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ABSTRACT Detection of surface material based on hyperspectral imaging (HSI) analysis is an important
and challenging task in remote sensing. It is widely known that spectral-spatial data exploitation performs
better than traditional spectral pixel-wise procedures. Nowadays, convolutional neural networks (CNNs)
have shown to be a powerful deep learning (DL) technique due their strong feature extraction ability. CNNs
not only combine spectral-spatial information in a natural way, but have also shown to be able to learn
translation-equivariant representations, i.e. a translation of input features into an equivalent internal CNN
feature map. This provides great robustness to spatial feature locations. However, as far as we know, CNNs
do not exhibit a natural way to exploit rotation equivariance, i.e. make use of the fact that data patches in a
HSI data cube are observed in different orientations due to their orientation or on the varying paths/orbits of
the airborne/spaceborne spectrometers. This article presents a rotation-equivariant CNN2D model for HSI
analysis, where traditional convolution kernels have been replaced by circular harmonic filters (CHFs). The
obtained results over three well-known HSI datasets showcase the potential of the approach.

INDEX TERMS Hyperspectral imaging (HSI), convolutional neural network (CNN), harmonic network
(H-net), rotation invariance.

I. INTRODUCTION
Imaging spectrometry data, in general, and hyperspectral
imaging (HSI) in particular [1] are widely used remote sens-
ing technologies for a large variety of applications due their
abundant information about earth-surface material, such as:
natural resources management [2], for instance in those activ-
ities related to forestry [3]–[5], geology/mineralogy [6]–[8]
or hydrology [9]–[11]; precision agriculture [12]–[14], soil
degradation [15]–[17] and crop stress/disease detection
[18]–[20]; urban planning [21]–[23]; risk prevention
[24]–[26], and disaster monitoring [27]–[29], among oth-
ers. This information is gathered by operational HSI sys-
tems (aerial and satellite-based imaging spectrometers) [30],
[31] in hundreds of channels that collect the surface solar
reflectance by measuring the electromagnetic spectrum
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between the visible spectrum and the short-wave infrared
with a very narrow bandwidth. As a result, a huge 3D image
cube is obtained, where pixels represent narrow and contin-
uous spectral signatures, which are unique for each captured
land-cover material. This interesting peculiarity makes HSI
data a powerful tool for target detection and land-cover
categorization tasks.

A. TRADITIONAL MACHINE LEARNING METHODS FOR
SPECTRAL-SPATIAL HSI PROCESSING
Traditionally, HSI information has been exploited in machine
learning (ML) by pixel-wise methods which consider HSI
data as a list of spectral vectors, assuming that each
pixel is pure and typically labeled as a single land cover
type [32]–[34]. In the current literature, there are abun-
dant pixel-wise methods, such as the popular support vec-
tor machines (SVMs) [35], [36], K-nearest neighbor (KNN)
[37], [38], multinomial logistic regression (MLR) [39], [40],
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random forests (RFs) [41], [42] and standard artificial neural
networks (ANNs) [43], among others. As these methods
conduct only spectral processing to assign each pixel to its
corresponding land-cover class, their reliability (in terms
of classification accuracy) is strongly related to the num-
ber and spectral-quality of training samples. However, HSI
scenes usually exhibit a low spatial resolution. For instance
the AVIRIS instrument [30] has a ground sample distance
of 20 mpp. Therefore, a pixel collects the reflectance of
a very large area, which may contain different materials,
such that the captured spectral signature will be very mixed.
Moreover, uncontrolled changes (such as atmospheric con-
ditions), introduce great variability in the spectral domain.
In this sense, pixel-wise classification methods suffer a high
intra-class variability (for instance, class-centered pixels and
frontier pixels that belong to the same class), and also the high
inter-class similarity (frontier pixels that belong to different
classes). Furthermore, the so-called ‘‘salt and pepper’’ noise
problem appears frequently, since these methods ignore the
spatial dependencies between neighboring pixels [44].

Recent investigation has shown that taking spatial informa-
tion into account in pixel-wise HSI processing may improve
classification performance [45]. This is based on the gen-
eral assumption that adjacent pixels commonly belong to
the same class, such that exploiting their information may
reduce intra-class variance and labeling uncertainty due to
the characterization of the contextual features. Literature dis-
cusses several ML techniques to perform spectral-spatial HSI
classification [46]. For instance, Tarabalka et al. [47] and
Zhang et al. [48] combined the SVM with Markov random
field (MRF) modelling to process spectral and contextual
information, reaching promising results. Also, Li et al. [49]
and Sun et al. [50] applied MRFs to refine the classification
results obtained by the MLR pixel-wise classifier.

Other spectral–spatial methods take advantage of the
texture features, for instance Huo and Tang [51], and
Seifi Majdar and Ghassemian [52] used Gabor filtering
and SVMs to extract texture information from HSI data.
Moreover, He et al. [53] presented the improved discrim-
inative low-rank Gabor filtering (DLRGF) to extract suit-
able spectral-spatial features of the HSI data. Many other
image filtering methods have been successfully applied for
spectral-spatial HSI processing, for instance Kang et al. [54]
introduced edge-preserving filtering (EPF) to refine the SVM
classification map. Guo et al. [55] applied guided filter-
ing (GF) to the KNN classifier, while Wang et al. [56]
combined GF, principle component analysis (PCA) and deep
neural networks to extract discriminative multi-features from
HSI scenes. In [57], Liao and Wang fused two spatial-based
filters, in particular curvature (CF) and domain transform
recursive (DTRF) filtering to enhance the performance of
HSI classification, and in [58] they implemented an adap-
tive manifold filter with spatial correlation feature (AMSCF)
approach.

Morphological profiles (MPs) [59], [60] have also been
successfully applied to extract relevant spatial information

from the HSI data cube. For instance, Benediktsson et al. [61]
built one MP (by applying a set of openings and closings)
for each principal component extracted from the HSI data,
and used all together in one extended MP (EMP), apply-
ing an ANN to perform the final classification. In [62],
Plaza et al. applied multiscale sequences of EMP transfor-
mations to extract spatial relations within HSI data, while
in [63] the authors proposed a new multi-channel MP
approach with SVM. Fauvel et al. [64] combined morpho-
logical and spectral information within a SVM classifier, and
Huang et al. [65] conducted an extensive study about several
strategies for producing the base images for MPs, among
traditional PCA. As an extension of MPs, attribute profiles
(APs), extended APs (EAPs) and extended multi-attribute
profiles (EMAPs) have been considered as powerful tools
to better model the spatial information contained within
the HSI data cube in comparison to conventional MP-based
techniques, while reducing the computational complexity
of MPs. In this context, Dalla et al. [66] enhanced their
obtained accuracy results when conducting HSI classification
through EAPs and EMAPs, while Falco et al. [67] conducted
an independent component analysis (ICA) spectral analysis
with reduced APs, in order to avoid the spatial information
redundancy.

In recent years, the use of local binary patterns (LBPs) [68]
has shown good spatial-classification performance in HSI
classification. For instance, Li et al. [69] extracted spatial
LBPs information and combined it with the spectral infor-
mation through an extreme learning machine (ELM) classi-
fier [70], [71]. Recently, Ye et al. [72] developed segmented
LBPs in order to address the limitations of the original
approach in the representation of physical meaning due to the
existing noise bands, while preserving the intrinsic geometri-
cal structure of original data. And Sidike et al. [73] used the
interesting multi-scale completed LBP (CLBP) to enhance
the spatial-processing of HSI scenes.

Image segmentation is quite interesting in spatial pro-
cessing methods, where they split the HSI scene into
non-overlapping homogeneous regions according to some
partitioning criteria. In this sense, Tarabalka et al. [74]
performed spectral-spatial HSI classification combining
pixel-wise SVM classification results and the partitional clus-
tering segmentation map. Furthermore, in [75], the authors
combined the SVM classification results with watershed
segmentation. Zhang et al. [76] adopted an active learn-
ing strategy with hierarchical segmentation to perform
spectral-spatial HSI analysis and pixel classification. Also,
Tarabalka et al. [77] proposed a multiple spectral–spatial
classification (MSSC) scheme, which combines several
pixel-wise and segmentation-based classifiers to process the
HSI scene.

Among these approaches, many kernel-based techniques
have been developed to perform spectral-spatial HSI clas-
sification [78]. For instance Camps-Valls et al. [79]
presented composite kernels (CKs) as an efficient and flexi-
ble spectral-spatial processing framework, balancing between
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the spatial and spectral information comprised by HSI data.
Li et al. [80] extended CKs by avoiding weight param-
eters (generalized composite kernel machines –G-CKs–),
reaching promising results with a MLR classifier. Also,
Camps-Valls et al. [81] generalized the CK behaviour by
graph kernels (GKs), which compute spatial similarities in
a proper feature space.

Despite their notable results (in terms of accuracy), these
standard ML-based techniques have to face several chal-
lenges. In particular, their performance strongly depends
on the parameters involved in the algorithm, the selected
classification criteria or discriminative measurement, and/or
some handcrafted features, which are very hard to obtain and
are not flexible. In this sense, the success of these methods
hinges largely on the user/programmer knowledge, involving
a high computational burden (some of them) and being quite
difficult to train.

B. DEEP LEARNING MODELS FOR SPECTRAL-SPATIAL HSI
PROCESSING
In contrast to previous ML-based methods, deep learn-
ing (DL) models [82], [83] offer a bunch of quite inter-
esting neural architectures to automatically process the
spectral-spatial information contained in HSI data, with-
out requiring a priori knowledge about the data distribu-
tion/features. In this context, deep neural networks (DNNs)
can be interpreted as hierarchical stacks of L operational
layers, where each layer l applies a transformation function,
x(l) = f (l)(x(l−1),P(l)) over its inputs x(l−1) to obtain a
certain output data representation x(l), which will depend on
the layer parameters P(l) (weights and biases). By adjust-
ing their parameters, DNNs aim at automatically extracting
those representations that best fit the problem, in order to
optimize the architecture and achieve an adequate accuracy.
This behaviour, combinedwith a large variety of architectures
and their great versatility (DNNs are considered universal
approximators), makes DNNs a pretty powerful tool for the
analysis of complex non-linear data, exhibiting a greater
ability of feature abstraction than standard ML models and
shallow architectures.

Some HSI literature has tackled the spectral-spatial
processing through deep architectures. For instance,
Chen et al. [84] developed a stacked autoencoder (SAE) to
perform deep spectral-spatial feature extraction and classifi-
cation, concatenating several flattened principal components
from a spatial pixel neighborhood with the corresponding
spectral features of the pixel. Following the same procedure,
Chen et al. introduced deep belief networks (DBN) [85]
to extract high-level spectral-spatial features from the HSI
data cube. These models overcome the limitations expressed
by traditional ML models, as they automatically extract
the most relevant spectral-spatial features when classifying
HSI data. However, these models are originally based on
fully-connected layers, which only process vectorized data,
i.e. 1-dimensional arrays. Consequently, the spatial repre-
sentations must be flattened and vectorized in order to be

processed by these architectures, i.e. spatial relations (in
terms of feature locations) are lost.

Among these methods, convolutional neural
networks (CNNs) [86] appear to be a promising DL technique
within image processing tasks, in general, and HSI data
analysis in particular [87]. The corresponding model offers a
natural way to combine spectral-spatial information due to its
hierarchy of convolution filters and pooling operations, pro-
viding a flexible mechanism to process n-dimensional arrays.
As a result, the CNN model has shown a good performance
in HSI data classification [88]. Although CNNs are excellent
tools for feature extraction, without enough training samples,
they exhibit the typical deep learning limitation of overfitting.
There are two main reasons: on the one hand, there are not
enough samples to cover all the variability of the HSI scene,
and on the other hand, the parameters are over-adjusted to the
training data distribution. In this context, despite the great
performance during the training stage, the behavior of the
network deteriorates significantly during the inference phase
due to its over-adjusted parameters and the lack of knowledge
about unseen samples. Moreover, they are not really effective
in exploring some spatial relations among features and their
generalization power depends on the transformations present
in the training data.

C. SPATIAL TRANSFORMATIONS EQUIVARIANCE OF CNN
MODEL FOR HSI CLASSIFICATION
In this context, affine transformations such as shifting, scal-
ing, translations and rotations can appear within the data,
where objects that belong to the same class appear at different
locations, with different sizes and orientations. In practical
HSI data, scenarios can be observed with a varying orien-
tation due to the capturing spectrometer position, the alti-
tude at which it is located and the path followed by the
airborne spectrometer. From this perspective, achieving a
certain invariance/equivariance to these transformations can
be quite useful for classifying HSI data, making classification
models more reliable, improving their generalization ability
and reducing the number of training parameters. Eq. (1)
provides the mathematical formulation of transformation-
invariance/equivariance, where f : X → Y defines the
feature extraction function, which is invariant to any trans-
formation g(·) of the multidimensional input data X (which
belongs to a group of transformations G, i.e. g ∈ G) if the
output of f (·) remain unchanged. On the contrary, f (·) is
equivariant to every g ∈ G if there is another group H such
that, for every g(·) ∈ G there exists a h(·) ∈ H that reflects
the transformation. Therefore, the concept invariant means
that there is no variation at all, while equivariant implies a
variation in a similar or equivalent proportion.

invariance → f (g[X]) = f (X)

equivariance → f (g[X]) = h [f (X)] (1)

Moreover, becoming robust to rotation transformations is
a quite important topic within ML and DL due to the high

VOLUME 8, 2020 179577



M. E. Paoletti et al.: Rotation Equivariant CNNs for Hyperspectral Image Classification

FIGURE 1. CNN translation (left) and rotation (right) equivariance. In the first case, the translation g(·) of the HSI scene X is equivalent to the
translation h(·) of the feature maps, i.e. the translation is preserved by each layer. However, the rotation of the input X by g(·) has not a equivalent
transformation h(·), which could produce the same result if it is applied over the feature maps, and if an h(·) exits, it is very hard to find.

complexity and the negative effects it introduces during data
processing [68], [89]–[96]. Some interesting efforts in remote
sensing HSI data analysis can be found in [97]–[100]. How-
ever, these approaches are usually based on traditional ML
techniques and feature extractors such as SIFT. Focusing on
deep CNN models, convolution kernels capture translations
within the data, i.e. they are translation-equivariant due the
particular form of parameter sharing, while pooling oper-
ations provide some invariance to small translations [83].
However, the CNN model is not naturally equivariant to
rotation transformations. In fact, rotations in the inputs do not
generate an equally logical-response in the outputs [94], as we
can observe in Fig. 1. Therefore, other mechanisms have to
be introduced in order to aid these transformations.

Traditionally, spatial regularization [101] and data aug-
menting techniques [102]–[104] have been developed as rein-
forcement to help CNN learning, using normally a large
number of rotated data variations. However, this procedure
works as a black box, where the learning mechanism does
not exploit the characteristics of the problem [94]. Moreover,
these techniques do not ensure local equivariances within the
CNN model, which is compelled to learn several copies of
the same filter to fit different feature rotations, increasing
both the number of redundant parameters and the learning
complexity.

Several methods have been developed for computer vision,
optical image and remote sensing processing to include
rotation-equivariance within CNNmodels, which can be clas-
sified into those that 1) rotate the inputs (input data or fea-
ture maps) to generate rotation invariant representations [91],
[105] and 2) rotate the CNN filters or activation [106]. For
instance, Fasel and Gatica-Perez [91] rotated the input data
before sending it into several stacked CNNs, generating rota-
tion invariant representations through pooling. Cohen and
Welling [106] generalized the convolution layer behaviour

to perform rotations and reflections equivariances by rotating
kernels within each layer.

In this context, this article tackles the rotation-equivariance
within CNNs based on 2D kernel for spectral-spatial HSI data
processing and classification. In particular:

• Instead of achieving rotation-equivariance by transform-
ing the inputs, we propose to transform the standard con-
volution filters of the network into steerable filters [107].
In this way, we develop a new rotation-equivariant
CNN2D architecture for remote sensing HSI data clas-
sification to deal with all local rotation information
present in HSI data.

• Therefore, our deep model uses as structural element a
kind of steerable filter, named circular harmonic filter
(CHF) [94] to represent all rotated versions of a filter
(i.e., 360◦-rotation equivariance) by considering a linear
combination of a number of steering bases.

• In this way, the new architecture aims at reducing the
high redundancy in the filters learned by the CNN,
simplifying the learning process and improving the per-
formance when conducting HSI data classification.

• Obtained results over three well-know HSI datasets
demonstrate the potential of the approach.

The remainder of the paper is organized as fol-
lows. Section II describes the used methodology of the
rotation-equivariance CNN model. Section III compares its
performance with baseline CNNs over three widely-used HSI
data set instances. Finally, Section IV concludes the paper
with some remarks and possible future research lines.

II. METHODOLOGY
A. THE CONTEXT OF THE CNN MODEL
A CNN architecture can be divided into two main parts:
i) the feature extractor (FE), which is usually composed of
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one or more convolution layers, followed by data normaliza-
tion, non-linearity function and, often, by a subsampling or
pooling layer, which obtains high level representations (fea-
ture maps) of the original input data, and ii) the classification
net, composed of several fully-connected layers.

The design of each FE-stage is intrinsically related to
the input data structure, i.e., the dimensional arrangement
of the input array. In this context, FE-stage layers can pro-
cess n-dimensional arrays, taking the maximum advantage
of the information contained in the data. Thus, consider-
ing a standard CNN model with L FE-stages, let X(l−1)

∈

RN (l−1)
×N (l−1)

×F (l−1)
denote the input volume of the l-th layer

(l ∈ {1, . . . ,L}), which is composed of N (l−1)
× N (l−1)

features and F (l−1) channels.1 Therefore, the l-th FE-stage
will apply its corresponding FE-function f (l)(·) to X(l−1) in
order to obtain the output volume X(l)

∈ RN (l)
×N (l)

×F (l)
.

As mentioned before, we suppose f (l)(·) is composed of
convolution f (l)C (·), normalization f (l)B (·), activation f (l)H (·) and
pooling f (l)P (·) layers, so we can reinterpret each FE-stage
as [108]:

X(l)
= f (l)

(
X(l−1),P(l)

)
= f (l)P

(
f (l)H

(
f (l)B

(
f (l)C

(
X(l−1),P(l)

))))
(2)

where P(l) represents the learnable kernel parameters (i.e.,
weights W(l) and biases b(l)). Each sub-mapping function is
defined as follows:

Z(l)
= f (l)C

(
X(l−1),W(l),b(l)

)
(3a)

Ẑ(l)
= f (l)B

(
Z(l)

)
(3b)

Z̃(l)
= f (l)H

(
Ẑ(l)

)
(3c)

X(l)
= f (l)P

(
Z̃(l)

)
(3d)

Eq. (3a) defines the convolution layer operation, which
is composed of F (l) filters that are applied to small regions
of X(l−1). This region is defined by the local receptive field
K (l)
×K (l)

×F (l−1). In this sense, the corresponding weights
W ∈ RK (l)

×K (l)
×F (l−1)

×F (l)
are applied along the input like a

sliding window, where each kernel application combines the
features contained in the receptive field along the channels.
Eq. (4) details the mathematical expression of f (l)C given by
Eq. (3a). As we can observe, the convolution (∗) between
the weights W(l) and the data X(l−1) plus the bias vector
b(l) obtains the output feature volume Z(l)

∈ RN (l)
×N (l)

×F (l)
,

where the (i, j) feature in channel t , i.e. z(l)i,j,t is obtained after
the affine transformation [109] between the corresponding
weights and input data, where i ∈ {1, . . . ,N (l)

} and j ∈
{1, . . . ,N (l)

} index along spatial dimensions of the output
and input arrays, î ∈ {1, . . . ,K (l)

} and ĵ ∈ {1, . . . ,K (l)
}

index along spatial dimensions of the convolution kernel,

1Focusing on HSI processing, the first FE-stage l = 1 will receive the
original HSI patch X ∈ RN×N×F , composed of N ×N vector pixels, where
pixel (i, j) contains the reflectance measurements within F spectral bands,
xi,j = [xi,j,1, . . . , xi,j,F ] ∈ RF

t ∈ {1, . . . ,F (l)
} indexes along the spectral dimension

of the convolution kernel and output volume, and t̃ ∈
{1, . . . ,F (l−1)

} indexes along the spectral dimension of the
input volume.

Z(l)
= W(l)

∗ X(l−1)
+ b(l)

z(l)i,j,t =
∑
î,ĵ,t̃

w(l)
î,ĵ,t̃,t

x(l−1)
i+î,j+ĵ,t̃

+ b(l)t (4)

After convolution f (l)C , the data is usually normalized by
the batch normalization function f (l)B in order to recover its
original distribution. This limits the internal covariate shift
effect introduced by f (l)C by forcing the resulting output distri-
bution to have mean µ = 0 and variance σ 2

= 1 [110], while
making the landscape of the optimizer more smooth [111].
Eq. (5) details the mathematical terms behind Eq. (3b), where
the step-size ε provides certain numerical stability and learn-
able parameters γ and β control the distribution N (µ, σ 2),
making it more flexible.

Ẑ(l)
=

Z(l)
−mean

[
Z(l)

]√
var

[
Z(l)

]
+ ε

· γ + β (5)

Obtained Ẑ(l)
∼ N (µ ≈ 0, σ 2

≈ 1) ∈ RN (l)
×N (l)

×F (l)

is then processed by a non-linear activation function f (l)H
to extract the nonlinear representations from the data.
In this sense, f (l)H is interpreted as the detector unit of the
FE-stage [83]. Indeed, these activations indicate the presence
of the features identified by the convolution kernel. Usually,
the rectified linear unit (ReLU) [112]–[114] is implemented,
so z̃(l)i,j,t = max

(
0, ẑ(l)i,j,t

)
, ∀i, j ∈ {1, . . . ,N (l)

} and ∀t ∈

{1, . . . ,F (l)
}.

Following the activation function, a sample-based dis-
cretization process f (l)P is conducted by adopting a downsam-
pling strategy. In this sense, the pooling step summarizes the
spatial information of each feature map in Z̃(l), retaining the
most relevant features by applying a max, average or sum
operation within a neighborhood window [115]. For instance,
the max-pooling operator selects the largest feature from the
rectified volume Z̃(l), considering a spatial window of P×P.
As a result, pooling summarizes Z̃(l) into X̃(l) by dividing the
spatial dimensions intoN (l)/P parts. This reduces the number
of parameters, which helps to control the overfitting problem.

B. LIMITATIONS OF CONVOLUTION KERNELS
As mentioned before, the l-th convolution kernel comprises
F (l) learnable filters with size K (l)

× K (l), which are applied
in a ‘‘sliding window’’ fashion across the entire layer input
X(l−1). In this regard, theweight sharingmechanism provides
an easy way to reuse the same K (l)

× K (l) weights given
by filter t across the entire input, ∀t ∈ {1, . . . ,F (l)

}. This
mechanism significantly reduces the number of weights that
have to be learned. In addition, the filter is automatically
adapted to detect a particular feature, such as a combination
of edges. Therefore, if there are similar features within the
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FIGURE 2. CNN’s max-pooling behaviour when translation and rotation is
introduced. In the first row we can observe the original patch, whereas in
the second, third and fourth rows we can observe the main feature only
translated, only rotated 90◦, and both rotated and translated,
respectively. Depending on the transformations (first, second rows),
max-pool obtains similar results, in the sense that the most predominant
element always appears in the upper left corner, although local
translation and rotation are lost. However, with bigger spatial
transformations, the feature map changes significantly.

input data, the filter will detect them independently of their
location in the inputs, recording their position in the output
volume and preserving the translation at each layer [106].
Thus, a convolution kernel is translation-equivariant, as the
spatial translation in inputs generates a consequent translation
in outputs [83], following Eq. (1):

Z(l)
= f (l)C

(
g
[
X(l−1)

])
= h

[
f (l)C

(
X(l−1)

)]
(6)

However, low-level features, such as borders and edges can
appear with different orientations. This may affect the CNN
performance dramatically, because filters cannot fit the data
properly, as has been observed in filterbanks visualized by
Zeiler and Fergus [116]. In this sense, the CNN is compelled
to learn the rotated version of the same filter, investing a sig-
nificant amount of computation to learn all these redundant
weights, which are actually copies of one, which is rotated in
different ways [94].

This behavior should not be misunderstood with the invari-
ance offered by pooling layers. In this sense, the pooling
layer helps the network model to obtain a data representation
approximately invariant to small translations and rotations of
the input, as we observe in Fig. 2.

However, none of these layers is naturally equivariant to
rotation. Focusing on convolution layers, if X(l−1) is rotated,
the feature vectors obtained by f (l)C do not rotate in an eas-
ily predictable way [94], while in pooling layers, the rota-
tion equivariance is not skipped at all. In fact, it has to be
approximated by small translations, normally requiring data
augmentation (i.e. including in the training set data with every
possible rotation) and leading to high sample complexity,

while CNN models are highly sensitive to little input data
perturbations [117].

Encoding these properties into the neural network architec-
ture can enhance data understanding, improving the learning
procedure and reducing the number of parameters [118].

C. CIRCULAR HARMONIC FILTERS
In order to encode the 360◦-rotation equivariance within the
CNN for remote sensing HSI data classification, the devel-
oped spectral-spatial model uses CHF [94] as the structural
element to perform the FE stage. The CHF belongs to the
steerable filter family [107], [119], which defines a set of
orientation-selective convolution kernels that can be con-
structed at any rotation by simply using a a linear combination
of a finite number of appropriate base filters [120]. Within a
continuous Euclidean space, the CHF is defined by a sinu-
soidal angular part multiplied with a radial function [119]

Wm(r, φ;R, β) = R(r)ei(mφ+β), (7)

where (r, φ) denotes the polar coordinates of feature maps
(r ≥ 0 is the radial distance and φ ∈ [0, 2π ) is the horizontal
plane angle), R : R+ → R is the radial profile function to
control the filter overall shape, and β ∈ [0, 2π ) is a phase
offset term that gives the filter orientation-selectivity [94].
In particular, R and β must be learned during the training
step. An interesting parameter is the rotation order m ∈ Z,
which limits the kind of transformation applied to the data.
Hereof, following Eq. (6), we can consider gθ ∈ G as the
θ -degree rotation2 of the input X(r, φ) (in polar coordinates,
superscripts have been avoided to facilitate the understanding
of mathematical concepts), so X(r, gθ [φ]) = X(r, φ − θ ).
Thereby, the application of the CHF on the rotated input
must be equivalent to the application of the same filter on
the original data, considering hθ = eimθ , i.e.

[Wm(r, φ;R, β) ? X(r, φ − θ)]
= eimθ [Wm(r, φ;R, β) ? X(r, φ)] , (8)

where (?) indicates the cross-correlation operation.3 Fig. 3
provides a graphical representation of Eq. (8).We can observe
that, for instance, if m = 0, then hθ = ei·0θ = 1, defining the
invariance, while if m = 1, then hθ = ei·1θ , defining linear
equivariance (i.e. 1-equivariant output).

Taking back the superscripts to indicate the FE stage in
which we are, and considering the CNN as a deep stack of
CHFs, it must be noted that the cross-correlation between the
feature maps X(l−1)

mi (with rotation order mi) and a filter W(l)
mj

2We follow the counter-clockwise rotation, where positive angles are
measured counterclockwise and negative angles go clockwise.

3Cross-correlation (?) and convolution (∗) are quite similar
image-operations where the first one slides a kernel across the image
–this operation is much closer to the concept of convolution that we have
within the CNN, given by Eq. (4)– and the second one slides a flipped kernel
across the image. Actually, many DL frameworks are implementing CNN
models with cross-correlation, such as TensorFlow [121] or Pytorch [122]
which learn the same weight values but in a flipped orientation, in order to
avoid the flipping operation, which adds some unnecessary complexity to
the CNN.
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FIGURE 3. Rotation equivariance with CHF. In both cases, output data is
obtained into the feature space as the cross-correlation between the
input data and the CHF. The rotated and unrotated output volumes are
related by the associated transformation hθ = eimθ ∈H. It illustrates how
the phase of the output features rotates with the input at frequency m.

with rotation order mj will lead to new feature maps X(l)
mi+mj

with rotation ordermi+mj. However, considering the summa-
tion of two feature maps with the same order m, the obtained
result remains of order m (non-linear activation functions do
not affect the rotation order) [94]. Consequently, to construct
a M -equivariant output, the chained cross-correlation con-
straint of rotation orders is applied along any data-path of the
CNN model. Moreover, the equivariance condition given by
Eq. (9) must be met at every feature map:

M =
N∑
i=1

mi. (9)

Our deep rotation-equivariant CNN2D for spectral-spatial
HSI data classification has been developed with a dual-path
architecture, replacing standard convolution kernels W(l) by
its CHF counterpart W(l)

m , generating m-equivariant feature
maps with rotation order m. In particular, each path repre-
sents a different stream with constant rotation order outputs.
As can be observed from Fig. 4, the upper stream exhibits an
m = 0 rotation order (i.e. its outputs are rotation-invariant),
while the lower stream sets its rotation order to m = 1
(i.e. its outputs are rotation-equivariant). To keep the rotation
order constant along streams, each one comprises several
rotation order zero cross-correlation and non-lineal activa-
tion functions. Moreover, every cross-correlation output of
each stream is combined within the opposite stream through
cross-correlations of rotation order equal to the difference
between those two streams,4 holding at every connection the
equivariance condition.

4Aswe can see, to combine the outputs of streamm = 1with the outputs of
stream m = 0, filters of order m = −1 are needed. In this case, for negative
orders, the conjugated weights are considered (Fig. 5), i.e. if we consider
W−m = R(r)ei(mφ+β) as the negative order filter, its conjugated counterpart
will beWm = R(r)e−i(mφ+β).

Furthermore, to translate the continuous cross-correlation
function into the discrete space of real HSI data, the data
is bandlimited and resampled before cross-correlation via
Gaussian resampling [94]. Each feature of the resulting
downsampled data is a center of equivariance where the
feature maps will exhibit local rotation equivariance. Also,
the complex cross-correlation function has been split into four
real cross-correlation:

Wm ? X =WRe
m ? XRe

−WIm
m ? XIm︸ ︷︷ ︸

Real part

iWRe
m ? XIm

−WIm
m ? XRe︸ ︷︷ ︸

Imaginary part

(10)

Following Eq. (10), the CHFs are implemented by resampling
the polar-based filters into a grid-resampled version through
the the trigonometric transformation, where any coordinate
(r, φ) can be represented as (r cos(φ), r sin(φ)) [94].

We summarize the concept of the the network architec-
ture. First of all, the spectral dimension of the HSI scene is
reduced to one band, F = 1, applying Maximum Noise Frac-
tion (MNF). Then, following the procedure outlined in [86],
the HSI scene is cropped into spectral-spatial patches of size
N × N × 1, where the label of a patch corresponds to that
of the central pixel. These patches feed the network, whose
architecture is composed of two streams with rotation orders
m = 0 and m = 1, respectively. Each stream comprises
three CHF-based layers, which are followed by data normal-
ization and ReLU activation functions [94]. Moreover, these
CHF-based layers contains 5×5×8, 5×5×16 and 5×5×32
filters, respectively. This is illustrated in Fig. 4, where each
cross-correlation observes Eq. (9). At the end of the network,
the two streams come together and are joined into a final layer
with m = 0 and with kernel size 5 × 5 × C , where C is
the number of different land cover classes. This final data
representation is vectoriced to obtain the final classification
result. The model has been optimized with ADAM optimizer,
considering a starting learning rate of 1e− 3. This is updated
every 50 epochs, where it is divided by two in order to
refine the behavior of the optimizer. 250 epochs have been
employed, using a batch size of 100 elements.

III. EXPERIMENTS
A. EXPERIMENTAL ENVIRONMENT
In order to evaluate the performance of the developed
approach called reCNN2D (rotation-equivariant CNN2D),
we use as hardware environment a 6th Generation Intel R©

CoreTMi7-6700K processor with 8M of Cache and up to
4.20GHz (4 cores/8 way multitask processing), 40GB of
DDR4 RAM with a serial speed of 2400MHz, a graphical
processing unit (GPU) NVIDIA GeForce GTX 1080 with
8GB GDDR5X of video memory and 10Gbps of memory
frequency, a Toshiba DT01ACA HDD with 7200RPM and
2TB of capacity, and an ASUS Z170 pro-gaming mother-
board. The used software environment consists of Ubuntu
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FIGURE 4. Graphical overview of the proposed neural network architecture. It is composed by two order-contant streams: the upper one represents order
m = 0 (rotation invariance) while the bottom stream represents order m = 1 (rotation equivariance). The output responses of CHFs at each stream are
combined by the sum of the feature maps obtained, keeping the stream rotation order constant. The final layers obtain a vectorized representation of the
proposed network, where C defines the number of different land cover classes. This vector is used for the final classification.

FIGURE 5. Real (upper row) and imaginary (bottom row) parts of the
Gaussian-based CHF Wm(r , φ;R, β), setting R = e−r2

and β = 0 and
considering different rotation orders, in particular
m = −4,−2,−1,0,1,2,4.

16.04.4 x64 as operating system and Python 2.7 as program-
ming language.

B. EXPERIMENTAL HYPERSPECTRAL DATASETS
For the test instances, three well-know HSI datasets have
been used. The first one is known as Indian Pines (IP) (see
Table 1), which was gathered by AVIRIS [30] in 1992, over
a set of agricultural fields with regular geometry and with
multiple crops and irregular patches of forest in Northwestern
Indiana. The IP scene has 145 × 145 pixels with 224 spec-
tral bands in the range from 400 to 2500nm, with 10nm of
spectral resolution, 20m spatial resolution and 16 bits radio-
metric resolution. After an initial analysis, 4 zero bands and
another 20 bands with lower signal-to-noise ratio (SNR) due
to atmospheric absorption have been removed, retaining only
200 spectral channels. Moreover, about half of the pixels in
the HSI image (10249 of 21025) contain ground-truth infor-
mation, which comes in the form of a single label assignment
having a total of 16 ground-truth classes.

The second HSI dataset, known as Pavia University (PU)
(see Table 1) was collected by ROSIS [123] during a flight
campaign over Pavia, northern Italy. The dataset covers an
urban environment with various solid structures (asphalt,
gravel, metal sheets, bitumen, bricks), natural objects (trees,

meadows, soil), and shadows (9 classes in total). Other
objects with a composition which differs from the labeled
ones are considered as clutter. The PU scene was collected
over the university area. It contains 103 spectral bands of
610× 340 pixels in the spectral range from 0.43 to 0.86µm,
with a spatial resolution of 1.3m/pixel. About 20.62% of
the pixels in the HSI image (42776 of 207400) contain
ground-truth information.

The third HSI dataset was also collected by the AVIRIS
instrument, in this case over Salinas Valley (SV), California
(Table 1). The covered area has 512 × 217 samples and the
spatial resolution is 3.7m per pixel. 204 out of the 224 bands
are kept after 20 water absorption bands are removed. The
ground-truth is composed of 54129 pixels and 16 land-cover
classes, including vegetables (such as lettuce and brocoli),
bare soil, and vineyard fields.

C. EXPERIMENTAL DISCUSSION
Four experiments have been performed with the aim to test
the developed method for HSI classification:

• The first experiment performs a general state-
of-the-art comparison, comparing the developed
rotation-equivariant CNN2D model for HSI data classi-
fication with six popular HSI classifiers [87]: i) RF [41],
ii) MLR [124], iii) SVM with radial basis function
(RBF) [125], iv) multilayer perceptron (MLP) [126],
v) CNN1D [127] and vi) CNN2D [128].
Apart from reCNN2D and the standard CNN2D (imple-
mented similarly), the considered classifiers are tra-
ditional pixel-wise methods, whereas CNN2D-based
architectures are spectral-spatial classifiers, whose
inputs comprises patches of 31×31 pixels with one prin-
cipal component extracted from IP, PU and SV datasets
through PCA. The spatial size has been chosen follow-
ing [86] in order to obtain enough spatial information
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TABLE 1. Number of samples of the three test HSIs, Indian Pines, Pavia University and Salinas Valley.

within each patch. Moreover, after dividing the scenes
into patches of size 31 × 31, they have been randomly
rotated with angles 0o, 90o, 180o and 270o and have
then been divided into training and test sets in order to
measure the rotational effect. No data augmentation has
been performed during the training of the models.
The training percentage has been varied to test the accu-
racy performance of the developed method, in particu-
lar 3%, 5%, 10% and 5% of the IP dataset (which is
spectrally more complex), and 1%, 3%, 5% and 10%
of PU and SV datasets, respectively. The accuracy of
eachmethodwas evaluated by three quantitativemetrics:
overall accuracy (OA), average accuracy (AA), and the
Cohen’s kappa (K) coefficient [129].

• The second experiment extends the comparison
between the standard and rotation equivariant CNN.

In particular, we have compared the standard CNN2D,
considering the IP, PU and SV datasets with rotated
and non-rotated training-test samples, and the pre-
sented method with rotated inputs. The main goal is
to observe the degradation in terms of OA of the
standard CNN2D when rotated samples are fed to the
model.
Also in this experiment, after dividing the scenes into
patches of size 31×31, they have been randomly rotated
with angles 0o, 90o, 180o and 270o and then divided
into training and test sets (using 3%, 5%, 10% and 5%
of IP and 1%, 3%, 5% and 10% of the PU and SV
datasets as training percentages) in order to measure
the rotational effect over the standard CNN2D. Again,
no data augmentation has been performed during the
training of the models.
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• The third experiment performs a detailed compar-
ison between the new rotation-equivariant network
with CHFs for remote sensing HSI data classification,
the standard CNN2D model and the regularized FE
model proposed by Chen et al. [130]. Chen et al. obtain
the representation of the deep features of the HSI scenes
by implementing a standard CNN2D, performing the
final classification through a logistic regression classi-
fier, which is fed with the extracted feature vectors.
The experiment uses IP and PU scenes, where both the
spatial size of the input HSI patches (27 × 27) and
the size of the training and test sets has been adjusted
to those indicated in [130] (i.e. 1765 training samples
and 6223 test samples of IP scene, and 3930 training
samples and 33940 test samples for PU image). More-
over, following the second experiment, the standard
CNN2D model and reCNN2D with CHFs have been
tested with rotated training-test samples to observe the
OA effect. Once more, the input patches have been
randomly rotated between considering angles 0o, 90o,
180o and 270o.

• As a last comparison, the fourth experiment compares
the performance between the new rotation-equivariant
CNN2D model, the standard CNN2D and the feature
enhancement fully CNN2D model FEFCN) proposed
by Li et al. in [131]. This network comprises several
FE stages of standard convolution, deconvolution and
pooling layers. Obtained feature vectors are processed
by an ELM [71] for classification purposes.
The experiment follows the training details described
in [131], where 10% and 5% of training data is used
for the IP and PU data sets respectively, using patches
of 48 × 48. For the standard CNN2D and reCNN2D,
the HSI data has been randomly rotated with angles of
0o, 90o, 180o and 270o.

1) FIRST EXPERIMENT: GENERAL STATE-OF-THE-ART
COMPARISON
The obtained results of the first experiment can be observed
in Table 2. With the exception of two isolated cases (PU and
SV scenes with 1% of training samples), reCNN2D achieves
the best classification result. Looking at the spectral classi-
fiers (which are not affected by the random rotation of spatial
information), they reach typical OA results, improving as
more training samples are provided, where SVMandCNN1D
exhibit the best classification results. However, the graphic
results depicted in the classification maps of Fig. 6 show
the traditional salt and pepper noise due to the incorrect
classification of those pixels located in the interior areas of
the classes.

On the contrary, those classifiers that introduce contex-
tual information can overcome this limitation, reducing the
uncertainty introduced by the spectral variability by tak-
ing advantage of the information provided by the neigh-
bors pixels. These classifiers are based on a CNN2D model,
and they have been denoted as CNN2D_wR and reCNN2D,

TABLE 2. Overall accuracy varying the training percentage for Indian
Pines, University of Pavia and Salinas Valley datasets.

respectively. The first one comprises the standard 2D convo-
lution filters, receiving as input data, rotated and non-rotated
spatial patches (hence the suffix wR, i.e. with rotation), while
the second one implements the new methodology, receiving
also rotated and non-rotated spatial patches.

Focusing on IP, one can observe that the reCNN2D
achieves the best overall accuracy (OA, 78.93%) with least
training data (1%). Comparing the traditional CNN2D_wR
with reCNN2D we can observe how the last one performs
36.98 percentage points better than the CNN2D_wR model.
It clearly appears more robust to rotational variations when
few training samples are provided, understanding the concept
of ‘‘robustness’’ as the ability of the neural model to copewith
complex data (in particular, rotated data with few training
samples) during classification, without its classification per-
formance being adversely affected. This behavior is repeated
with the rest of the percentages (for instance 37.64 and
30.33 percentage points better with 5% and 10% of raining
samples), although as more training is added, the distance
is reduced (18.81 percentage points better with 15%). This
makes sense, since as more samples are introduced, networks
are able to cover the data variability, learning better during
the training stage and generalizing better over the unseen test
samples.

Considering PU and SV datasets, SVM is the best
classifier with only 1% of training data, while the new
rotation-equivariant CNN2D is the third one (behind
the CNN1D). However, for the remaining percentages,
reCNN2D reaches the first position, exhibiting the best OA
result. Moreover, reCNN2D exhibits a better generalization
power than CNN2D with 1%, 3%, 5%, 10% and 15% of
training data. While standard CNN2D hardly reaches the
spectral classifiers performance, reCNN2D is able to over-
come the OA values without difficulty. Regarding, the clas-
sification maps in Fig. 6, we can observe an important
salt and pepper noise within spectral methods. In partic-
ular in SV scene, it is very interesting to note how the
CNN2D-based network suffers more than pixel-wise models
in the lettuce region, which is quite hard to identify due the
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FIGURE 6. Classification maps using 10% of training data considering Indian Pines scene and 5% of training data considering Pavia University and Salinas
valley datasets. From left to right, ground-truth, RF, MLR, SVM, MLP, CNN1D, traditional CNN2D and reCNN2D classifier results.

high similarity between the spectral signatures of the lettuces
at different stages of maturation. The same behaviour is
observed between Vineyard-untrained and Grapes-untrained
classes. In this sense, the problem of rotation is compounded
by the lack of spectral information, thus the lack of spectral
information between very similar spectra and the rotation
of patches (in particular, the orientation of those patches
with edges between different classes) make the CNN2D clas-
sifier negatively affected. On the contrary, reCNN2D pro-
vides a clearer map, indetifying these regions better than
CNN2D_wR model.

2) SECOND EXPERIMENT: EVALUATING THE BEHAVIOR OF
CONVOLUTIONAL MODELS WITH INPUT ROTATED PATCHES
This experiment is focused on studying how traditional con-
volution kernel is negatively affected by the introduction
of rotated patches in both training and testing, while new
reCNN2D CHF-based architecture is more robust and gen-
eralizes better than standard CNN2D.

By rotating both the training and test patches, we are
introducing some ‘‘spatial variability’’. In this sense, tradi-
tional convolution filters will learn to identify the features
associated with some orientation, compelling them to reserve

many parameters that in the end are redundant, as they are
rotated copies of the same filter. On the contrary, reCNN2D
should reveal a better performance, since its filters can obtain
rotation-equivariant responses, independently of the input
degree of transformation, so it should generalize better in
those unseen samples of the test set.

Obtained results can be graphically observed in Fig. 7.
On the upper row, we compare the standard CNN2D model
introducing randomly rotated (CNN2D_wR) and non-rotated
(CNN2D_nR) patches within the training and test sets. The
obtained results of CNN2D_nR are as expected [87], exhibit-
ing a low performance when few training samples are avail-
able during the training stage, specially with IP and SV
datasets, where first one the has an important spectral mixture
of the pixels due to the low spatial resolution, while the sec-
ond contains two problematic regions due to the similar spec-
tral signatures of the lettuces at different stages of maturation
and the vineyards crops. However, the CNN2D_nR improves
its classification performance as more training samples are
provided, reaching an OA higher than 95%. Despite these
results, the standard CNN2D performance degrades signif-
icantly when rotated patches are introduced. Focusing on
IP scene, the CNN2D_wR OA falls around 30 percentage
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FIGURE 7. Overall accuracy comparison between standard CNN2D with and without rotated training and test input patches (denoted as CNN2D_wR and
CNN2D_nR, respectively), and reCNN2D with rotated training and test input patches. On the upper row, comparison between CNN2D_wR and
CNN2D_nR. On the bottom row, comparison between CNN2D_wR and reCNN2D.

points. This fall is slightly less in the other two HSI scenes,
because they have more training samples than IP, so they can
cover more information than IP, although the classification
performance reduction is still remarkable.

On the bottom row, we compare the CNN2D_wR and
the new network (denoted as reCNN2D), including rotated
patches within the raining and test sets. In this sense, these
images graphically depict the OA provided in Table 2. In PU
the difference between CNN2D_wR and reCNN2D is slightly
smaller than in IP and SV scenes. The main reason resides in
the large number of structures, which are oriented and located
in different areas of the scene, providing a direct way for
the traditional filters to cover the features. However, IP and
SV are more complex scenes not only due to their spectral
complexity, but also because of the lack of structure. In this
context, the CNN2D_wR suffers a dramatic OA reduction
compared to the rotation-equivariant reCNN2D model.

On the other hand, if we compare the CNN2D_nR (without
rotated inputs) and reCNN2D (with rotated inputs) we can
observe that the obtained results are quite similar as more
training samples are introduced, where reCNN2D obtains the
best OA percentages when there are very few samples (for
instance in IP and SV scene).

3) THIRD EXPERIMENT: COMPARISON AMONG CNN2D
MODELS
The third experiment compares several CNN models. In par-
ticular, we compare the CNN2D-LR proposed by Chen et al.

TABLE 3. Comparative with several CNN models: CNN2D-LR [130]
(considering non-rotated input patches within training/test sets),
standard CNN2D and reCNN2D (both networks work with rotated input
patches within training/test sets.

in [130] (called CNN2D-LR_nR, as it receives non-rotated
patches), the standard CNN2D and reCNN2D. The same
experimental configuration as described in [130] have been
used. Table 3 provides the obtained results over IP and PU
datasets. The first column provides the results obtained by
the CNN2D-LR_nR model in [130], which has been trained
with 1765 training samples from IP and 3930 from PU, using
patches of 27 × 27. Following the same training procedure,
the second and third columns show the results obtained by
the CNN2D_wR with the same architecture as Fig. 4, imple-
mented by traditional convolutional kernels, and the new
method respectively. For this experiment, patches have been
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TABLE 4. Comparative with several CNN models: FCEFCN [131]
(considering non-rotated data), standard CNN2D and reCNN2D (both with
rotated input data).

randomly rotated with angles 0o, 90o, 180o and 270o and then
divided into training and test sets.

As we can observe, for both data sets the new neural
model provides the best OA results. In fact, its OA results
are 5.32 and 4.55 percentage points better than the second
best model, the CNN2D-LR_nR, and 22.89 and 22.24 points
better than the CNN2D_wR model.

4) FOURTH EXPERIMENT: COMPARISON BETWEEN
ROTATION-EQUIVARIANCE CNN AND FULLY-CNN MODELS
The last experiment compares the efficiency in terms of
OA, AA, and Kappa values between the feature enhance-
ment fully CNN (FEFCNN) [131] model, the standard
CNN2D model with rotated inputs (CNN2D_wR) and the
newly designed rotation-equivariant approach reCNN2D.
The obtained results are shown in Table 4 for both IP and PU
data sets considering the experimental configuration provided
in [131]. In this sense, the comparison have been conducted
by utilizing the 10% and 5%of available labeled training sam-
ples randomly taken from IP and PU datasets. The FEFCNN
network takes the input of overlapped patches of size 48×48
pixels with a stride of 15 for both IP and PU data sets.
The second and third columns of Table 4 reports the results
obtained by the CNN2D_wR with the backbone architecture
shown in Fig. 4, which incorporates traditional convolutional
kernels, and the new method respectively. In order to explore
the rotational effect the extracted patches have been randomly
rotated 0o, 90o, 180o and 270o angles and then the transform
samples are divided into training and test sets. It can be seen
that, for both data sets, the new rotation-equivariant network
for HSI classification provides the best OA, AA, and Kappa
values showing the robustness under rotational variations.

IV. CONCLUSION
This article presents a new rotation-equivariant convolutional
neural network reCNN2D based on CHFs for classyfying
HSI remote sensing data. Obtained results with three pop-
ular real HSI data sets varying the rotation in images in a
systematic way, illustrate the performance of the new method
with a small amount of training data, avoiding the overfitting

problem exhibited by traditional CNN models. Moreover,
comparison with several CNN2D models shows that the new
approach exhibits a better robustness to data rotational vari-
ance, performing a better classification and providing a better
generalization without requiring data augmenting techniques.
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