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ABSTRACT Non-orthogonal multiple access (NOMA) has gained considerable interest from the 3GPP
community as a potential radio access strategy for the future fifth-generation (5G) wireless networks.
Compared to orthogonalmultiple access (OMA), NOMA ismore efficient from the perspective of throughput
performance making it more favorable for 5G systems. Existing NOMA techniques merely offer a rigid
user grouping without exploring channel heterogeneity and diversity to cluster users, resulting in a poor
throughput performance. An adaptive user clustering (AUC) approach has been proposed to search through
all possible combinations to obtain the best clusters with the highest throughput. This scheme exploits
the channel diversity of users to maximize throughput, however, the brute-force search (B-FS) method to
find the optimal combinations results in a prohibitive complexity. In this paper, a novel artificial neural
network (ANN) approach is proposed for user clustering in the downlink of the 5GNOMA system in order to
maximize throughput performance at an acceptable complexity. In the proposed strategy, ANNmodel is first
trained with the historical dataset, which contains the transmitting powers and channel gains of the downlink
NOMA users, along with the information of the corresponding clusters which maximize the throughput
performance of the system. Next, validation is performed to tune the values of hyper-parameters such as
learning rate, length of training data, and epoch learned during training to validate cluster formation and
to avoid over-fitting of the model. Finally, the ANN model is tested with the learned parameters and tuned
hyper-parameters, to predict the formation of clusters and to evaluate the accuracy of the model. Simulation
results demonstrate that the proposed scheme is able to obtain a significant reduction in terms of complexity
with a performance of 98% for throughput (near-optimal throughput performance) when compared with the
optimal approaches.

INDEX TERMS Artificial neural network, low-complexity, machine learning, non orthogonal multiple
access (NOMA), throughput maximization.

I. INTRODUCTION
over the decades, cellular networks have been seeking inno-
vative multiple access standards to provide seamless and
ubiquitous connectivity for a broad variety of data-centric
and bandwidth-hungry mobile services that vary from the
services supported by the earlier generations. The next
generation known as the fifth-generation (5G) [1] cellu-
lar network is envisioned as the catalyst to open doors
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for various inventive technologies and services such as
augmented reality (AR), Internet of Things (IoT), cloud
computing, blockchain-enabledmobile security, and artificial
intelligence (AI). These emerging technologies give rise to
the scarcity of the radio spectrum which is considered to be
the most precious resource in 5G networks.

To fulfill the massive spectral demands caused by an enor-
mous technological paradigm shift from 4G to 5G, multiple
access schemes play a pivotal role to ensure all 5G users could
be able to simultaneously utilize those advanced technologies
and services promised in 5G networks with a satisfactory
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quality of service (QoS) and without any latency. Funda-
mentally, multiple access is a channel access method that
allows more than two mobile users to establish connections
to a base station (BS) by sharing the same radio resources,
either in the time or frequency domain. The famous multiple
access variant known as orthogonal multiple access is the
key to 4G success. In OMA-based 4G systems, each mobile
user is exclusively allocated with a subset of sub-channels
to avoid co-channel and adjacent channel interference as
the channel accessibility of users is orthogonal in nature.
However, ensuring the orthogonality of resources shared by
the users prevent resource sharing, thus OMA-based systems
are unable to accommodate an unprecedentedly huge number
of users in 5G networks. As a result, a more efficient multiple
access scheme is considered during the 5G standardization,
leading to the emergence of non-orthogonal multiple access
(NOMA) [2] which is endorsed to replace OMA.

In short, NOMA technique is designed to support multiuser
transmission by allowing several users to share identical
resource block through superposition coding (SC) method at
the users’ transmitters. The interference is introduced at the
receivers when the super-imposed signals are being segre-
gated. Fortunately, the implementation of successive inter-
ference cancellation (SIC) technique at the receivers helps
the users to recover their own desired signals without any
corruption resulted from the interference.

A. PRIOR WORKS
The concept of NOMA has been initially discussed for 5G
cellular systems in [3], [4] and its excellent implementa-
tion and performance have been first revealed in the same
work. NOMA’s attractive benefits and features particularly
for 5G networks have started to garner attention from many
researchers from academia as well as industries [5]–[9]. The
NOMA techniques can generally, be categorized into two
variants, i.e., 1) power-domain and 2) code-domain. This
paper mainly focuses on the power-domain NOMA technique
for a downlink 5G network where a distinct power is assigned
to each downlink connection from BS to different users.
Subsequently, the BS super-imposes the desired signals to
multiple users with different power coefficients and transmits
the combined signal on the same frequency sub-channels. The
power allocation for each downlink connection is determined
by their respective channel gains (from the BS to users) where
a user with the poorer channel gain is allotted with higher
transmission power than the one which has a better channel
gain. At the receiver side, the user with the higher power
can immediately recover its signal by treating other users’
signals as noise without needing SIC. On the other hand,
SIC is implemented to assist those users with lower power
allocations to retrieve their desired signal by eliminating
unwanted signals from the received super-imposed signals.

To effectively employ SIC at the receivers, user clustering
is crucial because different ways of grouping the NOMA
users with different channel conditions may lead to differ-
ent power allocation strategy and this eventually affects the

overall system throughput and SIC implementation. A two-
user NOMAmodel served by a single carrier and a multi-user
NOMA model serving an arbitrary number of users in each
subcarrier has been discussed in [10] by providing insight
into the recent research work carried out in analyzing the
allocation of resources and performance gain in terms of spec-
tral efficiency and outage probability. The implementation
of power-domain NOMA has been evaluated in [11] where
the user grouping problem in NOMA has been investigated
using predefined user clustering and fixed per group power
distribution schemes. In [12], the effects of user pairing on
the performance of NOMA-based cognitive radio networks
with fixed power allocation have been investigated. The
performance of NOMA in downlink scenario with random
deployment of users was investigated in [13] and it has been
shown that NOMA achieves enhanced performance in terms
of ergodic sum rate. The resource allocation algorithm for
a multi-carrier NOMA systems with a full duplex BS was
examined in [14] to maximize the weighted sum throughput
of the system usingmonotonic optimization. As the technique
suffers from high computational complexity, a suboptimal
algorithm based on successive convex optimization was sug-
gested to strike a balance between system throughput and user
fairness. Resource allocation for downlink NOMA systems
focusing on user-pairing and power allocation algorithms is
presented in [15]. In this work, the capacity gain among the
NOMA clusters are controlled using random pairing (RP)
and divide and next largest difference based user pairing
algorithm (D-NLUPA). The effects of power allocation on the
user fairness of downlink NOMA systems were investigated
in [16] under the assumption of perfect channel state infor-
mation (CSI) and average CSI feedback. Besides that, a low-
complexity power allocation scheme that yields the optimal
solution was also developed to ensure high user fairness.

Dynamic user clustering method together with its associ-
ated power allocation scheme has been proposed in [17] to
maximize the sum-throughput performance of a NOMA sys-
tem by solving the formulated mixed-integer non-linear pro-
gramming problem based on Karush–Kuhn–Tucker (KKT)
optimality conditions. In this work, the user clustering has
been extended to group a larger number of users but the
limitation of this clustering method is that the cluster size is
fixed to a certain number which makes the clustering rigid.
To address this issue, adaptive user clustering (AUC) based on
Brute-force search (B-FS) method has been proposed in [18]
to fully explore the channel heterogeneity and diversity to
group ‘‘effective’’ users together. The results have demon-
strated that the cluster size should not be fixed and it might
vary tremendously depending on the users’ channel condi-
tions. This work explores all combinations of user grouping
to search for the best grouping that yields the maximum
total throughput. Nonetheless, B-FS method has incurred a
very high computational cost which renders it impractical for
real-world implementation. However, the throughput perfor-
mance achieved by the B-FS method can be treated as the
theoretical upper-bound performance for any upcoming AUC
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schemes. To reduce the complexity due to B-FS, the authors
in [19] proposed a particle swarm optimization (PSO)-based
AUC which is capable to achieve a near-optimal throughput
performance at a lower complexity. But, the limitation of the
PSO-based AUC work is that it might occasionally converge
too early causing the search space trapped in a local minimum
especially when there is a large number of users in the NOMA
system.

B. MOTIVATIONS AND CONTRIBUTIONS
Based on the above discussions, amore powerful and adaptive
clustering technique that can effectively exploit the channel
heterogeneity and diversity is required to group the NOMA
users so that the total system throughput can be maximized
at an acceptable clustering complexity. Hence, obtaining a
globally optimal solution is nontrivial especially in grouping
a large number of NOMA users which motivates the appli-
cation of machine learning (ML) model. Machine learning
can be defined as the ability to infer knowledge from user
clustering and subsequently to use the knowledge to adapt the
behavior of an ML algorithm based on the acquired knowl-
edge. Recent research contributions have shown that the ML
provides an effective solution to fast data clustering since
various information features of higher dimensionality can be
used flexibly [20]. In addition, from a knowledge discovery
point of view, it is insightful to design effective algorithms by
utilizing the underlying structures of the clustering informa-
tion. Among the different types of ML algorithms, artificial
neural network (ANN) is one of the most powerful ML
algorithms that has been used in recent decades in a variety
of tasks to model regression analysis and prediction problems
due to its imitative nature. The ANN model structures in
layers of fashion that can learn and make intelligent decisions
on its own. The learning ability and non-linear statistical
behavior of ANN display a complex relationship between the
inputs and outputs which results in providing responses in the
form of predictions. As a result of learning ability, ANN can
adapt to the change in itself, and when there is a change in
the environment. More precisely, ANN is a complex adaptive
system that can change its internal structure based on the
information passing through it. Thus adaptive behavior of
ANN can be used to provide a solution for enhancing the
system performance in grouping a large number of NOMA
users by exploiting the learning features in making decisions
resulting in acceptable clustering complexity.

However, ANN largely depends on the structure of the data
set in the feature space. As a result, it is challenging to apply
ANN to learn the user clustering in NOMA systems since the
performance directly depends on the properties of selected
features. To facilitate the implementation of ANN for user
clustering, the features of transmitting power, channel gain,
and the information of cluster formation of NOMA users
are required to train the model. The data set containing the
abovementioned features are obtained by simulation using
MATLAB at different random location of NOMA users. The
goal of ANN is to learn the clustering information based

on the obtained features of the NOMA users and using the
learned information to make decisions in predicting the for-
mation of clusters that maximize the throughput performance
of the system. The act of making decisions in predicting the
cluster formation by the ANN contributes to group the user
clusters automatically which results in reducing the clustering
complexity as well. Based on the proposed design, our major
contributions are summarized as follows:

1) We investigate the optimization problem for the
throughput maximization of NOMA systems by
designing an efficient user clustering strategy. As this
optimization problem suffers from computational com-
plexity, a sub-optimal solution is needed to enable the
practical implementation of the proposed technique.

2) We propose a novel ANN-based user clustering frame-
work to implement the NOMA scheme which exploits
the transmitting power, channel gain features and user
cluster information of the NOMA users. Furthermore,
based on learning ability, ANN is used to predict
the formation of clusters leads to automatic clustering
which can highly reduce the computational complexity
and at the same time achieves near-optimal throughput
performance.

Simulation results are provided to demonstrate that the pro-
posed ANN-based user clustering framework for NOMA
systems outperforms conventional OMA schemes. Moreover,
our proposed solution is able to obtain the optimal throughput
performance compared to the B-FS method at an acceptable
clustering complexity.

C. ORGANIZATION
The remainder of this paper is organized as follows.
In Section II, the system model of a downlink NOMA 5G
system is introduced. Subsequently, a novel ANN-based user
clustering scheme is proposed in Section III. In this section,
the working principle of ANN in user clustering is metic-
ulously described and the performance metrics are clearly
defined. The performance of the proposed ANN-based user
clustering scheme is evaluated in Section IV where the com-
parison results in terms of throughput analysis, learning rates,
epoch, etc. are shown. Based on the observation obtained
from the results, conclusion is drawn in Section V.

II. SYSTEM MODEL (NOMA SYSTEM)
Consider a single-cell downlink NOMA system withM num-
ber of randomly and uniformly deployed users denoted as
{U1,U2, . . . ..,UM } communicating with a centralized BS
located at the center of the cell. In this context, B is used
to denote the overall total bandwidth of this NOMA system
and it is partitioned evenly into N number of subcarriers.
In this scenario, the BS transmits the multiplexed signal to
all the users using the power-domain NOMA technique. The
users’ distances from the BS are represented accordingly with
{d1, d2, . . . .., dM }. The channel gain of user m on subcar-
rier n is denoted by gm,n which is highly dependent on the
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distance of the user from the BS. In view of this situation,
the channel gains of user deteriorate as the distance from
the BS to the user increases. In this context, it is assumed
that the BS periodically estimates the downlink channel gains
on all subcarriers for all users through pilot signals using
dedicated and reliable feedback channels from users to the
BS without any delay. Besides, the channel variation on each
subcarrier is assumed to be relatively slow as compared to
the channel estimation rate performed by the BS. With this
assumption, the BS can accurately track the CSI for all users
on all subcarriers. Similar to the work in [16], we assume that
in all cases the perfect CSI is known to the BS.

The BS allocates downlink powers to all users based on
their channel gains where the power allocated to the user m
on subcarrier n is specified as pm,n. Correspondingly, a user
m is multiplexed on subcarrier n if and only if pm,n > 0. The
received signal of user m on subcarrier n can be expressed as,

ym,n =
√
pm,ngm,nxm +

M∑
l=1,l 6=m

√
pl,ngm,nxl + γm,n (1)

where xm and xl are modulated signals and γm,n denotes the
additive white Gaussian noise (AWGN) with zero mean and
variance of user m on subcarrier n. The term gm,n includes

the Rayleigh fading i.e., gm,n =
hm,n√
1+ dαm

, where hm,n

denotes the circularly symmetric complex Gaussian distri-
bution within the interval (0, 1), dm represents the distance
between the user m to the BS and α is the the path loss
exponent. Let us consider a NOMA system with a remote
user U1 and a neighboring user U2, where g2,n is higher than
g1,n. Based on the working principle of NOMA, a user with
a better channel condition is always allocated with a lower
transmitting power, hence p2,n < p1,n.
When more than one users are multiplexed on the same

subcarrier the users are sorted in descending order of their
channel gain to determine the position of the user m on
subcarrier n which can be denoted by bn(m). In addition,
SIC can be employed for the user m having a better channel
condition gm,n where the user is capable of decoding its own
desired information by first subtracting the signal of user
l having weaker channel condition user gl,n which follows
the sorted order bn(m) < bn(l). In contrast, the weak channel
condition user gl,n following the order bn(m) > bn(l) consid-
ers the signals of the good channel condition gm,n as noise
and decodes its own signal directly. The normalized channel

gain is represented by Gm,n =
|gm,n|2

σ 2
n

where σ 2
n denotes the

variance of AWGN . Thus, the achievable data rate of user m
on subcarrier n can be expressed as:

Rm,n = Blog2(1+
pm,nGm,n∑

l∈M{M}:bn(l)<bn(m)
pl,mGm,n + 1

). (2)

III. PROPOSED ARTIFICIAL NEURAL NETWORK (ANN)
BASED USER CLUSTERING
This section presents the proposed artificial neural net-
work (ANN) based user clustering scheme for the NOMA
systems. In our proposed method, the dataset comprises the
transmit powers, channel gains, and cluster formation for
various deployment scenarios (e.g., different number of users
and different user positions), is utilized to train the ANN.
More specifically, the training dataset is generated using the
optimal B-FS based AUC [18] so that the proposed scheme
learns to make the best decision about the optimal formation
of user clusters that can maximizes the throughput perfor-
mance in dynamic scenarios at a resonable computational
complexity. Since the training dataset takes into account of
the variations of the inputs and outputs of the ANN due to
the changes in deployment scenarios, the proposed scheme is
only required to be trained once and it will be able to cope
with dynamic scenarios without retraining.

As the formation of clusters determines the throughput
performance, the numbering of clusters plays a significant
role and it should be numbered in a manner that can be easily
learned by the network. Therefore, the clusters are numbered
based on the smallest value of channel gain that present in
each cluster so that it can form a pattern which helps the
network to learn about cluster formation. More explicitly,
the cluster which contains the user with the smallest channel
gain is labeled as one, followed by the cluster containing the
user having the second smallest channel gain is considered to
be two and so on.

A. STRUCTURE OF THE ANN BASED USER CLUSTERING
Fig.1 depicts the structure of the proposed ANN-based user
clustering, which consists of three layers: an input layer,
a hidden layer, and an output layer. The input layer is the
first layer that receives the data sample s from the entire
dataset S where s ∈ {1, 2, . . . , S} containing transmitting
powers Ps,m and channel gains Gs,m of M users where m ∈
{1, 2, . . . ,M}. The bias node of the input layer is indicated
by b1 and therefore the total number of the input layer nodes
is 2M + 1. The second layer is the hidden layer that consists
of H nodes with one bias node b2. The features of clustering
information from all the input layer nodes i ∈ {1, 2, . . . , 2M}
are connected to h node present in the hidden layer where
h ∈ {1, 2, . . . ,H}.
The output layer is the final layer and it has M number

of nodes denoted by x ∈ {1, 2, . . . ,M}, which provides
the estimated cluster formation number for each user. The
weights which connect input layer nodes to the hidden layer
nodes and the weights which connect the hidden layer nodes
to the output layer are denoted as wih and whx , respectively.
More specifically, the weights help in deciding how much
influence the input features will have on the cluster formation.
On the other hand, bias value is a constant parameter that
helps the model in a way that it can best fit for a given
dataset.
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FIGURE 1. The structure of ANN based user clustering scheme for NOMA
system.

The input features received by the input nodes are mul-
tiplied with the weights of the links, added with the bias
value, and passed to an activation function as they move
along from the input layer to the hidden layer and from
the hidden layer to the output layer. The activation function
processed by the hidden layer and output layer are rectified
linear unit (ReLu) denoted as ϕh and linear activation function
denoted as ϕx , respectively. The ReLu function is linear for
values greater than zero. Yet, it is a nonlinear function as
negative values are always output as zero. As the function
is linear for half of the input domain and nonlinear for the
other half it is referred to as a piecewise linear function.
Therefore, for positive input values, the function results in
output of the input directly which leads to activation of the
node. For negative input values, the output is zero that means
the nodes are not activated. Thus, the relationship between
the input features and the cluster information is preserved
using the linear nature of ReLu that makes the model easier
to optimize with gradient-based methods. Hence ReLu is
computationally efficient and helps the model in generalizing
well to achieve better cluster formation for any number of
users. The linear activation function is used in the output layer
as it allows multiple outputs proportional to the input. Due to
its attractive nature of simplicity, it is used in the output layer
that helps in obtaining the cluster formation of NOMA users.

Algorithm 1 summarizes the training phase of the proposed
ANN-based user clustering scheme. During the training
phase feed-forward computation and backward propagation
for weight adjustment will be performed. The process of

Algorithm 1 Training Algorithm for ANN Based User Clus-
tering Scheme
Input: {Gs,1,Gs,2,Gs,3, . . . ,Gs,M } and
{Ps,1,Ps,2,Ps,3, . . . ,Ps,M } represent the channel gain
information and transmitting power of NOMA users
respectively.
Output:ANN model
1) Initialize the weights (w((2i−1),h),w(2i,h)) and whx).
2) The input from training data samples is formatted

as {(Gs,1,Ps,1,Gs,2,Ps,2, . . .Gs,M ,Ps,M ), (z1, z2, z3,
. . . , zM )}.

3) Initialize the learning rate α.
4) Feed the reshape(Gs,1,Ps,1,Gs,2,Ps,2, . . . ,Gs,M ,

Ps,M ) features into the nodes of input layer.
5) for d = 1 : zM .
6) Compute vh and yh of hidden layer.
7) Compute vx and ẑM of output layer.
8) Compute SE of output layer.
9) Compute the derivative error e′x of output layer.
10) Compute the derivative error e′h of hidden layer.
11) Adjust the weights for hidden layer and output layer

weights using w((2i−1),h)_A, w(2i,h)_A and whx_A.
12) end for.
13) Repeat steps 4 to 12 for all training data.
14) Compute MSE and repeat steps 4 to 12 until the MSE

reaches an acceptable level.
15) Repeat steps 4 to 7 for all validation data.
16) Compute the MSE for validation data samples.

Algorithm 2 Testing Algorithm for ANN Based User Clus-
tering Scheme
Input: {Gs,1,Gs,2,Gs,3, . . . ,Gs,M } and
{Ps,1,Ps,2,Ps,3, . . . ,Ps,M } represent the channel gains
and transmitting powers of NOMA users from testing data
samples, respectively.
Output: Cluster formation of users.
1) Feed the reshape testing data samples containing the

input features of NOMA users into the ANN model.
2) Process the ANN model by repeating the steps 4 to

7 of Algorithm 1 for all testing data samples.
3) ComputeMSE for all the samples based on the cluster

formation obtained.
4) Compute the throughput using (2) based on the clus-

ter formation for users obtained.

feed-forward computation and backward propagation are
detailed in Sections III(B) and III(C), respectively. Once the
ANN is trained, testing will be executed as described in
Algorithm 2.

B. FEED-FORWARD COMPUTATION
This subsection presents the feed-forward computation for
ANN based user clustering. The input of the hidden layer
node vh and the output of the hidden layer node yh can be
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expressed as

vh =
M∑
i=1

((Gs,i ∗ w(2i−1),h)+ (Ps,i ∗ w2i,h))+ b1. (3)

and

yh = ϕh(vh). (4)

respectively. As ReLu is used as the activation function in the
hidden layer it deactivates the nodes if the output of the linear
transformation is less than zero. Hence, all the nodes are not
activated at the same time, and the ouput can be rewritten as,

yh = max{0, vh}. (5)

For the sake of clarity, (5) can be further rewritten as follows:

yh =

{
0, if vh ≤ 0
vh, if vh > 0.

(6)

The input and output of the output layer node are denoted by
vx and zx , respectively, which can be expressed as

vx = (
H∑
h=1

yhwhx)+ b2. (7)

zx = ϕx(vx). (8)

The predicted cluster formation is then compared with the
desired cluster formation to compute the squared error (SE).
The SE computed based on the predicted cluster formation ẑx
and the actual cluster formation zx can be expressed as,

SE =
M∑
x=1

(zx − ẑx)2. (9)

The SE can be minimized by back-propagation mechanism,
which will be explained in the following subsection.

C. BACK-PROPAGATION AND WEIGHT ADJUSTMENT
The objective of back-propagation mechanism is to minimize
the SE. Firstly, generalized delta rule is applied to get the
value of updating the weights to be used for the output and
hidden layer which are denoted by δx and δh and can be
expressed as,

δx = ϕ
′
x(vx)e

′
x . (10)

δh = ϕ
′
h(vh)e

′
h. (11)

where ϕ′x and ϕ
′
h denote the derivative of the linear activation

and ReLu function upon vx and vh, respectively. On the
other hand, e′x and e

′
h represent the derivative of the SE and∑

x
(δx ∗ whx) respectively. Next, δx and δh are multiplied by

the learning rate α to determine how much weight is changed
every time and its value ranges between 0 and 1. If the value of
α is too high, the output wanders around the expected solution
and if the value of α is too low, the output fails to converge
to an acceptable solution. Therefore, the value of α should
be carefully chosen. The weights updates for the output and

hidden layer are expressed as (α∗δx ∗yh) and (α∗δh∗(Gs,m)),
(α ∗ δh ∗ (Ps,m)).
Once the weights updates are calculated, the next task

is to adjust the weights in hidden and output layer. The
adjustments of weights performed using stochastic gradi-
ent descent (SGD) for the hidden layer and output layer
are denoted by w((2i−1),h)_A, w(2i,h)_A and whx_A and can be
expressed as,

w((2i−1),h)_A = w((2i−1),h) + (α ∗ δh ∗ (Gs,m)). (12)

w(2i,h)_A = w(2i,h) + (α ∗ δh ∗ (Ps,m)). (13)

whx_A = whx + (α ∗ δx ∗ yh). (14)

As SGD is an iterative mechanism, it adjusts the weight
by constantly updating it to minimize the SE calculated for
each training data. The number of times that the learning
algorithm work through the entire data set is measured by the
hyper-parameter of SGD, namely the epoch. The accuracy of
the model is assessed after training, by using the validation
dataset. The samples of validation data provide an unbiased
evaluation of a model that fit on the training data set while
tuning model’s hyper-parameters. The accuracy of the model
is measured using mean square error (MSE), which can be
expressed as,

MSE =
1
S

S∑
x=1

(zx − ẑx)2. (15)

If the MSE is high, then the training data needs to undergo
more than one epoch until MSE reaches an acceptable level.
After the network completes the training and validation,
the model can be tested using testing dataset.

The performance of ANN can be quantified in terms of
accuracy as follows:

Accuracy =
Number of correctly predicted samples

Total number of samples
.

(16)

Since the underlying architecture of the proposed tech-
nique is ANN, the computational complexity of the proposed
scheme is similar to that of the ANN and it can be expressed
as O(Klog2(K )), where K denotes the total number of nodes
present in the network [21]. Unlike the B-FS method [18]
which requires prohibitively high complexity to attain opti-
mality, the proposed scheme is a pragmatic user clustering
solution for 5G NOMA systems due to its low computational
cost.

IV. NUMERICAL RESULTS AND DISCUSSIONS
In this section, we evaluate the throughput performance of the
proposed ANN-based user clustering scheme via MATLAB
simulation. More specifically, the throughput and the MSE
performance of the proposed scheme for different settings
of learning rate, lengths of the training samples, and num-
ber of epochs are investigated. The throughput performance
is utilized to demonstrate the effectiveness of the proposed
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user clustering scheme as compared to various existing tech-
niques. Besides that, the MSE performance metric is chosen
because this metric is a commonly used parameter for ANN
model to find the most efficient learning rate and optimal
number of epochs at different validation and training errors.
We also intend to analyze the performance of the proposed
scheme for different network sizes (different number of users)
to investigate the scalability of the proposed scheme. The
throughput performance of the proposed technique is bench-
marked with the conventional OMA scheme, B-FS based
clustering [18], RP-NOMA [15] andD-NLUPA-NOMA [15].

The simulation setup for the proposed scheme is presented
in Table 1.

TABLE 1. Simulation setting.

FIGURE 2. Throughput analysis of different length of training samples (L)
and different number of users.

Fig. 2 shows the throughput performance of the proposed
scheme for different lengths of training samples and different
number of users. In general, the throughput performance
improves with increasing number of users as the subcarri-
ers are shared among the users present in the same cluster.
Besides that, it can be seen that the case for 8400 training
data samples attains higher throughput as compared to those
of 7200 and 6000 of training data samples. This is due to
the fact that the number of training samples less than 8400 is
insufficient to train the proposed model. For instance, com-
pared to the case of 12 users with 8000 training samples,

the throughput performances of 7200 and 6000 training sam-
ples for the same number of users are found to degrade by
around 16% and 30%, respectively.

FIGURE 3. Effects of the length of training samples on the throughput
performance and the number of epochs required.

In Fig. 3, the effects of the length of training samples
on the throughput performance and the number of epochs
required are analysed. The number of epochs required for
the model to predict the cluster formation decreases with
increasing number of training samples. On the contrary, it is
observed that throughput performance increases with increas-
ing number of training samples. For example, the model
trained with 6000 samples requires more number of epochs,
i.e., 30 epochs, to make the error function small which results
in predicting the correct formation of user clusters. More
number of epochs indicates that themodel needs a longer time
to learn about the cluster formation of users.

In Fig. 4, the throughput performance is analysed in terms
of the number of epochs with respect to different length
of training samples. For the case of 6000 training samples,
the model needs to undergo 30 epochs to reduce the error
between the exact and predicted cluster formation of users so
that an acceptable throughput performance could be attained.
As a result, the model requires more time to learn about the
cluster formation for different number of users. It is also
observed that the throughput performance for 6000 training
samples with 30 epochs outperforms those of the other setting
of epochs considered. This is because increase in the number
of epochs reduces the error and this leads to better throughput
performance. On the other hand, for the case of 7200 train-
ing samples, the best throughput performance is attained by
25 epochs. This is due to the fact that increase in the length of
training samples could improve the learning capability of the
model which results in error reduction. However, when the
number of epochs for 7200 training samples is increased to
30, the throughput performance degrades due to over-fitting
of the model. For the same reasons, the model trained with
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FIGURE 4. Throughput performance at different number of epochs.

8400 samples requires less number of epochs compared to
the cases of 6000 and 7200 training samples, i.e., 19 epochs
only, to attain the best throughput performance.

Figs. 5 and 6 illustrate the impact of the learning rate and
the number of users on the throughput and MSE performance
for 1 and 19 epochs, respectively. As expected, the throughput
performance for different number of users increases as the
learning rate reduces. On the other hand, the MSE reduces
with a smaller number of learning rates. At learning rate
of 0.1, the model finds it difficult to control the speed of
learning which leads to the occurrence of larger error and
throughput degradation. On the other hand, at smaller learn-
ing rates, the model finds it easier to control the speed
of learning and it also improves the prediction of cluster
formation which results in better throughput performance.

FIGURE 5. MSE and throughput performance of ANN at different learning
rate for 1 epoch.

To enhance the accuracy of the prediction, the model needs
to be sufficiently trained so that the error function can be
minimized. This can be achieved by increasing the number
of epochs to 19 as shown in Fig. 6. From the Fig. 6, it is
apparent that the model can attain better MSE and throughput
performance at a learning rate of 0.001.

FIGURE 6. MSE and throughput performance of ANN at different learning
rate for 19 epochs.

Fig. 7 provides an insight into the effects of the number
of epochs on the MSE of training and validation samples at
different learning rates. As expected, theMSE for the learning
rate of 0.001 is smaller than that of the 0.1. It is noteworthy
that the training and validation errors reduce with an increas-
ing number of epochs till 19 epochs. When the number of
epochs is further increased beyond 19 epochs, the valida-
tion error increases due to over-fitting of the model. Hence,

FIGURE 7. Effects of learning rate on the MSE of training and validation
samples at different number of epochs.

179314 VOLUME 8, 2020



S. P. Kumaresan et al.: Efficient User Clustering Using a Low-Complexity ANN

FIGURE 8. Throughput performance of ANN at a learning rate of 0.001 at
1 epoch with respect to the different number of users.

the optimal number of epochs for the case of 8400 training
samples with 1800 samples for validation and 1800 samples
for testing is found to be 19. It is also observed that at
19 epochs, the training error is close to the validation error
thereby this makes the model a good fit for predicting the
cluster formation which in turn results in the near-optimal
throughput performance.

In Fig. 8, the throughput performance of ANN for different
number of users is compared with those of the existing B-FS
based clustering, RP, and D-NLUPA in NOMA and OMA
systems. The proposed ANN model is trained and validated
using 1 epoch with 8400 training samples and 1800 validation
samples, respectively. During the testing stage, new data sam-
ples for different users are fed into the trainedmodel to predict
the cluster formation at the learning rate of 0.001. Based on
the cluster formation predicted, the throughput is computed

FIGURE 9. Throughput performance of ANN at a learning rate of 0.001 for
19 epochs with respect to the different number of users.

and compared in Fig. 8. From the figure, it is evident that the
throughput performance of ANN significantly outperforms
the RP, D-NLUPA, and OMA but it is much inferior com-
pared to the B-FS method.

Fig. 9 shows the throughput performance of ANN at
19 epochs.More specifically, the training samples are fed into
the model 19 times to reduce the error between the actual and
predicted cluster formation. Learning rate of 0.001 is adopted
to enable the model to attain the near-optimal throughput
performance as compared to B-FS. As shown in the Fig. 9,
the proposed ANN-based user clustering scheme is capable
to achieve near-optimal throughput performance if the ANN
model is well trained.

V. CONCLUSION
In this paper, we propose an effective ANN-based user clus-
tering NOMA system for different number of users, which is
trained with channel gain and transmitting power of NOMA
users to learn about the cluster formation among the users that
maximize the throughput performance. Unlike the existing
approaches, the proposed scheme automatically groups the
users into clusters based on the decision obtained during the
training process which results in near-optimal throughput per-
formance. The throughput and MSE performance of the pro-
posed scheme is investigated and the effects of various param-
eters such as learning rates, number of epochs, and number of
users are examined. Numerical results show that the proposed
scheme significantly improves the throughput performance of
the OMA and it only exhibits slight throughput degradation
as compared to the optimal B-FS while attaining a lower
computational complexity. This work has demonstrated that
the proposed ANN model is a viable technique to tackle the
NOMA user clustering problem in 5G networks. For future
work, it is worthy to consider the proposed ANN scheme in
clustering NOMA users in 5G systems employing a multiple-
input-multiple-output (MIMO) antenna as MIMO is one of
the key enabling technologies for 5G systems.
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