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ABSTRACT Detecting subsystem faults quickly is critical to the accuracy and reliability of integrated
navigation systems. This paper, therefore, proposes an effective approach based on the novel test statistic
to detect faults. Machine learning is introduced to estimate the innovation and its variance of local filter.
The estimates combined with the actual ones are used to construct the test statistic, which is then proved to
obey chi-square distribution. Thus fault detection can be realized by chi-square test. However, the special
structure of the test statistic makes it sensitive to faults, even to the gradual faults. The experimental results
demonstrate that the approach can detect faults quickly. Especially for gradual fault detection, the proposed
test statistic has a marked superiority compared with the traditional test statistic of residual chi-square test.

INDEX TERMS Fault detection, integrated navigation system, test statistic, chi-square test, Kalman filter.

I. INTRODUCTION
Navigation systems, which provide position, velocity and
attitude information, are widely used in various vehicles.
As single navigation system or sensor has relatively poor
reliability and accuracy, integrated navigation systems are
widely applied in vehicles with a high demand of reliabil-
ity, such as autonomous underwater vehicles, aircrafts and
rockets [1]–[7]. Each subsystem of the integrated naviga-
tion system provides its measurements to the information
fusion center. If one of the subsystems has a failure, incorrect
measurements will contaminate the whole navigation sys-
tem by information fusion and feedback [8], [9]. In some
severe cases, false navigation information may cause the loss
of vehicle, even property damages and human casualties.
Therefore, it is the effective and fast fault detection that
plays a pivotal role in the reliability and safety of integrated
navigation systems.

Existing fault detection methods can be classified into two
broad categories: non model-based and model-based. Non
model-based fault detection methods depend on knowledge
or observed data. Knowledge based methods are intelligent,
which rely on expertise or training results. Bu et al. [10]
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combined particle filter estimated state residuals with fuzzy
inference system (FIS) decision system to detect anomaly of
the navigation sensor. However, the fixed rules in FIS restrict
the detection capability for unknown faults. To improve on
this, neural network [11], [12], support vector machine [13]
and other machine learning tools are applied to train the
model of fault detection. Data-based methods, which are
essentially data-driven, analyze the observed data directly by
using wavelet transform [14], [15], auto regressive moving
average [16] and so on. In this way, characteristic values such
as amplitude, frequency and variance of measurement signals
are extracted to detect faults.

Model-basedmethods, amongwhich chi-square is themost
famous [17], [18], depend on the analytical model of system.
This kind of fault detection methods for integrated navigation
systems are usually designed on the basis of Kalman filter
(KF). Residual chi-square test [19] constructs the statistic
of filtering residuals and then compares them with proba-
bility statistical distributions. The performance of the detec-
tion mostly rests with the residuary sensitivity relative to
faults. But in early occurrence phase of gradual failures,
residual chi-square test uses corrupted measurements for
fault detection, leading to an insensitivity to gradual faults.
Thereby some improved methods [20]–[24] are proposed.
The chi-square test with two state propagators [20], [21]
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FIGURE 1. The structure of fault-tolerant integrated navigation system.

is designed for quick fault detection. The two state prop-
agators which are alternately reset by filtering results take
turns as the reference system for fault detection. From a
distinct perspective, some researchers aim to construct com-
pletely new detection test statistics [22]–[24]. Joerger and
Pervan [22] built the KF-based test statistic by adding the
current-time residual contribution to a previously computed
weighted norm of past-time residuals. In [23], the normalized
residual and the sum of absolute residual are adopted as the
determinants of fault detection. These studies explore faster
and more efficient fault detection algorithms.

In this paper, a fast fault detection approach is proposed
to enhance the fault-tolerance and reliability of integrated
navigation systems. The approach is realized by establishing
a sensitive test statistic which obeys chi-square distribution.
The proposed approach is beneficial because of the following
aspects:

1) It can quickly detect subsystem faults for integrated
navigation systems, even gradual faults which are dif-
ficult to be detected by general approaches.

2) It can be realized by the means of any machine learning
algorithms, allowing users to choose freely their own
familiar algorithms.

3) It does not require the expertise of fault model, so that
unknown faults can be dealt with.

This approach aims to increase the sensitivity of test statis-
tics to faults. Specifically, the approach applies machine
learning algorithms into the estimation of the filter innovation
online. The estimates and the actual ones are used to construct
the test statistic. The differential structure of the test statistic
makes its value with a sharp increase when there occurs a
fault, although the amplitude of the fault is relatively small.
Therefore, this approach provides an alternative test statistic
for fault detection in integrated navigation systems.

The rest of this article is organized as follows. Section II
describes the fault-tolerant navigation system. Section III
presents the fast fault detection approach and its implementa-
tion in integrated navigation systems. Section IV gives field
experiments along with specific analyses to evaluate the pro-
posed approach. Finally, Section V concludes the study.

II. FAULT-TOLERANT NAVIGATION SYSTEM
The fault-tolerant structure of integrated navigation system
is presented in Fig. 1. In order to enhance the fault-tolerant
capacity of system, non-feedback federal filter [25] is adopted

to realize information fusion in integrated navigation sys-
tems. Strapdown inertial navigation system (SINS) composed
by inertial measurement unit (IMU) and a computer is usu-
ally functioned as a reference system because of its auton-
omy and independence. IMU consists of gyroscopes and
accelerometers. SINS continually provides position, velocity
and attitude information of vehicles, without needing external
signals. Subsystems of integrated navigation systems, which
can be the odometer, magnetic compass, global position sys-
tem (GPS), terrain-aided navigation system, Doppler veloc-
ity sonar and so on, offer different navigation information.
The measurement differences between reference system and
subsystems are passed to local filters as input information.
In this paper, local filter is realized by conventional KF.
Fault detection module is set for each local filter branch.
On account of its high reliability, reference system is nor-
mally assumed to be fault-free. Therefore, fault detection
result of local filter n indicates whether subsystem n fails or
not. If a fault is detected, the fault filter branch will be cut off
to avoid cross-contamination. Consequently, accurate state
estimates of local filters are delivered to master filter. Then
global state estimate, which is output by information fusion
of local state estimates, is delivered to correct the errors of
reference system.

The integrated navigation system is described at discrete
time k by a process equation and a measurement equation.

Xk = 8k,k−1Xk−1 + wk (1)

Zk = HkXk + vk (2)

where Xk is the state vector at time k . 8k,k−1 is the state
transition matrix from time k-1 to k . wk is the process noise
vector. Zk is the measurement vector at time k . Hk is the
measurement matrix. vk is the measurement noise vector.
wk and vk are assumed to be a zero mean white noise
sequence with covariance Qk and Rk , respectively. Taking
SINS/GPS/Odometer integrated navigation system as exam-
ple, the position measurement differences between GPS and
SINS serve as the measurement information of local filter 1.
The velocity measurement differences between odometer and
SINS serve as the measurement information of local filter 2.

Set East-North-Up geographic coordinate as the navigation
frame, Right-Front-Up frame as the body frame. The state
vector Xk of the integrated navigation system is defined by
fifteen error variables, detailed as

Xk = [φe φn φu δVeδVn δVu δL δλ δh εx εy εz ∇x ∇y ∇z]T

(3)

where φe, φn, φu are attitude errors. δVe, δVn, δVu are velocity
errors. δL, δλ, δh are position errors. εx , εy, εz are gyroscope
drifts. ∇x , ∇y, ∇z are accelerometer biases.

III. FAULT DETECTION APPROACH
This section introduced the proposed approach in detail,
including specific implementations and relevant proofs.
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A. TEST STATISTIC FOR FAULT DETECTION
The innovations of local filters are closely related to the
measurements of the corresponding navigation subsystems.
Therefore, the innovations are treated as the significant vari-
ables for fault detection. Here a new variable ηk is defined,
named as double innovation

ηk = rk − r̂k (4)

where rk is the innovation of local filter. r̂k is an unbiased
estimate of rk . ηk will be proved to be a Gaussian white noise
with zero mean when the system is fault-free.

In this paper local filters are implemented byKF algorithm.
The innovation of local filter is expressed as

rk = Zk − Ẑk,k−1
= Hk (Xk − X̂k,k−1)+ vk (5)

where X̂k,k−1 = 8k,k−1X̂k−1 is an unbiased estimate of Xk .
Then the expectation of innovation is

E(rk ) = E{Hk (Xk − X̂k,k−1)+ vk}

= HkE(Xk − X̂k,k−1)+ E(vk ) = 0 (6)

The correlation matrix of innovation is

E(rkrTk−i)

= E{(Hk X̃k,k−1 + vk ) · (Hk−iX̃k−i,k−i−1 + vk−i)T }

= HkE(X̃k,k−1X̃Tk−i,k−i−1)H
T
k−i + HkE(X̃k,k−1v

T
k−i)

+E(vk X̃Tk−i,k−i−1)H
T
k−i + E(vkv

T
k−i)

= HkE(X̃k,k−1X̃Tk−i,k−i−1)H
T
k−i + HkE(X̃k,k−1v

T
k−i) (7)

where i 6= 0.
The one step prediction error of KF is

X̃k,k−1 = Xk − X̂k,k−1
= 8k,k−1Xk−1 + wk−1 −8k,k−1X̂k−1
= 8k,k−1(Xk−1 − X̂k−1)+ wk−1 (8)

The state estimate of KF is

X̂k = X̂k,k−1 + Kk (Zk − Hk X̂k,k−1) (9)

where Kk is the gain matrix of KF. Then

Xk − X̂k = Xk − X̂k,k−1 − Kk (Zk − Hk X̂k,k−1)

= X̃k,k−1 − Kk (HkXk + vk − Hk X̂k,k−1)

= (I − KkHk )X̃k,k−1 − Kkvk (10)

Substituting the recursion formula of Eq. (10) into Eq. (8)
yields

X̃k,k−1 = 8k,k−1(I − Kk−1Hk−1)X̃k−1,k−2
−8k,k−1Kk−1vk−1 + wk−1 (11)

Backstep

X̃k−1,k−2 = 8k−1,k−2(I − Kk−2Hk−2)X̃k−2,k−3
−8k−1,k−2Kk−2vk−2 + wk−2 (12)

According to the above reasoning, a recurrence formula can
be obtained

X̃k−i+1,k−i = 8k−i+1,k−i(I − Kk−iHk−i)X̃k−i,k−i−1
−8k−i+1,k−iKk−ivk−i + wk−i (13)

Substituting the recurrence formulas into Eq. (11), the one
step prediction error X̃k,k−1 can be expressed by X̃k−i,k−i−1,
vk−i and wk−i

X̃k,k−1

= [
i∏

j=1

8k−j+1,k−j(I − Kk−jHk−j)]X̃k−i,k−i−1

−

i∑
j=1

[
j−1∏
l=1

8k−l+1,k−l(I−Kk−lHk−l)]8k−j+1,k−jKk−jvk−j

+

i∑
j=1

[
j−1∏
l=1

8k−l+1,k−l(I − Kk−lHk−l)]wk−j (14)

vk−j andwk−j (j = 1,2, . . . i) are uncorrelated with X̃Tk−i,k−i−1.
The expectations of wk and vk are zero. Multiply Eq. (14) by
X̃Tk−i,k−i−1, and then calculate the expectation

E(X̃k,k−1X̃Tk−i,k−i−1)

= [
i∏

j=1

8k−j+1,k−j(I − Kk−jHk−j)]Pk−i,k−i−1 (15)

where Pk−i,k−i−1 is the covariance matrix of X̃k−i,k−i−1.
Multiplying Eq. (14) by vTk−i yields

E(X̃k,k−1vTk−i)

= −[
i−1∏
j=1

8k−j+1,k−j(I − Kk−jHk−j)]8k−i+1,k−iKk−iRk−i

(16)

Substituting Eq. (15) and Eq. (16) into Eq. (7) yields

E(rkrTk−i)

= Hk [
i∏

j=1

8k−j+1,k−j(I − Kk−jHk−j)]Pk−i,k−i−1HT
k−i

−Hk [
i−1∏
j=1

8k−j+1,k−j(I−Kk−jHk−j)]8k−i+1,k−iKk−iRk−i

= Hk [
i−1∏
j=1

8k−j+1,k−j(I−Kk−jHk−j)][8k−i+1,k−i(I

−Kk−iHk−i)]Pk−i,k−i−1HT
k−i

−Hk [
i−1∏
j=1

8k−j+1,k−j(I−Kk−jHk−j)]8k−i+1,k−iKk−iRk−i

= Hk [
i−1∏
j=1

8k−j+1,k−j(I − Kk−jHk−j)]8k−i+1,k−i

·[Pk−i,k−i−1HT
k−i − Kk−i(Hk−iPk−i,k−i−1H

T
k−i + Rk−i)]

(17)
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The gain matrix of KF is

Kk = Pk,k−1HT
k [HkPk,k−1H

T
k + Rk ]

−1 (18)

Then

Kk−i = Pk−i,k−i−1HT
k−i[Hk−iPk−i,k−i−1H

T
k−i + Rk−i]

−1

(19)

Assume the measurement matrix is constant, that is
Hk = Hk−i. Substituting Eq. (19) into Eq. (17) yields

E(rkrTk−i) = 0 (20)

If i = 0, the variance of innovation D(rk ) can be gained
based on rk = Hk X̃k,k−1 + vk .

D(rk ) = E(rkrTk )

= HkE(X̃k,k−1X̃Tk,k−1)H
T
k + E(vkv

T
k )

= HkPk,k−1HT
k + Rk (21)

where Pk,k−1 is the covariance matrix of X̃k,k−1.
According to Eq. (20) and Eq. (21), the innovation rk is an

orthogonal white noise sequence. The relationships between
the innovation rk and the random variables vk , X̃k,k−1 are
linear. Therefore, the distribution of innovation is the same
as the random variables, which obeys Gaussian distribution.
Hence the innovation rk is a Gaussian white noise sequence
with zero mean while the system has no faults.

As r̂k is the unbiased estimate of rk , the expectation of ηk
is

E(ηk ) = E(rk − r̂k ) = 0 (22)

The correlation matrix of ηk is

E(ηkηTk−i) = E{(rk − r̂k )(rk−i − r̂k−i)T }

= E(rkrTk−i)+ E(r̂k r̂
T
k−i)− E(rk r̂

T
k−i)

−E(r̂krTk−i) (23)

where i 6= 0. While the system works well, E(rk ) = 0 and
E(r̂k ) = 0. rk and r̂k are independent with each other, then

E(rk r̂Tk−i) = E(rk )E(r̂Tk−i) = 0 (24)

E(r̂krTk−i) = E(r̂k )E(rTk−i) = 0 (25)

Based on Ep. (20) and the definition of r̂k ,

E(r̂k r̂Tk−i) = 0 (26)

Substituting Ep. (20), Ep. (24), Ep. (25) and Ep. (26) into
Ep. (23) yields

E(ηkηTk−i) = 0 (27)

If i = 0, the variance of double innovation D(ηk ) is

D(ηk ) = E(ηkηTk ) = E(rkrTk )+ E(r̂k r̂
T
k )

= D(rk )+ D(r̂k ) (28)

According to Eq. (27) and Eq. (28), the double innova-
tion ηk is an orthogonal white noise sequence. As a linear
combination of innovation rk and its unbiased estimate r̂k ,

ηk is a Gaussian white noise sequence with zero mean when
the system works well. If there is a fault in the system, the
innovation rk will be modified wrongly by the KF gain matrix
which is contaminated by the false measurements. At this
moment, rk and ηk are not white noise process. The mean
of ηk is no longer zero. Hence, make binary hypothesis about
ηk as

H0 = Fault-free E(ηk ) = 0, E(ηkηTk ) = D(ηk )

H1 = Fault E(ηk ) = θ, E[(ηk − θ )(ηk − θ )T ] = D(ηk )

The conditional probability density functions of ηk are
expressed as

P(ηk/H0) =
1

√
2π |D(ηk )|1/2

e−
1
2 η

T
k
D−1(ηk )ηk (29)

P(ηk/H1) =
1

√
2π |D(ηk )|1/2

e−
1
2 (ηk−θ )

TD−1(ηk )(ηk−θ ) (30)

The log likelihood rate of P(ηk/H0) and P(ηk/H1) can be
calculated as

3k = ln
P(ηk/H1)
P(ηk/H0)

=
1
2
[ηTk D

−1(ηk )ηk

−(ηk − θ )TD−1(ηk )(ηk − θ )] (31)

3k reaches its maximum when equals ηk . Make use of the
maximum 3k to construct the test statistic. Thus the test
statistic for fault detection in integrated navigation systems
can be defined as

λk = η
T
k · D

−1(ηk ) · ηk
= (rk − r̂k )T · [D(rk )+ D(r̂k )]−1 · (rk − r̂k ) (32)

As ηk is a random variable in Gaussian distribution, λk
obeys chi-square distribution, noted as λk ∼ χ2(m). m is the
dimension of Zk . When there is a fault, the test statistic λk
increases. The decision rule can be expressed by{

λk > TD Fault
λk ≤ TD Nofault

(33)

where TD is the threshold. If the threshold value is too large,
the probability of missed detection will increase. On the
contrary, if the threshold value is too small, the probability
of false alarm will increase. Therefore, the probability of
false alarm and the probability of missed detection must
be measured simultaneously when determining the detection
threshold.

In other words, the fault detection is still realized by chi-
square test. Nevertheless, the special structure of the test
statistic λk makes it sensitive to faults, owing to the different
disposal of innovations.

B. IMPLEMENTATION IN NAVIGATION SYSTEMS
Test statistic is constructed by double innovation ηk shown
in Eq. (4). The unbiased estimates of innovation r̂k can be
obtained by machine learning [26]–[29], such as Gaussian
process regression (GPR) [30], support vector regression
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FIGURE 2. The test statistic for fault detection in navigation systems.

FIGURE 3. Experimental setup.

(SVR), neural network (NN) and so on. Users can freely
choose their familiar way of algorithm to realize the fast fault
detection. The construction of the test statistic in integrated
navigation systems is shown in Fig. 2.

As the innovations are associated with the measurements,
machine learning is introduced to establish the relationship
between them. The model is trained with sample data, in par-
ticular: measurements and their corresponding innovations.
It is worth mentioning that the training samples are collected
from the fault-free navigation system. Taking the real-time
measurements as inputs, the trained model gives the unbiased
estimate of innovation along with its variance. The predicted
innovations and the actual ones of local filters are adopted to
construct the test statistic for the fast fault detection.

IV. EXPERMENTS AND RESULTS
The proposed fault detection approach is applied to
SINS/GPS/odometer integrated navigation system. The
experimental setup is shown in Fig. 3. The reference nav-
igation trajectory is provided by the system consisted of a
navigation-grade IMU and a GPS receiver. The reference
navigation result is used to validate the proposed approach
and to examine the system performance during the period of
the subsystem faults which are intentionally introduced. The
test navigation system for evaluating the proposed approach
is composed of a low-cost IMU, an odometer and a GPS
receiver. Specifically, gyroscope bias error is 0.03◦/h, gyro-
scope random walk error 0.005◦/

√
h, accelerometer bias

error 0.2mg, accelerometer random walk error 50µg/
√
Hz,

GPS receiver position precision 10m and odometer measured
velocity precision 0.01m/s.

TABLE 1. Designed faults.

FIGURE 4. Trajectories.

To verify the proposed fast fault detection approach
towards abrupt faults as well as gradual faults, fault informa-
tion is set artificially by adding abrupt and gradual variables
into the measurements of GPS. The fault information is only
added to GPS outcomes of the test navigation system. The
reference navigation system maintains fault-free. Artificial
fault information for GPS is set up as Table 1.

As is described in Section III, the novel test statistic is
the key to the proposed fault detection approach. In the
experiments, the unbiased estimates of innovation used to
construct the test statistic are provided by the trained GPR
model. To compare with the proposed approach, traditional
test statistic as is described in Eq. (34) is also applied to the
navigation experiments.

tk = rTk · D
−1(rk ) · rk (34)

where rk is the innovation of local filter. D(rk ) is the variance
of innovation rk . Fault-tolerant processing of the experimen-
tal system is performed as is described in Section II. Once a
fault is detected, the incorrect local filtering information will
be no longer transferred to the master filter, which realizes
fault isolation.

The field experiments with a total test time of 15 minutes
are carried out in Beijing. The navigation trajectories of
different treatments are shown in Fig. 4. The test vehicle
drives from point A to point B. During the period of fail-
ures (whether abrupt fault or gradual fault), the navigation
trajectory of the system with no fault tolerance obviously
deviates from the reference trajectory, which is caused by
use of the wrong GPS measurements to information fusion.
The other two approaches have no distinct deviation of trajec-
tory during the occurrence of abrupt fault, which shows the
effectiveness of the proposed and traditional test statistics to
abrupt fault. During the occurrence of gradual fault, clearer
trajectories can be seen in the partial enlargement of Fig.4.
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FIGURE 5. Test statistics.

The navigation trajectory of the system using the proposed
test statistic is almost consistent with the reference trajectory.
The system utilizing the traditional test statistic has less posi-
tional error compared with the system of no fault tolerance.
Nevertheless, its performance is worse than the system using
the proposed test statistic. To further reveal the reason of
this phenomenon, the test statistics are concretely shown
in Fig. 5.

During the fault-free period, the values of the traditional
test statistic and the proposed test statistic are in the order
of 102 ∼103 and 10−8 ∼10−6 respectively. While fault
occurs, the values increase to 104 and 103 respectively. There-
fore, compared with the traditional test statistic, the proposed
test statistic has a more significant increase during the fault
period. This mutation is beneficial to fault detection. When
the abrupt fault happens, the two test statistics all instantly
increase at 250th second. Thus the abrupt fault can be detected
timely. The navigation trajectories of the system taking the
two test statistics all almost have no deviation from the ref-
erence trajectory during 250th ∼270th second as is shown in
Fig. 4.

Different from the abrupt fault, test statistics are relatively
small at the initial period of gradual fault, which is due
to the small fault amplitude at that time. The test statistics
increase with the increase of the fault amplitude. Once the
test statistic is larger than the threshold, the fault will be
detected. Contrast Fig. 5(a) and Fig. 5(b), the proposed test
statistic increases more rapidly than the traditional test statis-
tic starting at 600th second. Therefore, the system with the
proposed test statistic can do the fault-tolerant processing

TABLE 2. Detection results.

FIGURE 6. Position errors.

FIGURE 7. Velocity errors.

more timely. Taking both false alarm rate and omission rate
into account, the fault detection thresholds of the system with
traditional and proposed test statistics are assigned the value
of 3500 and 1 respectively. In this case, the system with two
different test statistics detects the gradual fault at 641th and
605th second respectively. The detection delay time of the
system using proposed test statistic is significantly less than
that of the traditional test statistic. The superiority of the pro-
posed test statistic depends on the huge difference between its
values during the fault-free and fault period. The difference
is attributed to the special construction of the proposed test
statistic.

The detailed comparison of detection results is shown in
Table 2. The results are consistent with the above curves and
analysis. The less duration time of false alarm and missed
detection further proves the superiority of the proposed test
statistic.

The position errors and velocity errors of the system with
two different test statistics are shown in Fig. 6 and Fig. 7
respectively. During 250th ∼270th second, the abrupt fault
has been detected in time whichever application approach is.
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TABLE 3. Error statistics of position and velocity.

Through the fault-tolerant processing, the system switched
to SINS/Odometer integrated navigation. Despite the loss
of position auxiliary information, there are not significant
increase in navigation errors because of the velocity aux-
iliary information provided by the odometer. However, the
errors of the system with traditional test statistic increase
evidently beginning at 600th second. The maximum position
error and velocity error reach 230.9m and 2.1m/s respectively,
which are attributed to the detection delay of the traditional
test statistic to the gradual fault. During the missed detec-
tion period, the incorrect measurements of GPS are adopted
to realize information fusion. Thus the errors accumulate
rapidly. The faulty local filter branch will be cut off until the
gradual fault is detected. After that, the velocity errors reduce
gradually with the assistance of the odometer. The position
errors commence to decrease with the disappearance of the
gradual fault. Different from the traditional test statistic, the
systemwith the proposed test statistic detects the gradual fault
relatively timely. The position errors and the velocity errors
of the system have no significant increase during the gradual
fault period. The experimental results prove that the proposed
test statistic has a fast detection speed for gradual faults.
Table 3 lists the navigation error statistics. This is a further
evidence that the proposed test statistic has outperformed the
traditional test statistic.

V. CONCLUSION
In order to ensure the reliability of integrated navigation sys-
tems, fault detection for subsystems is imperative. Therefore,
the fault-tolerant structure of integrated navigation system is
designed. The KF-based approach introduced in the paper
applies machine learning to the construction of a novel test
statistic. The prediction model is trained with measurements
and corresponding innovations. The test statistic is then con-
structed by the predicted innovations and the actual ones.
The mathematical distribution of the test statistic is also
proved to be chi-square distribution. The performance of
the approach is verified by comparative experiments based
on SINS/GPS/Odometer integrated navigation system. The

results show that the proposed test statistic is sensitive not
only to abrupt faults but also to gradual faults.
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