devices bring local data management, computation and infer-
ence capabilities to the edges to reduce the delay and
improve the performance of data transport for end-users [67].
However, they still have limited support for surges of traf-
fic, especially video streaming and dynamically changing
networks due to users’ mobility and content request pat-
terns [1], [2]. To enable fully local network, interest and
privacy awareness self-organised multi-layer cognitive edge
clouds have been proposed in [32], [34] to host various ser-
vices. Edge and fog computing [3], [41], [50] integration with
various technologies including device-to-device (D2D) com-
munication [30], [43], content-centric architecture [1], [11],
small cells [48], caching [1]-[3], [8] are proposed to sup-
port complex networking data services. Intelligent caching
services at the edges are envisaged to be important solu-
tion providing more localised and more responsive content
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services to mobile users compared to the traditional CDN
approaches.

We formulise the objective function of cache content
placement optimization problem in dynamic environment
and investigate if machine learning (ML) — reinforcement
learning (RL) approaches can be helpful for caching services
that are able to compute cache content placement among
the edges such that the aggregate benefit is maximized.
RL algorithms are traditionally used in statistics, neuro-
science and have been successfully applied in a variety of
applications ranging from robotics [49], energy and resource
management [22], [50], recommendation systems [19], [51],
transportation [52] and software-defined networks [21].
Reinforcement learning [15], [16] is suitable for our unreli-
able network environments with no global knowledge and a
certain degree of dynamics where we can quantify different
variables and states of the network environments. We argue
that application of RL’s core concept where a mobile edge
learns behaviour through “trial-and-error” interactions in a
dynamic environment is feasible in the considered scenario
(even though it is not for other scenarios such as e.g. high
speed police chase which we do not consider in this paper).

In this paper, we propose a multi-agent deep reinforcement
learning (DRL) model for caching framework Cognitive-
Cache at the edges that adaptively and collaboratively capture
and predict the dynamic changing networks and complex
users’ content request patterns to improve the accuracy of
caching decision to place the most suitable contents in the
most suitable edges. We model mobile edge-cloud network
environment with a novel state space and set of actions that
edges could take to collaborate with other nodes, interact
with the environment in real time to maximise a cumu-
lative reward. Traditional single-agent DRL-based caching
approaches [54], [55] have been proposed where a single
edge (e.g. single base-station or an access-point) learns to
make most suitable caching decisions based on the states
of the environment and the rewards. In our context with
multiple edges (e.g. femtocell, access points, mobile users,
vehicles, etc.), single-agent DRL-based caching approaches
are not applicable due to i) every individual edge should
learn its own caching policy relied on its observed user
content request patterns and the current state of its caching
storage ii) single central agent could have limited scalability
as the increasing number of distributed edges will result at
massive action space [56]. Therefore, we investigate a DRL
caching approach for mobile edge-cloud scenarios where
multiple edges can collaborate with each other. We utilise
and extend the actor-critic based approach [5], [57] for
multi-agent reinforcement learning [18], [24] in which the
actor network controls the caching decisions and the critic
network evaluates and gives feedback on the chosen ones.
In CognitiveCache, each edge considers its caching strategy
together with the caching policy of its neighbouring edges
as part of the environment [38]. This implies that all edges
have some effect on the environment and similar action of a
single edge can have different outcomes depending on what

179562

the other edges are doing. We consider mobile social com-
munity networks which are characterized by multi-network
layer [1], [3], [29], [45] including physical geo-temporal net-
work topologies, resources, social geo-temporal communities
and content geo-temporal interests. Note that in this paper,
our edges are assumed to be privacy-aware by design as
proposed in [32] and [34]. Malicious behaviour between the
edges is out of the scope of our paper.

We show that CognitiveCache outperforms benchmark and
state of the art caching protocols across a range of met-
rics to achieve higher cache hit ratio, lower latency and
lower transmission cost compared in the face of realistic
dynamic users’ mobility and data demand patterns. We drive
our experiments by real-world mobility traces and users’
interest traces of more than 10> mobile edges and 10° con-
tent interests from New York Foursquare & London Twitter
datasets. The remaining of the paper is organized as fol-
lows. Section 2 provides a systematic overview of the related
work. Section 3 describes key features of our multi-agent
deep reinforcement learning caching framework and provides
pseudo-code. Section 4 discusses multi-criteria evaluation
of CognitiveCache against other benchmark and competitive
protocols across a range of metrics for realistic dynamic
users’ mobility and data demand patterns. Section 5 gives
conclusions and discusses future work.

Il. RELATED WORK

Machine learning [15], [16], a subset of artificial intelligence,
has attracted increasing attention of scientific communities
in recent years as it allows to perform a specific task with-
out explicit instructions. Machine learning approaches can
be grouped into three fundamental paradigms [15], [16]:
(1) supervised learning that infers a learning function from
labelled data; (2) unsupervised learning that involves min-
ing information and learning from unlabelled or raw data;
(3) reinforcement learning (RL) that explores how agents
take suitable actions to maximise rewards in an environ-
ment. The environment is typically stated in the form of a
Markov decision process [15], [46]. In reinforcement learn-
ing [15], [16], given a goal, an agent learns how to achieve the
goal by trial-and-error interactive process with its environ-
ments. Both supervised and unsupervised learning are more
suitable for off-line learning scenarios since all the inputs
are received at once while reinforcement learning can be
classified as online learning algorithms as it relies on being
able to continuously monitor the response of the actions
taken, and measure against a definition of a reward [16].
One of the well-known reinforcement learning algorithms
is Q-learning [17], in which an agent in a given state esti-
mates the expected reward if it chooses a specific action
and enters another state. The core of the algorithm is a
Bellman value iteration update [17] which is used to find
optional action-selection strategies. Authors in [67] argue
that to reduce the delay in data processing and minimize the
privacy risks of revealing raw data to service providers, future
Al and machine learning-based services could be deployed
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on users’ devices at the edges rather than placing everything
on the cloud although moving ML-based data analytics from
cloud to the edge devices brings a series of challenges.

In recent years, different deep reinforcement learning
based caching approaches at the network edges have been
proposed leveraging its powerful learning capacity from the
historical events. Authors in [54] propose a DRL based frame-
work for content caching at the base station as a single agent.
The authors utilize actor-critic method and train the policy
using Deep Deterministic Policy Gradient (DDPG) [58] to
improve the caching decision, maximise the long-term cache
hit rate without knowledge of content popularity distribution.
However, [54] is mostly confined to centralized learning
within one base station as a single agent which is not scal-
able in mobile edge-cloud scenarios [56]. Authors in [55]
propose a deep reinforcement learning-based caching in hier-
archical content delivery networks. The proposed framework
DQNCache relies on Deep Q Networks to learn optimal
caching policy in an online manner. DQNCache tries to
find optimal value function which is a mapping between an
action and a value to find better action with higher value.
DQNCache belongs to value-based algorithm which is differ-
ent from policy-based algorithm such as REINFORCE [59].
While value-based approaches are more sample, efficient and
steady, policy-based approaches are better for continuous,
stochastic environments and have a faster convergence. In this
paper, we utilize actor-critic method [5], [57] which takes
advantage of both value-based and policy-based algorithms
while eliminating their drawbacks. Similar to [54], [55] is
built on single-agent DRL approach where a parent node
makes caching decisions by observing aggregated requests
from all leaf nodes. Different from existing single-agent DRL
approaches [54], [55], our CognitiveCache leverages mul-
tiagent DRL to predict and adapt in real time the dynam-
ically changing spatial-temporal locality of networks and
users requests [3], [4] and achieve collaborative intelli-
gence between edge caching in mobile edge-cloud networks.
Each CognitiveCache edge has its own learning model and
exchanges knowledge with its neighbours to provide better
scalability compared to centralised DRL caching approaches.
Authors in [56] propose a multiagent DRL based caching
for video contents which leverages independent Q-learning,
advanced actor-critic method integrated with long short-term
memory network to adaptively learn most optimal local
caching policy in conjunction with other edges. In this paper,
we propose to use soft actor-critic method [5], [57] which
promises to be more sample efficient and more robust to
brittleness in convergence compared to [56]. CognitiveCache
has a fine-grained state design that allows CognitiveCache to
adaptively capture and forecast the popularity of content and
surge of content demand.

Reinforcement learning has also been applied in different
areas of mobile edge cloud networks. Authors in [37] propose
a delay-tolerant congestion-control framework that automati-
cally modifies its operations based on the dynamic changings
of the underlying network using reinforcement Q-learning.
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[37] shows that it continuously adapts to the dynamics of the
target environment in a variety of DTN applications and sce-
narios with adequate performance. However, [37] only takes
into account resource availability as states of nodes without
considering other dimensionalities such as connectivity and
content traffic, thus it does not sufficiently represent the
multilayer multidimensional characteristics of mobile net-
work environments. Authors in [68] propose a distributed and
energy-efficient control framework based on convolutional
neural network (CNN) that utilizes distributed multi-agent
DRL approach to solve a challenge of mobile crowdsensing.
Reference [68] takes energy availability, spatial coordinates
and remaining data as states for each node in the network. The
solution explores the spatio-temporal nature of the consid-
ered scenario for better cooperation and competition between
nodes to maximize the data collection ratio, geographic fair-
ness and energy efficiency. Authors in [19] leverage the deep
learning techniques for sequential modelling and correlation
identification of user interests influenced by their social cir-
cles and centrality. Reference [19] shows that they signifi-
cantly improve prediction accuracy to predict user interests
based on their sociality compared to widely used baseline
methods. However, [19] assumes centralized knowledge and
does not support fully distributed decision making as we do
in our paper. Authors in [20], [21] utilize deep reinforce-
ment Q-learning to propose an integrated framework that can
enable dynamic orchestration of not only networking but also
caching and computing resources in order to improve the per-
formance of next-generation vehicular networks. However,
the framework’s complexity is very high when the network
states, caching states and computational resource states are
jointly considered. Authors in [22] propose an intelligent
deep reinforcement learning-based offloading mechanism for
vehicular edge where the states of communication, mobil-
ity and computation are modelled by finite Markov chains.
Similar to [20], [21], task scheduling and resource allocation
strategy is formulated as a joint optimization problem to
maximize users’ QoE.

Many existing predictive analytics, collaborative heuristics
and utility-based mobile edge caching models have been
proposed in recent years. Research in [1] models mobile
edge-cloud networks as a bargaining game theory to pro-
pose a collaborative adaptive caching framework CafRep-
Cache. The authors formulate content discovery, caching
and retrieval as the optimization problem and prove it
is a typical Integer Programming program which is NP-
Complete [1], [6]. CafRepCache serves subscribers with its
local cache or by redirecting a request to a nearby collabo-
rative cache, rather than forwarding to the original publisher.
CafRepCache is built on multilayer predictive analytics and
heuristics to capture and predict content interests coming
from dynamic changing clusters [1]-[3], [14], [31], [39]
of subscribers in both random and scale-free network, and
thus reduce content retrieval delay, improve cache efficiency
and reduce resource consumption while enabling respon-
siveness to heterogeneous dynamically changing network
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topology, congestion avoidance and varying patterns of con-
tent publishers/subscribers. Authors in [30] present Influ-
entialCache, a proactive caching approach in small cellular
device-to-device communication networks. InfluentialCache
models D2D cellular network as a social graph in order to uti-
lize its spatial structure. The influential users and their clus-
ters are identified using eigenvector centrality and CC-GA
clustering algorithms [42]. The authors assume that the con-
tent requested, generated, or accessed by the influential users
in a community will become popular within this commu-
nity, thus proactively cache this content to serve the others.
Authors in [8] propose SocialCache, a caching algorithm
based on social relationship of nodes in the network to choose
caching carriers. Content popularity is calculated based on
the frequency and freshness of content requests. Authors
in [12] propose LocationCache that uses function of distances
between subscribers and caching points and other features
such as time stamp or number of content requests to clas-
sify contents and replace them when cache memory is full.
Least frequently used (LFU) [10] measures the frequency of
content requests at a caching node to make caching deci-
sions. The content receiving more frequent requests will need
to be cached because it will have higher chance of being
requested again in the future. Least recently used (LRU) [9]
records the time stamp of a content request locally in order
to make caching decisions based on how recent the content
requests are. ProbCache [60] keeps a copy of content in a
cache along a path with a probability which is calculated
based on path lengths and multiplexes content flows. In this
paper, we compare CognitiveCache against state-of-the-art
and benchmarking caching algorithm including the least
recently used (LRU) [9], least frequently used (LFU) [10],
ProbCache [60] and DQNCache [55].

In previous works, we have proposed and deployed
fully-distributed real-time multi-layer mobile edge cloud
architectures for enabling multiple services for smart vehi-
cles, drones, cities and agriculture applications spanning
MODiToNeS [32], mobile personal edge-clouds [66] and
Raspberry PI based personal clouds RasPiPCloud [32]-[34]
which support multiple on-demand virtual containers (e.g.
LXC, Docker) to host different services and applications that
collect, store, analyse, predict and share data with other edges
while retaining completed control and ownership of their
data.

Ill. COGNITIVECACHE - A MULTI-AGENT DEEP
REINFORCEMENT LEARNING BASED CACHING
FRAMEWORK

A. COGNITIVECACHE FRAMEWORK AND SYSTEM MODEL
We envisage a distributed edge caching scenario for hetero-
geneous content services such as video streaming, file down-
loading, used by dynamic groups of mobile users who request
contents in real time. In this context, multiple CognitiveCache
edges (e.g. femtocell, access points, mobile users, vehicles,
etc.) are located in different areas providing processing and
caching capacity. For example, a group of students in a city
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area acting as subscribers send their interests of information
about nearby parking space, local coffee shops or interests
of bus schedule to CognitiveCache edges. CognitiveCache
edges can communicate with other neighbouring edges and
can collaboratively retrieve the requested contents from each
other (Figure 1).
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FIGURE 1. Mobile edge caching in social edge-cloud community
networks.

While the edges have limited caching storage and thus
can only cache a certain amount of contents, CDN server
is assumed to have sufficient caching capacity with all the
requested contents already being cached and is able to pro-
vide requested contents to the users. However, we assume
that retrieving contents from CDN server has a significantly
higher delay compared to retrieving contents from the edges
(e.g. BSs). More specifically, we propose that serving a
request has three phases: local edge cache hit, neighbour
edge cache hit and CDN cache hit. Local edge cache hit:
when a request arrives at the local edge, it sends the cached
content to users if the requested content is found in its local
caching storage. Neighbour edge cache hit: when a local
edge does not cache the requested content, it then attempts
to retrieve the content from its neighbour edges which cause
extra latency but is still quicker and cost-beneficial compared
to retrieving content from the CDN server. CDN cache hit:
when the requested contents cannot be found from either
local or neighbour edges’ cache storage, local edge fetches
the requested contents from CDN server as a lowest-priority
back-up solution. We assume the CDN’s latency is the same
for all users.

We propose a multi-agent deep reinforcement learn-
ing (DRL) model for caching framework CognitiveCache at
the edges with novel design of states, actions and rewards.
We utilise independent Q-learning [38] approach to solve
the multi-agent reinforcement learning problem where each
CognitiveCache edge considers its caching strategy together
with the caching behaviours of its neighbours edges as part of
the environment. CognitiveCache relies on actor-critic based
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RL approach [5], [57] and utilises Long-Short Term Memory
(LSTM) [40]) as the (deep) recurrent neural network archi-
tecture for the actor-critic networks to learn a model of the
environment. Figure 2 shows an overview of CognitiveCache
framework. Note that we will use the term edge, agent and
node interchangeably.

COGNITIVECACHE EDGE

L Social and
| Resource Monitor

Table | Forwarding Table
Content
Selector

FIGURE 2. CognitiveCache framework.

At every epoch ¢, CognitiveCache edge adaptively and
collaborative captures and predicts the dynamic changing
network environment such as cache availability, complex
users’ content request patterns using predictive analytics and
heuristics proposed in [1]-[3]. As a result, CognitiveCache
edge can form a state of the network environment observed
by not only itself but also its neighbour edges. Cognitive-
Cache relies on actor-critic based RL approach [5], [57]: the
actor network controls how the edge behaves by learning the
optimal policy, taking the state as input and outputs the best
caching decisions such that whether to cache or evict/drop a
list of contents; the critic network evaluates and gives feed-
back to the selected caching decisions to keep improving in
real time the caching decision policy. After taking the caching
decisions, each CognitiveCache edge receives a reward based
on the popularity of cached content, content transmission
latency and costs at the next epoch #+1. The reward and the
next state observed by CognitiveCache at t+1/ help to keep
improving the caching decisions such that to maximise the
cumulative reward in order to eventually improve the average
cache hit ratio, reduce latency and transmission cost. One
disadvantage of standard actor-critic based RL approach is
that seeking for the best caching actions is undirected and
slow to converge [65]. Thus, our CognitiveCache utilises
(deep) recurrent neural network (specifically, LSTM [40]) as
the architecture for the actor-critic networks to learn a model
of the environment that helps to capture long-term temporal
dependencies, predict next observations/states and rewards
based on current observations/states and actions in the par-
tially observable environment. At the result, CognitiveCache
converges quickly to achieve good caching decision policy.

Figure 3 shows an example of states and caching action
transitions of CognitiveCache. CognitiveCache edge main-
tains and exchange with other neighbour edges the state of its
caching storage (i.e. which contents have been cached) and
a list of content popularity it observes. The CognitiveCache
edge in high cache state means it has not cached much and
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still has plenty of space in its caching storage. Thus the edge
may freely decide to cache high, medium or low popular con-
tent. This makes the transitions from high cache to medium
and low cache. When the edge is in medium or low cache
state, it will be more selective about which contents to cache
so that it only caches high (or medium) popular content as it
will need to carefully drop its old cached contents (i.e. ones
which are expired or have lowest content popularity) to make
more caching space. When a CognitiveCache edge does not
receive many content request (i.e. low interest), it may decide
to not cache the new content and at the same time, the edge
will be able to drop its old (or expired) cached contents that
increases the cache availability.

nterest High Medium Low
Cache
High Yes Yes Yes
Medium Yes Yes No
Low Yes No No

Cache content
—

Cache content —
Evict cached content

Cacheleontpat

Cache content —
Evict cached content High

Interest

Evict cached content

ent

— " o cache

FIGURE 3. Example of CognitiveCache state-action transitions.

We model CognitiveCache system as a network G that
consists of a set N of edges n; (n; € N) and a local CDN
server denoted as C. We define a set of neighbours of each
edge n; as NE;. We assume that each CognitiveCache edge
n; € N in the network has a cache of size CS;. We denote
with O a set of content files that can be requested by the
network. Each content oy € O has the size 6. Content o
consists of an array of chunks o ;. For simplicity, we assume
all chunks o ; of a single content of will have the same
chunk size §; ; without losing generality. We also denote r,i
as the interest about content o, at time 7. We denote pf’ X
as the popularity of content o; observed and predicted by
the edge n; during the interval time Az. Content popularity
implies the probability of how likely content will be requested
in a period of time. Contents are globally popular if they
have been requested by a high number of subscribers coming
from different areas in the networks while localised highly
popular contents are those which have been requested by
subscribers from the same location. Each edge n; € N in
the network receives certain requests of content o at time ¢,
denoted as local content request rate qﬁ, - In addition to this,
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zﬁ’ « 1s denoted as the aggregated request rate of the content o
observed from all the collaborative neighbours of n; at time ¢.
We denote x’ * € {0, 1} as whether edge nl has a cache of
content o at time t or not. We denote y ik as whether a
content o requested within edge n; area 1s cached by n;.
n; € {NE;, C} is either a neighbour edge n; or CDN server
at time t. Table 1 summarises the main notations used in this

paper.

TABLE 1. Table of main notions used in the paper.

Notation ~ Meaning
N a set of edges
C local CDN server
CS; cache size/capacity of edgen; € N
0 a set of content files
pf_ Kk the popularity of content 0, observed and predicted

by the edge n; at time t

xl-t_ k binary value indicating whether edge n; has a cache
of content oy, at time t.

yl-t, ik binary value indicating whether a content oy
requested within edge n; area is cached by n; at time
t.n; € {NE;, C} is either a neighbour edge or CDN
server.

uﬁ ik beneficial utility value when caching content o;, at
the edge n; for the edge n;

1t

i latency of transmission between n; € {NE;, C} and

the edge n;
transmission cost between n; € {NE;,C} and the
edge n;

Jji

We measure the caching performance as the product of cache
hit ratio, reduction in latency and transmission cost. The
objective of our optimization is to compute cache content
placement among the edges such that the aggregate benefit
is maximized. We formulate the optimal cache content place-
ment problem as follows in equation 1.

. to bt
max : Z Zpi’k.xi’k.ui’j’k (1)

op €0 n;eN
Subject to : Z X < CS; (2
o0
xi, €1{0,1} (3)

Equation 2 ensures that each edge does not exceed its caching
capacity. Equation 3 restricts the optimization caching deci-
sion as a binary value indicating whether to cache con-
tent or not. u! & 18 the beneficial utility value when caching
content oy at the edge nj € {NE;, C} which is requested from
the area of the edge n;. In the short term, 1} i « is the beneficial
utility for caching content o4 at the edge n; for the edge n;.
Note that i = j implies local edge cache hit. u ik is defined
as the inverse proportion of the additive value of latency and
transmission cost as in equation 4 below:

. 1

W, = 4
ik al]{i + ,Bcjt.’l. )
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where l’ and ¢! . are the latency and transmission cost
between n] € {NE i, C} and the edge n;, o and B weights
the importance of latency and transmission cost. As discussed
above regarding the relation between local hit, neighbour hit
and CDN hit, we summarise the relation of lj{ ; and c; ; as in
equations 5 and 6 below:

lit,i < lfe{NE,-},i < l;e{C},i &)
Cjt'e{C},i (6)

Our cache content placement optimisation problem
is a typical Integer Programming program which is
NP-Complete [1], [6]. Achieving a solution working in real
time with global optimality is non-trivial [6], [18], [56]
regarding the partial network knowledge, the dynamic of
mobile users and their content requests. In this paper,
we explore how to develop multi-agent DRL caching
approach for the mobile edge-cloud scenario where not only
individual edge can capture and predict the spatial-temporal
locality of content traffic patterns [3], [4] to make data-driven
caching solution but also multiple edges can collaborate with
each other to solve this optimisation problem.

1 !
Ci.i < Cie(NE},i <

B. COGNITIVECACHE - A MULTI-AGENT DEEP
REINFORCEMENT LEARNING-BASED CONTENT CACHING
AT THE EDGES

We propose our novel state, action, reward design followed
by the algorithm and architecture of our multi-agent deep
reinforcement learning caching framework CognitiveCache.

1) COGNITIVECACHE STATE, ACTION AND REWARD DESIGN
Each CognitiveCache edge in the network maintains a
historical record of state-action-reward tuples (so, ag, ro),
(s1, a1, r1) of its own and its neighbour edges. Our caching’s
multiagent environment is not globally observable but rather
partially observable where each edge is able to capture the
environment state and communicate with its neighbours.
We describe our novel design of state and action spaces, and
the reward function of the CognitiveCache agent as follows:

State space: CognitiveCache maintains the state sﬁ of
edge n; at time t as si = {x/,pi} where x| =
{xit,o’x;,y ""xit,k} is the binary value indicating whether
edge n; has a cache of a list of contents oy € O at time t
and p; = {pjo Py, ---» iy} is the popularity of a list of
content oy € O observed and predicted by the edge n; at
time ¢. To capture and infer the content request demand, sim-
ply logging the number of content requests is not sufficient.
We utilise the content predictive analytics proposed in [3] to
capture the spatial-temporal locality of content requests more
accurately and responsively. Specifically, p? « 1s resolved by
the combination of temporal (request frequency, recency,
betweenness [3]) and spatial content heuristics [3] in order to
allow CognitiveCache to capture and predict the locality trend
of content request patterns over time in different locations and
avoid losing valuable contents by reducing the caches for one-
timers contents [3]. The input state of an edge includes its own
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observed state and its neighbours’ states, denoted as:
st [s;} Vj € NE; %)

Action space: At every epoch, after observing the input
state of the environment (i.e. cache storage state and content
request popularity), CognitiveCache makes the action based
on its policy. The action aﬁ of edge n; at time t is defined as:

a; = {a;k, Vk € 0} ®)

in which for every iteration, edge n; has to decide a list of
contents to be cached aﬁ’ « = 1 and a list of content to not
be cache ai « = 0 (or be removed if the cache storage is
full). Each edge decides the best actions based on the input
state. CognitiveCache seeks for high entropy in our policy to
explicitly encourage exploration that assigns equal probabil-
ities to actions that have the relatively same Q-values. This
also avoids CognitiveCache repeatedly selecting a particular
caching action that could exploit some inconsistency in the
approximated Q function.

Reward space: After taking the caching actions, each
CognitiveCache edge receives a reward r/. We define the
reward r/ of edge n; at time t after taking a list of actions as:

t 1 t t t
rh=a Z PikUiix T B Z Z P Ui j k ©)

o0 o0 njENE,-

in which p; « 18 the popularity of contents in the next epoch,
uﬁ,j’ « 18 beneficial utility value when caching content oy at
the edge n; for the edge n;. As shown in Equation 4, uf ik
is the inverse proportion of additive value of latency and
transmission cost. uf ; x means local cache hit. In Equation 9,
we consider the rewards of both local edge and its neighbours
when improving the caching policy. This is because the local
edge can serve requests from its neighbours and acquire some
reward value. In our model, we assume o« > B, i.e the local
edge reward has higher weight than the neighbour reward,
thus the policy updating is more driven to local cache hit
which has lower latency and transmission cost for delivering

content to subscribers.

2) COGNITIVECACHE ARCHITECTURAL OVERVIEW AND
PSEUDO-CODE

In our context with multiple edges (e.g. BSs, APs, mobile
devices, vehicles, etc.), a single centralised learning agent is
not applicable as every individual edge should have its own
caching policy driven by its observed user content request pat-
terns and the single-central agent could have limited scalabil-
ity due to the explosive action space of massively distributed
edges [18], [56]. Fully-cooperative approaches also suffer
from scalability and stability performance [18]. Therefore,
we propose CognitiveCache framework based on multi-agent
independent DRL [38] where each CognitiveCache edge
adaptively considers its own caching strategy while collab-
orating with its neighbours such that the input states of an
edge will involve its own state together with the states of its
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FIGURE 4. CognitiveCache independent multi-agent DRL-based caching
framework.

neighbours. Figure. 4 shows the CognitiveCache multi-agent
deep reinforcement learning-based caching framework.

We propose to utilise soft actor-critic (SAC) method
[5], [57] for the multi-agent RL [18], [24] which optimizes a
stochastic policy in an off-policy manner. The actor network
controls the caching decisions/actions and the critic network
evaluates and gives feedback on the chosen caching deci-
sions to update the caching policy. Soft actor-critic [5], [57]
is more sample efficient and more robust to brittleness in
convergence compared to other approaches such as [56]. We
base our work on [5], [57], which was originally designed for
continuous actions splace, to provide an alternative version
of the soft actor-critic (SAC) algorithm that is applicable to
discrete action settings. In addition to searching for maximum
rewards, SAC algorithm maximises the entropy of the policy.

Regarding the architecture of deep neural network for pre-
training actor and critic networks, we utilise recurrent neural
network (RNN) or more specifically long short term memory
(LSTM) [40] as shown in Fig. 5, which is a state-of-the-art
learning model that is typically used for time series predic-
tion. This allows CognitiveCache to capture and explore the
hidden users’ temporal content request patterns as well as
address the problem of large input space compared to other
traditional deep neural network [56].

1 Actor Network !
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g o o o Long o
2 Short |

g © acél.uec Su:ragte o o ° Term || 9
2 and Conten |

& Y Memo; !

] Request States € © °© e

H

(LSTM) |

{Critic Network| i

CognitiveCache Deep Neural Network Architecture

FIGURE 5. CognitiveCache edge deep learning architecture.

We describe the SAC objective function consisting of both
reward and entropy function [5], [57] in Equation 10 as
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follow:
T
Jmy=>" E(y aty~e, [yri +aH (- IsSH1 - (10)
=0
where 7 is a policy, y € [0, 1] is the discount rate, 7, is
the trajectories distribution by policy 7, « is the parameter
indicating the importance of the entropy term versus the
reward [5], [57]. H (]T . |s§)) is the entropy of the policy &
atstate st. H (7 - |s})) = —log (7 - |s}).

In actor-critic based caching approach, the actor network
controls how the edge behaves by learning the optimal pol-
icy, taking the state as input and outputs the best caching
decisions. The critic network evaluates the action by comput-
ing the value function. CognitiveCache utilises SAC which
makes use of three functions: a state value function V, a soft
Q-function Q, and a policy function . We train the three
function approximators in line with [5]. The soft state value
function for discrete action space [5] is defined as:

V (st) = 7(sH)1Q (s1) — arlog (m(st)] (11)

We train the soft Q-function parameterized by 6 by min-
imising the error function [5]:

1
10(©) =By )-pl5(Qo(s;, )
—(rf+ YEgn_ [VaGTHDYT  (12)

where D is the experience replay buffer [5], [S7]. The policy
is then updated in a direction that maximises the potential
rewards. Finally, we train the policy network 7 parameterized
by ¢ by minimising the error function [5]:

Jn() = Ey_plr (s1)" [erlog (my(s)) — QoD (13)

We provide CognitiveCache pseudo code in Table 2.
CognitiveCache updates all the network functions of every
individual edge during each epoch in an experience-replay
manner. After the actor-critic based training for our Cogni-
tiveCache, the actor network can be utilised to make caching
decisions for every single edge. More specifically, Cognitive-
Cache framework consists of two phases: 1) Offline-training:
the actor and critic networks are constructed and pre-trained
with a sufficient number of historic transition samples in
order to achieve good initial parameters for phase 2. 2) Online
control: start with a set of parameters bootstrapped in phase 1,
in each epoch t, if the requested content is already cached
(local cache hit), the edge immediately sends the requested
content to the subscribers. If the requested content is not
cached, the edge observes state s' of itself and its neighbours
resolved based on [3] and obtains the Q-value from the actor-
critic networks. Then, a list of action a§ are selected based on
m-policy, whether to cache the content or evict/drop it. Cog-
nitiveCache edge is encouraged to explore different possible
actions that assigns equal probabilities to actions that have
the same or close Q-values. After the action a§ is executed,
the edge observes the reward r] and next state sf“ on which

the action policy keeps updating for the next epoch time t+1.
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TABLE 2. CognitiveCache’s pseudo code.

Handle content requests arrival

When the Requests (or interests) of Content are received at a
CognitiveCache Edge:
if Edge has already cached Content:
send Content to Request ‘s subscribers
else
listRequest = {}
if listRequest [] not contains Request
listRequest.add(Request)
end if
if listSubscribers[] not contains Request’s subscriber
listSubscribers.add(Request ‘s subscriber)
end if
for each request in listRequest [] do:
if request is expired:
listRequest.remove(request)
end if
end for
LSTM as function approximator:
initial policy parameter, Q-function parameters, empty replay
buffer
set target parameters
repeat
updateContentStorage()
updateContentRequest()
cachingStates = {{x},{p}} // {{low, medium, high
cache},{low, medium, high interest} }
for each Neighbour in scan do:
exchangeContentPopularityInfo(Neighbour.Reputation)
exchangeCacheStateInfo()
Edge.updateContentPopularity()
Edge.update(cachingStates)
end for
cachingActions = {a} // {cache content, drop old content, no
cache}
select caching action a from caching policy
observe next caching state s’, reward r and store (s,a,7,s’) in
replay buffer
while update
randomly sample a batch of transitions (5,a,7,s’) from replay
buffer
compute target for Q-functions
update Q-functions and caching policy by one step of
gradient descent
update target network
end while
until convergence

The transition (s, af, r/, sﬁ“) is stored in CognitiveCache

memory at the end of each time period.

IV. EVALUATION

This section provides rich multi criteria evaluation of
CognitiveCharge, first describing realistic experimental
datasets with a case study, then introducing a set of bench-
mark and state-of-the-art caching policies as competitive
caching algorithms.

We use Foursquare [26] and Twitter [28] datasets as real
traces to drive user content requests in two very different net-
work scenarios: New York [26] and London [28]. Foursquare
New York dataset [26] is collected through location-based
service Foursquare API (https://developer.foursquare.com/)
describing the spatial-temporal locality of content requests
in terms of user interests at public venues. We assume the
contents represent 14,550 requests of 5101 users in different
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locations of New York City during the period of one week.
Each record is associated with its timestamp, its GPS coordi-
nates and its semantic meaning.

Similarly, the data of Twitter London [28] was collected
in one week, containing 15,602 geotagged tweets, posted by
5869 users. Each tweet consists of a timestamp and GPS
coordinates (latitude and longitude).

We focus on a particular edge-cloud community of users:
students in big universities campuses in New York and
London. Students have different heterogeneous mobility pat-
terns, interests and content request usage. This gives us
statistically sufficient diversity to evaluate CognitiveCache
and competitive caching protocols performance in different
contexts. Without loss of generality, we split the chosen area
into multiple 1 km x 1 km small grids and assume a Cogni-
tiveCache edge positioned at the centre of each grid will serve
the content requests coming from its area. Students’ requests
may range from texts (e.g. bus schedule information) to pic-
tures and videos. Based on our traces analysis, the requested
contents are highly skewed so that a lower number of contents
are requested more frequently by the users/subscribers. This
is because the students may share some common interests
such as bus schedule, travel, nightlife, restaurants, shop-
ping, cinema, etc. Table 5 and 6 show the content topic
distribution in New York and London scenarios in which
the three highest popular contents in New York belongs to
topic of college, coffee shop and subway while that in Lon-
don are transportation, college and coffee shop. As shown
in Figure 5 - 7, the content request has shown a certain level
of locality in each area. Moreover, our traces analysis shows
certain similarities among neighbouring edges will leverage
potential collaborations between the edges.

We design the CognitiveCache learning model using
Python and Tensorflow [23], running on a machine with GTX
1050 Ti GPU card, Intel 17 3.6 GHz CPU cards and 16GB
memory. As shown in Table 3, we set discount factor as
0.99 and the learning rate for both the actor-critic networks
are le-4. The hidden layers’ size is 256. The number of
iterations is 20000. We use 70% data for training and 30%
of data for evaluation.

TABLE 3. Values of the learning parameters.

Parameter Value
Discount factor 0.99
Learning rate (actor network) | le-4

Learning rate (critic network) | le-4

# of hidden layers 256
# of iterations 20000
Training:testing 70:30

We perform the evaluation across a range of criteria: local
edge (cache) hit ratio, neighbour (cache) hit ratio, latency
and transmission cost in the face of vastly different mobility,
workloads and content traffic patterns against multiple state-
of-the-art and benchmark protocols: LRU [9], LFU [10],

VOLUME 8, 2020

ProbCache [60] and DQNCache [55]. Least frequently used
(LFU) [10] measures the frequency of content requests at a
caching node to make caching decisions. The content receiv-
ing more frequent requests will be cached because it will
have higher chance of being requested again in the future.
Least recently used (LRU) [9] records the time stamp of a
content request locally in order to make caching decisions
based on how recent the content requests are. ProbCache [60]
keeps a copy of content in a cache along a path with a prob-
ability which is calculated based on path lengths and multi-
plexes content flows. DQNCache [55] is a deep reinforcement
learning-based caching in hierarchical content delivery net-
works. The proposed framework DQNCache relies on Deep
Q Networks to learn optimal caching policy in an online man-
ner. DQNCache belongs to value-based algorithm which tries
to find optimal value function which is a mapping between an
action and a value to find better action with higher value.
Local edge (cache) hit ratio is the proportion of requests
being served directly from the local edge’s cache. Neigh-
bour (cache) hit ratio is the proportion of requests being
served indirectly from the neighbour edges; local edge hit
ratio and neighbour hit ratio together show the proportion of
content requests being satisfied by the edges instead of the
CDN server. Latency means end-to-end average latency of
all content requests in a time period. Note that we assume
the transmission latency between any edge to the CDN is
3 times of the latency between any two neighbouring edges.
Transmission cost is the total traffic cost when forwarding
requests/receiving contents to/from neighbour edges or CDN
server. We describe our experiments with increasing cache
capacity which is the storage capacity constraint implying the
maximum number of contents that an edge can cache. Smaller
cache capacity size offers more selective cached contents,
thus requires more accurate and more robust caching algo-
rithms. All experiments are repeated ten times and averaged.
The detailed simulation parameters are shown in Table 4.

TABLE 4. Values of the simulation parameters.

Value
New York, London

Parameter

Complex temporal network

topologies

Content request pattern Foursquare, Twitter
Number of nodes 5101 — 5869
Simulation duration 7 days

14550 — 15602

1-25 request/min

1 MB - 8.4 MB [27]
8 kB - 128 kB [27]
1% -6%

Number of contents

Request rate

File size

Interest packet size
Cache size

Total content population

Figure 6 shows the overall temporal trends or patterns
of users’ content traffic during weekdays and weekend: if
content is requested at a certain interval of time, it is highly
likely it will be requested again in near future. Contents are
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TABLE 5. Content topic distribution in New York scenario.

Topic Number of contents
College 4033
Coffee shop 3432
Subway 2719
Park 1930
Restaurant 1206
Others 1230

TABLE 6. Content topic distribution in London scenario.

Topic Number of contents
Transportation 5890
College 2922
Coffee shop 2441
Subway 1890
Park 1010
Others 1449

Temporal Locality of Content Requests (London vs. New York)
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FIGURE 6. Temporal locality of users’ requests in New York (Foursquare)
and London (Twitter).

not requested randomly and independently over time but at a
certain time interval, before its popularity gradually fades out.
Foursquare New York experiences surge of traffic at peak
hours during weekdays and low average number of requests
during weekend. On the opposite, Twitter London has a more
uniform distribution of content traffics, although it still expe-
riences surge of traffic twice a day, during a week.

Figure 7a and Figure 7b show the user content request
distribution in New York Foursquare [26] and London Twit-
ter [28]. We show that the locations of mobile subscribers
imply different degrees of similarity in content request. Sub-
scribers within a community or from two relatively close
clusters with each other are more likely to have similar con-
tent request patterns compared to those from long-distance
subscribers or regions far apart. This captures the inter-
play between geographical diversity of the users and their
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FIGURE 7. (a) Spatial locality of users’ requests in New York Foursquare.
(b) Spatial locality of users’ requests in London twitter.

content request patterns. New York Foursquare has high
degree of power-law distribution [13] such that there is a
small important number of nodes which are highly con-
nected and there’s a trailing tail of nodes with a very few
connections [13]. In London Twitter, although the degrees
of its nodes still follows power-law model, its topologies
have more uniform connectivity distribution compared to
New York Foursquare such that popular nodes may become
extremely less popular, and emerging new nodes may become
extremely high popular in a very short time. London Twitter
has shorter average paths and lower clustering compared to
New York Foursquare. It also has lower publisher-subscriber
density compared to New York Foursquare (35.1 users/km?
and 64.8 users/km? respectively).

We investigate the influence of edge caching storage
capacity on a range of metrics. We vary the edge caching
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storage capacity from 200 contents which is equivalent to
1% of the total content population to 1200 contents (which is
equivalent to 6% of the total content population). Figure 8 and
Figure 9 show the cache hit ratio of high popular contents
in local edge and in neighbour edges for both New York
and London scenarios. We show that CognitiveCache out-
performs all other competitive approaches, improving more
than 52% cache hit ratio for New York Foursquare and 88%
for London Twitter. CognitiveCache has good performance
in both New York Foursquare with high-degree scale-free
network community where a small number of contents are
requested a lot and in the London Twitter scenarios where
the structure of community and user requests changes sig-
nificantly over time. Higher cache space leads to the big-
ger gap between CognitiveCache and others. CognitiveCache
allows 91% of high popular content to be cached and served
to subscribers within the local edge. When the local cache
space is relatively small, high popular contents which are
not be cached locally will be redirected and served via the
neighbour edges rather than sending to the CDN server. This
is due to CognitiveCache is able to collaboratively learn
the time-series and spatial content request patterns from the
historical observations while taking into account the states
of itself and its neighbours’ edges. The neighbour hit ratio
of CognitiveCache decreases when the capacity increases.
This is because most highly popular requests will be served
locally when cache space is increased. At the result, the per-
centage of neighbour cache hit is expected to reduce. Cogni-
tiveCache outperforms single-agent DQNCache [55] in both
New York and London scenarios as DQNCache [55] only
aims to maximise the individual performance for each indi-
vidual edge without considering the state of its neighbours.
Probability-based caching algorithm ProbCache [60] has a

Local edgo hit ratio - High popular content - NY Foursquare  Local edge hit ratio - High popular content - London Twitter
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FIGURE 8. Local edge hit ratio vs. Cache capacity for high popular content
in NY and London.

':!iahhouf hit ratio - High popular content - NY Foursquare  Neighbour hit ratio - High popular content - London Twitter
“ " " 04 — =

= CognitiveCache
DQNCache
=~ ProbCache
-*-LRU
LFU

= CognitiveCache
DQNCache
o ProbCache
- *-LRU
LFU

o

Neighbour hit ratio

TP 1) 410t (%) BTN B0TieN) 100 ES%) 12107 (%) 2107 (1%) a10” (2%) 6107 (%) 807 (a
Cache capacity Cache capacity

FIGURE 9. Neighbour hit ratio vs. Cache capacity for high popular
content in NY and London.
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better performance compared to benchmarking LRU and
LFU caching algorithms.

Figure 10 and Figure 11 show the cache hit ratio in
local edge and in neighbour edges for low popular con-
tents in New York and London scenarios. We show that
while CognitiveCache allows a majority of high popular
contents to be served by local edge, it also enables the
cache hit ratio of low popular contents to be 80% in both
New York Foursquare and London Twitter while that of
DQNCache, ProbCache, LRU and LFU are 51%, 33%, 27%
and 21% respectively. CognitiveCache preserves most of its
cache space for predicted high popular contents while still
being able to serve 39% of low popular requests locally
and additional 41% via its collaborative neighbour edges’
cache. When the cache space is getting larger, each Cog-
nitiveCache considers not only its local hit but also offers
a proportion of its cache space to serve its neighbours.
DQNCache, ProbCache, LRU and LFU has poor caching
performance for low popular content, especially in London
scenario with very high dynamic mobile subscribers and users
requests.
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FIGURE 10. Local edge hit ratio vs. Cache capacity for low popular

content in NY and London.
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FIGURE 11. Neighbour hit ratio vs. Cache capacity for low popular
content in NY and London.

Figure 12 and Figure 13 show the average latency in local
edge and in neighbour edges for low popular contents in
New York and London scenarios. CognitiveCache can reduce
33%, 47%, 66%, 71% latency compared with DQNCache,
ProbCache, LRU and LFU respectively. In Figure 8-11,
we show that CognitiveCache can successfully serve 91% of
high popular contents within 9ms and 80% of low popular
contents within 19ms for New York scenario while that of
London is 15.7ms and 19.4ms respectively. CognitiveCache
has better performance in delay compared to competitive
caching protocols since it benefits from its well-identified
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FIGURE 13. Average latency vs. Cache capacity for low popular content in
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states consisting of its predictive request demand and the
caching state that allow it to learn and adapt faster and more
accurate to the dynamically changing of mobile subscribers
and their requests.

Figure 14 shows the average transmission cost of sending
requests and receiving contents either from local edge, neigh-
bour edges or from the CDN server in New York and London
scenarios. Note that we assume if a content request achieves
local hit, the transmission cost is relatively lower compared
to neighbour hit. In turn, the transmission cost of neighbour
hit is lower compared to that of the CDN server.
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FIGURE 14. Average transmission cost vs. Cache capacity in NY
Foursquare and London twitter.

We show that CognitiveCache reduces 23%, 75%, 83%,
87% transmission cost compared with DQNCache, Prob-
Cache, LRU and LFU respectively. This is due to Cognitive-
Cache is able to serve a majority of high popular content
locally while allowing low popular content to be cached in
neighbour edges, thus minimizing the number of requests
being sending to CDN server. Since obtaining contents, espe-
cially video from a local edge or even neighbouring edge
is quicker and more cost-beneficial compared to that from
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the CDN server, CDN content retrieval should be the lowest
priority.

Figure 15 shows how our CognitiveCache caching cap-
tures, predicts and responds to the user requests in real time
in two very different scenarios: New York Foursquare and
London Twitter. The historical content request patterns offer
valuable resources for our data-driven caching solution as
we show that CognitiveCache can capture and predict the
temporal-spatial locality of users’ content requests that are
leveraged for highly accurate, responsive and cost-effective
CognitiveCache caching decisions. CognitiveCache enables
more responsiveness to the rising trend of newly high popular
contents and fading out of older contents over time as well
as avoid one-timer contents [47] and mitigate flash crowd
effect [3].

Actual New York user requests
— Predicled New York user requests
= = =Actual London user requests
— Predicted London user requests
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FIGURE 15. Actual and CognitiveCache predicted users request in
New York Foursquare and London Twitter.

V. CONCLUSION
In this paper, we proposed CognitiveCache caching frame-
work based on multi-agent deep reinforcement learning
which can tackle the complex challenges of bringing contents
as close as possible to the mobile users and improve the
quality of service in mobile edge-cloud networks. We design
a novel space of states, actions to leverage the temporal-
spatial locality of content requests that enables more accurate
and responsive caching decision making. We evaluate our
CognitiveCache proposal against benchmark and competitive
caching models: DQNCache [55], ProbCache [60], LRU [9]
and LFU [10] over two very different real-world network
topologies: New York [26] and London [28]. We show that
our caching framework consistently outperforms the bench-
marking and state-of-the-art algorithms, increases the cache
hit ratio while minimising the latency and transmission costs.
In future work, we plan to explore and propose a novel
incentive mechanism that incentivise all edges in the net-
work to collaborate and share their caching space with fair-
ness [6] and security concern, avoid the selfish and malicious
behaviours of users in real world. In addition to this, we will
investigate new privacy-aware and energy-aware Cognitive-
Cache by building on and extending works in [32], [44]
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for edge privacy awareness and [36], [50] for edge energy
efficiency. In addition, while complex ML/RL techniques and
algorithms help to analyse a huge amount of historical data to
gain deeper insight of network environments, predictive ana-
lytic and heuristic-based approaches [1]-[3], [29] allow pre-
dictive adaptive response to changing local conditions in real
time and at low cost. This opens up opportunities for future
work to innovate and redefine the ML/RL based caching
algorithm assisted with real-time predictive analytics and
heuristics to improve the accuracy, scalability and efficiency
for content services in mobile heterogeneous networks.
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