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ABSTRACT This paper considers the synthesis of stabilizing controllers for nonlinear control-affine
systems under multiple state constraints. A new control Lyapunov-barrier function approach is introduced for
solving the considered problem. Assuming a classical control Lyapunov function, two possible methods for
constructing new control Lyapunov-barrier functions are discussed. Sufficient conditions for the existence of
new control Lyapunov-barrier functions are derived. With modifying the Sontag’s formula, an explicit state-
constrained stabilizing feedback law is presented. Finally, two numerical examples are provided to illustrate
the obtained theoretical results.

INDEX TERMS Barrier function, control Lyapunov function, control Lyapunov-barrier function, nonlinear
control systems, state constraint, state feedback.

I. INTRODUCTION
The design of stabilizing controllers under state constraints
is a critical research topic because the state trajectories of
a practical control system are not allowed to enter cer-
tain unsafe regions. In [1]–[4], the set invariance approach
was developed for synthesizing state-constrained stabilizing
controllers for linear/nonlinear control systems. As stated
in [5], the feedback law proposed in [4] for nonlinear con-
trol systems may result in chattering as the control law is
discontinuous. In [6]–[8], linear and nonlinear model predic-
tive controllers (MPC) were designed with considering state
constraints. The MPC approach has been very successful in
industrial applications, but explicit guarantees of stability are
not always easy [9], especially in the nonlinear case. Among
differentMPC formulations, Lyapunov-basedMPC [10], [11]
can provide explicit stability region guarantees. However,
incorporating explicit state constraints in Lyapunov-based
MPC is still difficult [9]. In [12]–[15], reference governors
were applied for the satisfaction of state constraints. For
avoiding violation of constraints, a high-level controller that
generates admissible reference signals for the low-level con-
troller is needed [16].

In the last two decades, on the basis of (control) Lya-
punov functions and barrier functions, several analytical
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nonlinear state-constrained design methods have been pro-
posed. In [17]–[24], barrier Lyapunov functions (BLFs) were
used to design state-constrained stabilizing controllers for
single-input nonlinear control systems in particular struc-
tures. The value of a BLF tends to infinity when the boundary
of the constraint region is approached. Recently, the BLF
approach has been applied for MIMO nonlinear control
systems in particular forms [25]–[27]. Extending these results
to general nonlinear control-affine systems is difficult as the
backstepping technique is employed in the BLF approach. In
[28], on the basis of the control Lyapunov function (CLF)
(see [29]–[32]), a control Lyapunov R-function method was
proposed for robust constrained stabilization of uncertain
linear systems. In [33], a control barrier function (CBF)
approachwas developed for the control synthesis of nonlinear
systems to achieve the safety objective. In [16], for nonlinear
control-affine systems, a CBF and a CLF were combined by
weighted average to be a smooth control Lyapunov-barrier
function (CLBF) and then Sontag’s formula was applied for
constructing continuous controllers to ensure both safety and
stability. The assumptions of a smooth CLBF and a continu-
ous feedback law in [16] require the state constraints to those
defined by unbounded sets [34]. In [34], a nonsmooth com-
plete Lyapunov functionmethodwas introduced to synthesize
discontinuous controllers for bounded state-constrained sets.
In [5], [35]–[37], in combinationwith a CLF and a (reciprocal
or zeroing) CBF, the quadratic program (QP) technique was
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applied for the state-constrained control design of nonlinear
control systems. It has been shown in [36], [37] that the
zeroing CBF (ZCBF) can provide safety, stability, and certain
robustness simultaneously. For ensuring the solution of a
QP is locally Lipschitz in the constrained region, a relative
degree one condition must hold [5]. In this case, a closed-
form expression of the solution of the QP can be obtained.
In these studies, how to choose the value of the weighting
factor in the QP problem to claim stability of the closed-loop
system is not clear [9]. In [9], with solving a modified QP,
local asymptotical stability can be guaranteed under the stan-
dard assumptions on the CLF and CBF. The controller was
presented in a closed-formmaking it unnecessary to solve the
QP online. On the other hand, barrier functions have also been
applied in solving nonlinear optimal control problems subject
to the trajectory, input, state, or output constraints [38]–[40].
With the introduction of optimization skills, closed-loop
systems’ performances can be further improved. In these
approaches, conditions for the solvability of the constrained
optimization problems and explicit formulas for constructing
controllers are difficult to derive.

This paper introduces a new CLBF method for designing
asymptotically stabilizing controllers for nonlinear control-
affine systems under multiple state constraints presented in
terms of state functional inequalities. Different from the
CLBF in [16], the new CLBF is defined only in the safe
region and its value tends to infinity as the boundary of the
constrained region is approached. That the existence of new
CLBFs is proven to be sufficient for the existence of state-
constrained stabilizing controllers. With modifying the
Sontag’s formula, an explicit formula for constructing state-
constrained stabilizing controllers is derived. Furthermore,
through combinations of CLFs and barrier functions, two
possible methods for constructing new CLBFs are discussed.
More importantly, sufficient conditions for the existence of
new CLBFs are derived. Under a similar concept, a barrier
storage function (BSF) method has been developed in [41]
for designing L2-gain controllers for nonlinear systems with
a single state constraint. The state-constrained stabilization
problem considered in this paper is not a special case of
the state-constrained disturbance attenuation problem in [41].
Even if considering only one state constrained condition as
in [41], neither the obtained conditions for the existence of
state-constrained stabilizing controllers nor the formula for
constructing controllers can be deduced from those in [41]
by relaxing the disturbance attenuation requirement.

The contributions of this paper are fourfold: First, this
paper proposes a new CLBF method for designing state-
constrained state feedback stabilizing controllers for nonlin-
ear control-affine systems. Compared with related methods,
the main advantage of our approach lies in the simplicity
of implementing obtained controllers. The construction of
state-constrained controllers is much easier than that in the
classical CLBF approach [16]. Moreover, different from the
QP-based methods [5], [9], and [35]–[37], in our approach
state-constrained controllers can be explicitly constructed by

using a modified Sontag’s formula and, more importantly,
asymptotical stability with the entire safe set being forward
invariant and in the region of attraction can be guaranteed.
Second, multiple general state constraints are considered.
Althoughmultiple state constraints have been also considered
in [16]–[20], the constraints considered in this paper are
different. In [16], unsafe regions are represented with nota-
tions of sets and therefore, explicit conditions for the exis-
tence of state-constrained controllers are difficult to derive.
In [17]–[20], the considered systems must be in particular
structures and the constraints are assigned to the upper and
lower limits of each state. For general nonlinear control-affine
systems with joint-state constraints, the methods presented
in [17]–[20] are not applicable.Third, explicit sufficient con-
ditions for the existence of new CLBFs are derived. Similar
to the concept of Nagumo’s theorem [1], the obtained condi-
tions are expressed in terms of the positivity or negativity of
functions, which only need to be verified at some points on the
boundaries of the safe region. In [41], sufficient conditions for
the existence of BSFs need to be verified in a neighborhood
of the boundary of the safe region; and, besides the boundary,
the conditions for defining the CBF [33] must hold for points
in the safe region. Fourth, our method constitutes a con-
structive means of deriving a new CLBF when a traditional
CLF is available and the derived conditions are satisfied.
A general way of constructing ZCBFs has been proposed
in [42]. This approach is complex because an inf-operation
must be taken over an unbounded interval [0,∞). Reference
[37] suggested an alternative approach to construct CBFs.
The CBF was parameterized as a fixed-degree polynomial,
and then sums-of-squares (SOS) programming [43] was used
to enforce the required conditions on the CBF. In [16], a
weighted average approach was proposed for constructing
a classical CLBF with a CBF, denoted by B, and a CLF,
denoted by V . The weighted average approach is simple,
while in some proximity to the boundary of the safe region,
the controller uses all inputs to make the time derivative of
B satisfying Ḃ < 0 ignoring the CLF part even when it is
possible to satisfy Ḃ < 0 and V̇ < 0 simultaneously [9].
In our approach, the construction of new CLBFs is simple
and intuitive.

This paper is organized as follows: In Section II, the prob-
lem requiring a solution is formulated. Section III introduces
the concept of the new CLBF. In Section IV, the construction
of CLBFs is discussed, and sufficient conditions for the exis-
tence of CLBFs are derived. Two representative examples are
provided in Section V. Finally, some conclusions are drawn
in Section VI.
Notations: ∂S, S̄, Int(S) and SC are the boundary, closure,

interior, and complement of set S, respectively; A\B is the
set of all elements belonging to set A but not belonging to
set B; Z+ is the set of all positive integers; ∅ denotes an
empty set; ∇V (x) := ∂V (x)

∂x ; dist (S, x) := min
y∈S̄
‖y− x‖

is the minimal distance between the point x and the set
S̄; for ε > 0, BD (S, ε) := {x ∈ D | dist (S, x) < ε}.
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For simplification, let BD (ε) := BD (0, ε), B (S, ε) :=
BRn (S, ε), and B (ε) := BRn (0, ε).

II. PROBLEM FORMULATION AND PRELIMINARIES
This section formulates the state-constrained stabilization
problem to be solved and introduces the CLF, the CBF, and
the ZCBF.

A. PROBLEM FORMULATION
Consider the following nonlinear control system:

ẋ = f (x)+ g(x)u (1)

where x ∈ Rn is the state, u ∈ Rm is the control input, and
the functions f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz. Suppose that f (0) = 0.
Define

Di ≡ {x ∈ Rn|si (x) > 0}, i = 1, . . . ,N ,

where N ∈ Z+ and functions si (·), i = 1, . . . ,N , are
differentiable. Assume that ∂Di ∩ ∂Dj = ∅ if i 6= j. Let
D ⊂ Rn be a connected region represented by

D ≡ {x ∈ Rn|si (x) > 0, i = 1, . . . ,N }. (2)

That is,

D = D1 ∩ D2 ∩ . . . ∩ DN ,

and

∂D = (∂D1 ∪ ∂D2 ∪ . . . ∪ ∂DN ) ∩ D̄.

The region D is referred to as the safe set or the safe region.
Suppose that the origin is an interior point of D. With a

little notational abuse, let ∂Di (ε) ≡ {x ∈ D | si (x) < ε} and
∂D (ε) ≡

⋃N
i=1 ∂Di (ε) for ε > 0. In addition, suppose that

there is an ε > 0 such that ∂Di(ε) ∩ ∂Dj(ε) = ∅ if i 6= j.
The objective of this paper is to identify a continuous

function p : D→ Rm such that the state feedback controller
u = p(x) asymptotically stabilizes the system (1) with x (t) ∈
D for all t ≥ 0 if x (0) ∈ D.
Remark 1: In this paper, the initial state is required to satisfy

x (0) ∈ D, otherwise, the state constraint will be violated at
the beginning. The same setting can be found in many state-
constrained control studies, e.g., [16], [33], and [35].With our
approach, the closed-loop state trajectory will never enter the
unsafe region and therefore the feedback law can be defined
only in the safe region. In some other studies, for example,
the ZCBF approach [5], [36], the state trajectory is allowed to
temporarily enter the unsafe region. In this case, the feedback
laws must also be defined outside the safe region.

On the basis of a concept regarding regional stability intro-
duced in [44], the following definition is given:
Definition 1: The system

ẋ = f (x) (3)

is asymptotically stable withD being forward invariant and in
the region of attraction if, for each ε > 0, there is a δ > 0 such

that for each x (0) ∈ BD(δ), the trajectory satisfies x (t) ∈
BD(ε) for all t ≥ 0, and lim

t→∞
x (t)→ 0 for all x (0) ∈ D.

If there exists a differentiable positive definite function
V : D→ R satisfying V (x)→∞ as ‖x‖ → ∞ or x → ∂D
such that ∇V (x) f (x) < 0 for all x ∈ D\{0}, along the
trajectory of the system (3) starting at x (0) ∈ D, V̇ (x(t)) =
∇V (x(t)) f (x(t)) < 0 if x (t) 6= 0. This implies that
V (x(t)) < V (x(0)) <∞ for all t > 0 and therefore, the state
trajectory will not pass through ∂D since V (x) → ∞ as
x → ∂D. Then, similar to the traditional Lyapunov stability
theory, we can conclude that the system (3) is asymptotically
stable with D being forward invariant and in the region of
attraction.

For convenience, a function V : D → R is said to be
positive definite in D if V (x) > 0 for all x ∈ D\{0} and
V (0) = 0.

B. PRELIMINARIES
This subsection simply reviews the CLF, the CBF, and the
ZCBF that will be used later.

As defined in [31], a differentiable, proper, and positive
definite function VC : Rn → R is said to be a CLF of the
system (1) if

inf
u∈Rm
{∇VC (x) f (x)+∇VC (x) g (x) u} < 0,∀x ∈ Rn\{0}.

(4)

Moreover, a CLF VC satisfies the small control property
(SCP) if for each ε > 0 there is a δ > 0 such that for each
nonzero x that satisfies ‖x‖ < δ, some u with ‖u‖ < ε exists
such that

∇VC (x) f (x)+∇VC (x) g (x) u < 0.

Define

η (α, β, µ) = −
α +

√
α2 + µ ‖β‖4

‖β‖2
βT ,

where α,µ ∈ R, and β ∈ Rm\{0}. Theorem 1 in [31] proves
that if a CLF VC satisfying the SCP exists, then a continuous
asymptotically stabilizing controller can be constructed using
Sontag’s formula:

u = pS (x) =

{
η (aC (x) , bC (x) , 1) , if bC (x) 6= 0
0, if bC (x) = 0,

(5)

where aC (x) = ∇VC (x)f (x) and bC (x) = ∇VC (x)g(x).
Next, the definitions of the traditional CBF and the ZCBF

are provided. Let Xu ⊂ Rn be the unsafe region.
Definition 2 [33]: Given a system (1) and a set of unsafe

states Xu ⊂ Rn. A continuously differentiable function B :
Rn→ R satisfying

B (x) > 0, x ∈ Xu, (6a)

∇B (x) f (x) < 0, ∀x ∈ {x ∈ Rn|∇B (x) g (x)} = 0, (6b){
x ∈ Rn |B (x) ≤ 0

}
6= ∅, (6c)

is called a CBF of the system (1).
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Let the unsafe region Xu be defined by a continuously
differentiable function h : X ⊂ Rn→ R:

Xu =
{
x ∈ Rn | h (x) < 0

}
.

The safe region is

C = XC
u =

{
x ∈ Rn | h (x) ≥ 0

}
.

A continuous function α : (−∞,∞) → (−∞,∞) is said
to belong to extended class K if it is strictly increasing and
α (0) = 0 [36].
Definition 3 [36]: Let C ⊂ X ⊂ Rn be the superlevel set

of a continuously differentiable function h : X → R, then h
is a ZCBF of the system (1) if there exists an extended class
K function α such that

sup
u∈Rm
{∇h (x) f (x)+∇h (x) g (x) u} ≥ −α(h(x)), (7)

for all x ∈ X .

III. CLBF AND STATE-CONSTRAINED STABILIZATION
In this section, on the basis of the CBFs [33], [34], the
ZCBF [36], [37], and the classical CLBF [16], a new CLBF
method is introduced for solving the considered constrained
stabilization problem.
Definition 4: A differentiable function V : D → R is a

CLBF of the system (1) if V is positive definite inD, V (x)→
∞ as ‖x‖ → ∞ or x → ∂D and,

inf
u∈Rm
{∇V (x) f (x)+∇V (x) g (x) u} < 0, ∀x ∈ D\{0}.

(8)

Remark 2: The primary difference between traditional
CLFs on sets in [45] and [46] and the new CLBFs in Def-
inition 4 is that the new CLBFs exhibit unbounded growth
property (i.e., V (x)→∞ as x → ∂D).
Define a (x) = ∇V (x)f (x) and b (x) = ∇V (x)g(x).

Condition (8) is equivalent to

∀x ∈ D\{0} such that b (x) = 0⇒a (x) < 0. (9)

In subsequent derivations, that the existence of CLBFs is
sufficient for solving the constrained stabilization problem
will be demonstrated. Nevertheless, to ensure the continuity
of the obtained feedback law at the origin, a CLBF must
satisfy the SCP. Similar to CLFs, a CLBF V of the system (1)
satisfies the SCP if and only if (note that 0 ∈ D) [47]

lim
δ→0

sup
x∈B(δ)

a (x)
‖b (x)‖

≤ 0. (10)

The following result can be obtained.
Lemma 1: If there exists a CLBF V : D→ R that satisfies

the SCP for the system (1), then there exists a continuous state
feedback controller u = p(x) such that the closed-loop system
is asymptotically stable withD being forward invariant and in
the region of attraction. In this case,

u = p (x) =

{
η (a(x), b(x), µ) , if b (x) 6= 0
0, if b (x) = 0

(11)

with µ > 0 is one such controller.

Proof: The proof is similar to that of using the traditional
CLF in [31] and is therefore omitted here.

IV. CONSTRUCTIONS OF CLBFs
This section demonstrates how to construct a new CLBF
using barrier functions for the system (1), provided that a
CLF is available.
Definition 5: A differentiable function VAi : D → R is an

additive barrier function with respect to Di if VAi (x) ≥ 0
for all x ∈ D, VAi (0)= 0, and VAi (x) → ∞ as x → ∂Di.
Moreover, a differentiable function ρMi : D → R is called a
multiplicative barrier functionwith respect toDi if ρMi (x) >
0 for each x ∈ D\{0}, ρMi (0) ≥ 0, and ρMi (x) → ∞ as
x → ∂Di.
By the definition, an additive barrier function VAi (x)must

vanish at the origin and be nonnegative elsewhere, and a mul-
tiplicative barrier function ρMi (x) can be nonzero at the origin
and must be positive elsewhere. Consequently, VAi1 (x) =
βA(x)
sqi (x)

,VAi2 (x) = βA (x) ln
1

sqi (x)
, and

VAi3 (x) =


βA (x) (ε − s (x))2q

sqi (x)
, if x ∈ ∂Di(ε)

0, if x ∈ D\∂Di(ε)

are all possible additive barrier functions with respect to Di,
where q > 0 is an integer, ε > 0 is a small positive real
number, and βA : D̄ → R is a differentiable function that
is positive definite in D and satisfies inf

x∈δDi
βA (x) > c for

some c > 0. By contrast, ρMi1 (x) =
βM (x)
sqi (x)

and ρMi2 (x) =

exp
(
βM (x)
sqi (x)

)
are possible multiplicative barrier functions

with respect to Di, where βM : D̄ → R is a differen-
tiable nonnegative function that satisfies inf

x∈∂Di
βM (x) > 0.

For example,
x21+x

2
2

3−x1
(resp. 1

3−x1
) is an additive (resp.

a multiplicative) barrier function for the constrained region{
x ∈ R2 | x1 < 3

}
. Notably, if VAi(x) is an additive barrier

function of the system (1) with respect to Di, then αVAi(x)
is also an additive barrier function with respect to Di for
any α > 0. Similarly, if ρMi(x) is a multiplicative bar-
rier function of the system (1) with respect to Di, then
αρMi(x) is also a multiplicative barrier function with respect
to Di if α > 0.
For each i ∈ {1, 2, . . . ,N }, let VAi (resp., ρMi (x))

be an additive (resp., multiplicative) barrier function with
respect to Di. For a CLF VC (x) of the system (1), accord-
ing to (9), it is clear that the function V (x) = VC (x) +∑N

i=1 VAi (x) is a CLBF if for each x ∈ D\ {0} such that(
∇VC (x)+

∑N
i=1 ∇VAi (x)

)
g (x) = 0, one has(

∇VC (x)+
∑N

i=1
∇VAi (x)

)
f (x) < 0. (12)

Similarly, the function V (x) = VC (x) ·
∏N

i=1 ρMi (x)
is a CLBF if for each x ∈ D\ {0} such that
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(
VC (x)·∇(

∏N
i=1 ρMi (x))+∇VC (x)·

∏N
i=1 ρMi (x)

)
g(x)=0,

one has(
VC (x) · ∇(

∏N
i=1 ρMi (x))+∇VC (x) ·

∏N
i=1 ρMi (x)

)
f (x) < 0. (13)

All additive and multiplicative barrier functions mentioned
above can be used to construct CLBFs. The additive barrier
function VAi3 (x) is found convenient in discussing the exis-
tence of CLBFs. Next, with the help of VAi3 (x), sufficient
conditions for the existence of CLBFs for the system (1) will
be proposed. For convenience, for i = 1, . . . ,N , define the
following:

Zsgi ≡
{
x ∈ D̄i ∩ D̄ | ∇si (x) g (x) = 0

}
,

CMi ≡
{
x ∈ Zsgi | ∇VC (x) g (x) = 0

}
,

CLi ≡
{
x ∈ D̄i ∩ D̄\Zsgi |there is a γ > 0 such that

∇VC (x) g (x) = γ∇si(x)g(x)} .

Theorem 1: Suppose that CMi ∩ ∂Di and CLi ∩ ∂Di are
bounded for each i = 1, 2 . . . ,N . Assume {0} /∈ ∂D(ε)∪DC

and ∂Di (ε) ∩ ∂Dj (ε) = ∅ if i 6= j for some ε > 0.
If VC : Rn → R is a CLF for the system (1) that satisfies
the SCP such that for i = 1, . . . ,N ,

a). ∇si (x) f (x) > 0 for any x ∈ Zsgi ∩ ∂Di,
b). ∇si(x)f (x)
‖∇si(x)g(x)‖

−
∇VC (x)f (x)
‖∇VC (x)g(x)‖

> 0 for any x ∈ CLi ∩ ∂Di,
then there exists a CLBF that satisfies the SCP for the
system (1).
Proof: Define

V (x; ε)=


VC (x)+

(ε − si (x))
si (x)

2
, if x ∈ ∂Di (ε) ∩ D,

i = 1, . . . ,N ;

VC (x) , if x ∈ D\
⋃N

i=1
∂Di (ε).

(14)

Clearly, V (x; ε) is differentiable and positive definite in
D. We first demonstrate that for a sufficiently small ε,
inf
u
∇V (x; ε) (f (x)+ g (x) u) <0 for each x ∈ D\{0}.

Case 1: x ∈ D\
⋃N

i=1 ∂Di (ε).
In this region, V (x; ε) = VC (x). Because VC (x) is a

CLF of system (1), one can see that for each nonzero x ∈
D\
⋃N

i=1 ∂Di (ε),

inf
u
∇V (x; ε) (f (x)+ g (x) u)

= inf
u
∇VC (x)(f (x)+ g(x)u) < 0.

Case 2: x ∈ ∂Di (ε) ∩ D for i ∈ {1, 2, . . . ,N }.
In this region,

∇V (x; ε) (f (x)+ g (x) u)

=

(
∇VC (x)−

ε2 − s2i (x)

s2i (x)
∇si(x)

)
(f (x)+ g (x) u)

=
1

s2i (x)

(
aVC (x)− asi (x; ε)

)
+

1

s2i (x)

(
bVC (x)− bsi (x; ε)

)
u, (15)

where

aVC (x) = s2i (x)∇VC (x) f (x) ,

asi (x; ε) =
(
ε2 − s2i (x)

)
∇si (x) f (x) ,

bVC (x) = s2i (x)∇VC (x) g (x) ,

bsi (x; ε) =
(
ε2 − s2i (x)

)
∇si (x) g (x) .

Let CZi (ε) ≡ {x ∈ ∂Di (ε) ∩ D|∇V (x; ε) g (x) = 0},
i = 1, 2, . . . ,N . Clearly, CZi (ε) ⊂ (CMi ∪ CLi) ∩ ∂Di (ε).
For V (x; ε) to be a CLBF, ∇V (x; ε)f (x) must be negative for
each x ∈ CZi (ε). Notice that ∂Di (ε) and thus CZi (ε) shrinks
as ε becomes smaller. Under condition a), as CMi ∩ ∂Di is
bounded, an ε1i > 0 exists such that for each ε satisfying
0 < ε < ε1i, asi (x; ε) > 0 if x ∈ CMi ∩ ∂Di (ε). In this case,
for each x ∈ CZi (ε) ∩ CMi,

∇V (x; ε) f (x) =
1

s2i (x)

(
aVC (x)− asi (x; ε)

)
< 0.

For x ∈ CLi, define

Ki (x) =
‖∇si (x) g (x)‖
‖∇VC (x) g (x)‖

.

Then,

Ki (x)∇VC (x) g (x) = ∇si(x)g(x)

and

∇V (x; ε) g (x) =
∇VC (x) g (x)

s2i (x)

×

(
s2i (x)+ Ki (x) (s

2
i (x)− ε

2)
)
.

Therefore, for x ∈ CLi∩CZi(ε), ∇V (x; ε) g (x) = 0 and thus

s2i (x) = Ki(x)(ε2 − s2i (x)). (16)

Similarly, because CLi ∩ ∂Di is bounded and ∂Di (ε) and
CZi(ε) shrink as ε becomes smaller, according to condition
b), there exists an ε2i > 0 such that for each ε that satisfies
0 < ε < ε2i,

∇si (x) f (x)
‖∇si (x) g (x)‖

−
∇VC (x) f (x)
‖∇VC (x) g (x)‖

>0 for x ∈ CZi (ε) ∩ CLi,

and thus

K i (x)∇VC (x) f (x)−∇si (x) f (x) < 0.

Consequently, according to (16), for each x ∈ CLi ∩ CZi (ε),

∇V (x; ε) f (x)

= ∇VC (x) f (x)−
ε2 − s2i (x)

s2i (x)
∇si (x) f (x)

=
ε2 − s2i (x)

s2i (x)
(K i (x)∇VC (x) f (x)−∇si (x) f (x))

< 0.

The previous discussion shows that for ε < min
i

min

{ε1i, ε2i}, inf
u
∇V (x; ε) (f (x)+ g (x) u) < 0 for each
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x ∈ D\{0}; therefore, V (x; ε) is a CLBF of the system (1).
Notice that V (x; ε) satisfies the SCP is obvious because
VC (x) satisfies the SCP and {0} ∈ D\∂D(ε).
With a CLBFV : D→ R satisfying (8), a state-constrained

stabilizing controller can be constructed by (11). However,
the control signal generated by (11), with µ > 0 being a
constant, maybe extremely large while the state closes to the
boundary of the constrained region. For example, for a point
x̂ ∈ ∂D satisfying lim

x→x̂
‖b (x)‖ → ∞ and lim

x→x̂
‖a (x)‖ = c

for some constant c > 0, one has lim
x→x̂
‖p (x)‖ → ∞.

Therefore, the feedback law (11) must be modified to prevent
this situation.
Corollary 1: Suppose that CMi ∩ ∂Di and CLi ∩ ∂Di are

bounded for each i = 1, 2 . . . ,N . Assume {0} /∈ ∂D(ε)∪DC

and ∂Di (ε) ∩ ∂Dj (ε) = ∅ if i 6= j for some ε > 0. Let
VC : Rn → R is a CLF for system (1) that satisfies the
SCP and such that conditions a) and b) of Theorem 1 hold.
With V (x; ε) defined in (14) being a CLBF of the sys-
tem (1), a state-constrained stabilizing controller can be
constructed as

u = p (x)

=

 η
(
a (x) , b (x) ,

k(x)

k(x)+ ‖b(x)‖2

)
, if b (x) 6= 0

0, if b (x) = 0
(17)

where

a (x) =



(
∇VC (x)−

ε2 − s2i (x)

s2i (x)
∇si (x)

)
f (x) ,

if x ∈ ∂Di (ε) ∩ D

∇VC (x) f (x) , ifx ∈ D\
⋃N

i=1
∂Di (ε) ,

b (x) =



(
∇VC (x)−

ε2 − s2i (x)

s2i (x)
∇si (x)

)
g (x) ,

if x ∈ ∂Di (ε) ∩ D

∇VC (x) g (x) , ifx ∈ D\
⋃N

i=1
∂Di (ε) ,

and k : D→ R is a continuous function with k (x) > 0 for all
x ∈ D. Moreover, for each bounded x̂ ∈ ∂D, with {x j} being
a sequence of states in D that approaches x̂,

lim
j→∞

∥∥∥p (x j)∥∥∥ <∞.
Proof: It is not difficult to verify that controller (17) is

continuous and stabilizes the system (1) under the state con-
straint x (t) ∈ D. The only thing that needs to be proven is
lim
j→∞

∥∥p (x j)∥∥ <∞.

Here that lim
j→∞

a
(
xj
)

‖b(xj)‖
< ∞ will first be shown. In the

case of x̂ ∈ ∂Di ∩ Zsgi for some i, according to condition a)
and noting that lim

j→∞
si
(
x j
)
= 0 and lim

j→∞
∇si

(
x j
)
g
(
x j
)
= 0,

one has

lim
j→∞

a
(
x j
)∥∥b (x j)∥∥

= lim
j→∞

s2i
(
x j
)
∇VC

(
x j
)
f
(
x j
)
−
(
ε2−s2i

(
x j
))
∇si

(
x j
)
f
(
x j
)∥∥s2i (x j)∇VC (x j) g (x j)−(ε2−s2i (x j))∇si (x j) g (x j)∥∥

= lim
j→∞

−∇si
(
x j
)
f
(
x j
)∥∥∇si (x j) g (x j)∥∥ <∞.

In the case of x̂ ∈ ∂Di\Zsgi , for some i ∈ {1, 2, . . . ,N }, that
lim
j→∞

∥∥∇si (x j) g (x j)∥∥ 6= 0 is clear and then

lim
j→∞

a
(
x j
)∥∥b (x j)∥∥ = lim

j→∞

−∇si
(
x j
)
f
(
x j
)∥∥∇si (x j) g (x j)∥∥

=
−∇si

(
x̂
)
f
(
x̂
)∥∥∇si (x̂) g (x̂)∥∥ <∞.

Therefore, lim
j→∞

a
(
xj
)

‖b(xj)‖
<∞.

Now, that lim
j→∞

∥∥p (x j)∥∥ < ∞ will be proven. Since

lim
j→∞

a
(
xj
)

‖b(xj)‖
<∞ and k

(
x j
)
> 0, one has

lim
j→∞

∥∥∥p (x j)∥∥∥
= lim

j→∞

 a
(
x j
)∥∥b (x j)∥∥ +

√√√√ a2
(
x j
)∥∥b (x j)∥∥2 + k(x j)

∥∥b (x j)∥∥2
k(x j)+

∥∥b(x j)∥∥2


≤ lim
j→∞

 a
(
x j
)∥∥b (x j)∥∥ +

√√√√ a2
(
x j
)∥∥b (x j)∥∥2 + k (x j)

 <∞.

This completes the proof.
Remark 3: From Nagumo’s theorem [1], one only needs to

check the set invariance property by checking the conditions
on the boundaries of the set. In [35], the Nagumo’s theorem
has been used to prove the forward invariance of C by the
condition for defining zeroing barrier functions. Similar to
the concept of Nagumo’s theorem, the conditions a) and b) of
Theorem 1 only need to be checked for some points on the
boundaries of the constrained region D.

Notice that for function si satisfying condition a),
it becomes a ZCBF of system (1) for the region Di. While,
condition b) is given for guaranteeing a (x) < 0 if b (x) = 0
for x ∈ ∂D. In the case that CLi ∩ ∂Di = ∅, condition
b) needs not to be checked. It should be noted also that
conditions a) and b) are sufficient, but not necessary, for the
existence of new CLBFs. If condition a) or condition b) does
not hold, one might still be able to find a CLBF satisfying the
condition (8). To sum up, the proposed new CLBF approach
can be used in state-constrained stabilization problems with
particular constrained regions that some existing methods are
not applicable.
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Remark 4: Deriving CLFs for general nonlinear control
systems is a difficult task and is not always possible. Nev-
ertheless, CLFs for nonlinear control systems in some par-
ticular forms (strict feedback form, canonical form, etc.) can
be derived systematically. Moreover, some general nonlinear
control systems can be transformed to the strict feedback
form [48], [49]. Our results can be easily applied to these
systems for achieving state-constrained stabilization. For a
general nonlinear control system that cannot be transformed
into a particular structure, how to find a CLF is still an open
problem.
Remark 5: The assumption that ∂Di (ε) ∩ ∂Dj (ε) = ∅ is

a restriction of our approach. This assumption implies that
the trajectories can close to only one boundary at one time.
In the case that ∂Di ∩ ∂Dj 6= ∅, for a point x̂ ∈ ∂Di ∩
∂Dj, conditions a) and b) of Theorem 1 cannot guarantee
inf
u
∇V (x; ε) (f (x)+ g (x) u) < 0 near x̂, and therefore can-

not ensure the existence of CLBFs.
Remark 6: The size of ε plays an essential role in the

control signal near ∂D. The control signal will change rapidly
near the boundary as ε approaches zero but still be smooth.
The size of ε depends on the relations between individual
unsafe sets and the origin. Under conditions a) and b), one
can choose a small enough ε to satisfy ∂Di (ε)∩ ∂Dj (ε) = ∅
and the conditions of CLBF, and then a state constrained con-
troller can be constructed. While, how to explicitly determine
the value of ε to satisfy all the conditions is a difficult problem
as the considered system is nonlinear and the functions si,
i = 1, ..,N , are also nonlinear. For low-order systems, its
value can be determined with the help of some graphing
software.

V. REPRESENTATIVE EXAMPLES
To illustrate the obtained theoretical results, simulations of
two examples are provided by MATLAB R© in the following.
Example 1:
Consider the following nonlinear control system:{

ẋ1 = 10x1 − x1x22 + 0.5x21 + 0.5x1u1 + 0.5u2
ẋ2 = −x2 + 0.1x21 + 3x21x2 − x1x2u1.

(18)

Define s1 (x) = (x1 − 4)2 − (x2 − 1)2 + 1 and s2 (x) =
−x1−4x2+10. In this example, a state feedback law u = p(x)
will be derived to stabilize the system (18) under the state
constraint:

x (t) ∈ D ≡ D1 ∩ D2, (19)

where Di =
{
x ∈ R2 | si (x) > 0

}
, i = 1, 2.

It is easy to verify that VC (x) = x21 + x
2
2/2 is a CLF that

satisfies the SCP of system (18). Then,

∇VC (x) f (x) = −x22 + x
2
1

(
x1 + x22

)
+ 20x21 + 0.1x21x2,

∇VC (x) g (x) =
[
x1(x1 − x22 ) x1

]
,

∇s1 (x) f (x) = 2 (x1 − 4)
(
−x1x22 + 0.5x21 + 10x1

)
−2(x2 − 1)(−x2 + 0.1x21 + 3x21x2),

∇s1 (x) g (x) =
[
(x1 − 4) x1 + 2 (x2 − 1) x1x2 x1 − 4

]
,

∇s2 (x) f (x) = −
(
−x1x22 + 0.5x21 + 10x1

)
−4

(
−x2 + 0.1x21 + 3x21x2

)
,

∇s2 (x) g (x) =
[
−0.5x1 + 4x1x2 −0.5

]
.

It can be demonstrated that Zsg1 ∩ ∂D1 = (4, 0) ,Zsg2 ∩
∂D2 = ∅, CL1 ∩ ∂D1 = ∅, and CL2 ∩ ∂D2 = ∅; additionally,
∇s1 (x) f (x) = 3.2 > 0 at (4, 0) . That is, the conditions in
Theorem 1 hold; therefore, there exists a CLBF that satisfies
the SCP for the system (18). One can demonstrate that

V (x; ε)

=

VC (x)+
(ε − si (x))2

si(x)
, if x ∈ ∂Di (ε) ∩ D

VC (x) , if x ∈ D\
⋃2

i=1
∂Di (ε)

is a CLBF of the system (18) for a sufficiently small ε. For
example, ε = 0.8 can verify that condition (8) holds and thus
thatV (x) is a CLBF. A state-constrained stabilizing controller
can be constructed by (17) with N = 2 and k (x) = 0.1 +
0.1‖x‖. Fig. 1 presents the state trajectories of the system (18)
controlled by three different controllers. The blue curves
in Fig. 1 are the state trajectories of the resultant closed-loop
system (18)-(17) with ε = 0.8 starting at several different ini-
tial states. Clearly, the closed-loop system is asymptotically
stable and satisfies the state constraint (19). The red curves
are the state trajectories of the closed-loop system (18)-(17)
with ε = 0.1. In this case, the trajectories can be extremely
close to ∂D but will never reach DC . Regardless of whether
ε = 0.8 or ε = 0.1, because CLBFs are used to construct
the controllers, the state constraint has not been violated. For
comparison, the closed-loop trajectories of the system (18)
controlled by the controller (5) are shown in Fig. 1. The green
curves in Fig. 1 are the trajectories of the closed-loop system

FIGURE 1. State trajectories of the closed-loop system (blue and red lines:
controlled by controller (17); green lines: controlled by controller (5)).
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FIGURE 2. Responses of the closed-loop system with x
(
0
)
= [9− 3]T

(blue lines: controlled by controller (17); green lines: controlled by
controller (5)).

(18)-(5). In this case, the state trajectories enter the unsafe
region because the CLF VC (x) is used for constructing the
controller but not the CLBF V (x). The enlarged plot of the
dashed box in Fig. 1 is to clarify the difference.

To demonstrate the responses of the closed-loop systems
controlled by the controller (17) and the controller (5),
Fig. 2 shows the responses of x (t) , s1(x(t)), s2(x(t)), and u(t)
of the closed-loop systems with the same initial condition
x (0) =

[
9 −3

]T . Fig. 2 indicates that the value of s1(x(t)) is
always positive for the system controlled by controller (17).
By contrast, the value of s1(x(t)) is negative in some time
interval for the system controlled by controller (5). That is,
the state constraint (19) is violated in this case. In Fig. 2,
some spike-like behaviors occur in the control signal. The
rapid change of the control signal near the boundary of the
safe region is due to the particular way of constructing CLBF
in this example. The value of the barrier function is nonzero
only in a neighborhood of the boundary of the constrained
region and tends to infinity as the boundary is approached.
Therefore, the control signal changes rapidly near the bound-
ary as the neighborhood is small (ε = 0.8 in this example).
By the local enlarged plots in Fig. 2, one can see clearly
the variations of control signals when the state trajectory
approaches the boundary of the constrained region.
Example 2:
To show the practical applicability of the new CLBF

approach, consider the following single-link robot arm sys-
tem [50]:  ẋ1 = x2

ẋ2 = −
mgl
J

sinx1 −
d
J
x2 +

1
J
u,

(20)

FIGURE 3. State trajectories of the closed-loop system (blue and red lines:
controlled by controller (17); green lines: controlled by controller (5)).

where x1 and x2 denote the angle and angular velocity of the
arm, u ∈ R denotes the control input, g is the gravitational
constant, and l,m, J , d denote the length, mass, inertia, and
damping of the arm, respectively. The values of parameters
are chosen as those in [50]: m = 1, J = 1, d = 2,
l = 0.5m, and g = 9.8m/s2. Define s1 (x) = 0.52 − x2 and
s2 (x) = (3x1 + 0.5)2 − (2x2 − 0.5)2 + 0.7. In this example,
a state feedback law u = p(x) will be found to stabilize the
system (20) under the state constraint:

x (t) ∈ D ≡ D1 ∩ D2, (21)

where Di =
{
x ∈ R2 | si (x) > 0

}
, i = 1, 2.

That VC (x) = 1
2x

2
1 +

1
2 (x2 + 3x1)2 is a CLF satisfying the

SCP for system (20) is easy to verify. Therefore,

∇VC (x) f (x) = −3x21 + 3 (x2 + 3x1) x2
− (x2 + 3x1) (4.9sinx1 + 2x2) ,

∇VC (x) g (x) = x2 + 3x1,

∇s1 (x) f (x) = 4.9sinx1 + 2x2,

∇s1 (x) g (x) = −1,

∇s2 (x) f (x) = 18x1x2 + 3x2
+(8x2 − 2)(4.9sinx1 + 2x2),

∇s2 (x) g (x) = −8x2 + 2.

It can be shown that Zsg1 ∩ ∂D1 = ∅,Zsg2 ∩ ∂D2 = ∅ and

CL1 ∩ ∂D1 = {x ∈ ∂D1 | x2 + 3x1 < 0} ,

CL2 ∩ ∂D2 = {x ∈ ∂D2|
x2 + 3x1
−8x2 + 2

> 0.

Also, it can be verified that conditions a) and b) in Theorem 1
hold and therefore, there exists a CLBF that satisfies the
SCP for the system (20). In fact, the function V (x; ε)
defined in (14) with N = 2 will be a CLBF for a suf-
ficiently small ε, for example, ε = 0.1. Then, a state-
constrained stabilizing controller can be constructed by (17)
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with k (x) = 0.1+ 0.1‖x‖. Fig. 3 presents the state trajecto-
ries of system (20) controlled by three different controllers.
The blue curves in Fig. 3 are the state trajectories of the
closed-loop system (20)-(17) with ε = 0.1, starting at several
different initial states. The red curves are the state trajectories
of the closed-loop system (20)-(17) with ε = 0.03. In these
two cases, the closed-loop systems are asymptotically sta-
ble and satisfy the state constraint (21). On the other hand,
green curves in Fig. 3 are the trajectories of the closed-loop
system (20)-(5). One can see that the state trajectories enter
unsafe regions.

VI. CONCLUSION
This paper introduces a new CLBF method for design-
ing asymptotically stabilizing state feedback controllers for
nonlinear control-affine systems under multiple functional-
inequality state constraints. Sufficient conditions for the
existence of CLBFs were derived, and the construction of
CLBFs was discussed. Possible extensions of the proposed
approach include the state-constrained optimal control prob-
lem, the state-constrained robust control problem, state-
constrained switched control systems, and state-constrained
networked control systems.
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