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ABSTRACT With the rapidly aging population, there is a need to detect elderly’s activity, monitor their
health, alert health care personnel, and provide real-time and long-term access to the generated sensor
data. With the advances in sensor technologies, communication protocols, computing power, and cloud
and edge services, it is now possible to build smart assistive living systems to improve people’s lives.
In this research, we present a Context-aware and private real-time reporting aging in place system. The
proposed system, we call it smart carpet, consists of a sensor pad placed under a carpet; the electronics reads
walking activity to provide an automated health monitoring and alert system. We extended the system’s
functionalities to improve its ability to detect falls, measure gait, and count the number of people traversing
the carpet (socializing). In an urgent and time-sensitive situation, we need to provide a real-time notification.
We propose a cooperative cloudlet model, where the sensors’ data will be sent to the nearest Cloudlet for
analysis and extracting real-time decisions in minimal delay. Results showed that our system could assist the
elderly in detecting falls with 95% sensitivity and 85% specificity. Measuring and estimating their gait with
a mean percentage error difference to GAITRite 1.43% in walking speed; hence, predicting a fall risk and
counting people’s plurality socializing with the elderly with an average accuracy of 100%. We evaluated our
system’s improvements in a controlled environment. We are looking forward to deploying the system in a
nursing home (after the COVID -19 is over) for more data gathering and validations.

INDEX TERMS Fall detection, gait analysis, context-aware, aging in place, floor-based sensors, intelligent

assistive technologies, healthcare technologies, unobtrusive, aging in place.

I. INTRODUCTION

The research focused on older adults promoting successful
aging, especially regarding enhancing the overall quality of
life and providing adequate medical care while keeping health
care costs under control. Technology is becoming essential to
the elderly; it offers the elderly productive and independent
lives [1]. An apparent goal was to develop new technology
or enhance existing ones to detect falls and reduce the con-
sequences of a fall [2]-[4]. All fall detection systems have
a common objective of distinguishing a fall from daily living
activities, which tends not to be an easy problem to solve. Fall
prediction or fall risk analysis extends the functionality of the
smart carpet. By extracting and estimating gait parameters,
fall risk can be assessed [5]. Recent research shows that
change in gait parameters may be predictive of future falls
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and adverse events in older adults such as physical functional
decline [6]-[9] and fall risks [10], [11].

Many systems are suitable for clinics or physical ther-
apy centers (GAITRite Electronic mat), another ideal for
research labs, and controlled environments like the nursing
centers (Vicon motion capture system). Therefore, there is a
need to have systems that continuously measure and report
gait parameters during everyday activities outside labs. The
drawback of lab-specific systems is that the individuals feel
instructed to walk in a certain way, in other words, not
in their natural daily activity that reflects their actual gait
behavior. Many technologies have been studied, developed,
and enhanced to be an alternative to the expensive and
lab-controlled systems.

Wearable sensors systems that consist of accelerometer
and gyroscopes to measure gait parameters have been pro-
posed [12]-[15]. Researchers used different setups, number
of sensors, and derived a variety of parameters to assess
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individuals’ gait and fall risks with fair agreements compared
to gold standards. Some of the wearable’s drawbacks are the
need to have the individuals worry about charging, wearing
or taking off the sensor, and transferring data from the sensor
devices. For example, the sensor’s position in the smartphone
is essential to achieve proper measurement; this will not be
possible by only having them in pockets or hands. People
with dementia have a limited ability to maintain and use such
wearable devices. Studies have shown older adults prefer
non-wearable sensors [16] for in-home monitoring.

The Eldercare technology research group at the Uni-
versity of Missouri- Columbia assessed different sys-
tems and devices to detect falls, measure gaits, and
monitor the elderly’s daily activities. They used a low-
cost, computer vision-based monitoring system (Microsoft
Kinect) [17]-[23]. Its good results and ability to detect a fall,
assess gait, and other useful daily living functions may suf-
fer degraded performance with occlusion and limited depth.
Floor based sensors that measure the forces applied on the
floor are widely spread [24], [25]. In [25], the investigators
capture the time-varying signal to measure weight distribu-
tion within certain areas. It requires a fixed installation under
the metal support structure for the sensors and floor tiles.
In [26], they measured the user’s foot’s ground reaction force
by load cells to generate user identification.

Even though technology saves the user’s time and health
by collecting and accessing shared data, some barriers exist,
mainly for the elderly such as usability, cost, and privacy
concerns [27]. We developed the smart carpet system to help
and support people with dementia or Alzheimer’s disease.
People who have limited ability to maintain and use wear-
able devices or showed reluctance to image-based systems
due to privacy issues cannot afford high tech and expensive
products. Using this floor-based sensor will solve most of the
problems mentioned above.

Our lab uses context-aware, non-computer-vision based
human recognition and fall detection system. It is a floor-
based array sensors system, i.e., smart carpet [2]-[4], which
is obtrusive and preserves privacy. One installs it in the home
or apartment and has usefulness in places where traditional
sensing systems might suffer complications like occlusion.
Continuous tracking and monitoring residents who live alone
is essential, as some elderly are reluctant to live in nursing
homes. These residents may have visitors, motivating us to
expand the smart carpet’s functionalities to detect visitors.
We developed algorithms to count people’s plurality by iden-
tifying the activated sensors’ subgroups when the individual
walks on the carpet.

The extension of the smart carpet system demonstrated
here will improve its utility and make the 24/7 monitoring
and subsequent storage a valuable, useful commodity. One
can envision a future in which monthly evaluation of the
smart carpet data will provide gait changes, a record of res-
ident activity, and sociability. We utilized the widespread of
smart mobile devices, which are an essential part of our lives
nowadays. However, these mobile devices suffer from limited
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storage and processing capacities. Mobile Cloud Comput-
ing (MCC) [26] has become a crucial technology combined
with edge computing to provide high performance and cloud
services by the offloading tasks to the cloud via wireless
networks. To support Aging in Place where real-time pro-
cessing is required in minimal delay [28], [29]. In Cloudlet
based mobile cloud computing, where a cloudlet is a nearby
server considered as a cloud resource with a fast network
connection [30].

There has been much research interest in activity monitor-
ing, gait analysis, fall detection. We can classify the systems
into two main systems: vision-based and non-vision-based.
In vision-based systems, researches used and study Microsoft
Kinect Systems [31]-[33]. They run different algorithms
techniques (Support Vector Machine-SVM, Feed Forward
Neural Network- FFNN, Nearest Neighbor -KNN, and Deci-
sion Trees) using different features such as vertical velocity
and acceleration, adjusted change in the number of elements
on the x-y plane after the projection of points below knee
height, frame-to-frame vertical velocity (F2FVV), silhouette,
curvature scale space, occlusion, and deformation on the joint
structure. The non-vision-based systems can be classified into
wearables [34]-[37], and context-aware systems [38]-[46].
With all the advantages of portability, mobility comes with
some drawbacks; they are bound to the body, held by a
hand, suffer battery drain, and require internet or cellular
connection to collect sensor data.

In contrast, context-aware devices used where the sensors
deployed; examples are smart carpet, pressure mats, piezo-
electric polymer, floor vibrations sensor, and others. A more
recent trend in assisting the elderly to age in place and present
opportunities to reduce healthcare costs is the ambient sensor
network. It is a wellness monitoring through daily activity
visualization, periodic reporting, and relax-time notification.
The system consists of magnetic contact sensors, passive
infrared motion sensors, energy sensors, pressure Sensors,
water sensors, and environmental sensors placed throughout
the home [47]. What makes our system different is the low
cost and easy to install, multipurpose use, and flexibility in
configuration; it can be installed in the restroom floor to
ensure privacy compared to the voice or video-based systems.

Our paper is organized as follows: Section II shows our
proposed approach. We present the experimental results and
discussion in section III. We present our conclusion and
future work in section I'V.

Il. PROPOSED APPROACH
The floor-based sensor system includes the sensor data acqui-
sition, data manipulating, data reading, storage, display, and
communication. The system operates by detecting the per-
son’s movement and storing the floor sensor data. The motion
on the carpet activates a set of sensors that outputs a

voltage signal. The system amplifies the signal, digitizes it,
and then translates it with all other bits addressed in a single
scan into a frame for further processing. We ran computa-
tional intelligence algorithms to detect falls to measure and
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estimate people’s gait and accurately recognize, count, and
monitor the individuals’ movements walking on the carpet.

The system uses a signal scavenging technique to detect
the presence of the person. This technique uses the sensor
made from a conductive material to pick up stray 60 Hz
noise, which may come from electrical power lines, nearby
electrical equipment, and other stray electromagnetic signals.
It is challenging to design sensors to deal with very low
voltage data because the generated signal always mixes with
the unwanted noise signals. Although this strong 60 Hz signal
seems to be useless energy, it is a valuable signal source to
detect humans’ presence and human falls [2]. One installs
the sensors for the signal scavenging technique under carpets;
it consists of 2 main layers, as shown in Figure 1(a)-(b).
The top layer is the sensor layer, and the lower layer is the
ground layer. A plastic sheet separates the two sensors and
the grounding layers. We used aluminum foil as a sensor.
The foil acts as an antenna. In communication, we use both
transmitting and receiving antennas. In the receiving antenna,
when the electromagnetic signal passes over the antenna,
it induces a small voltage and causes electrical energy to flow
in the receiver circuitry.

Similar to the antenna, the aluminum foil produces a
change in electric voltage corresponding to the change in the
nearby electromagnetic field. The peak-to-peak voltage with
the activated sensor uses aluminum foil as a sensor, as shown
in Figure 1(c)-(d). The voltage level of the 60 Hz signal was
measured when somebody touches the sensor (activated). The
activated sensor’s measured voltage is 300 mV peak to peak,
while the non-activated sensor produces about 30 mV peak to
peak. When a sensor is not touched or not activated, it picks
up a certain level of 60 Hz signal—because the human tissues
are lossy media [48], the electric field induced in the human
body when the human body is exposed to the electromagnetic
field. The body is used as an antenna or medium for signal
transmission [49], [50]. The scavenged signal increases when
someone makes contact with a sensor or activates it. This
because the human body acts as an antenna. As a result,
the sensor picks up a stronger signal, detected as a higher
voltage signal. The difference in voltage is used to distinguish
between activated and non-activated sensors. We used a dif-
ferential amplifier to reduce the 60 Hz noise impact, as shown
in Figure 2 below.

The differential amplifier has two inputs and one output.
The first input is for the primary input signal from a sensor,
and the second input is the reference signal from a non- acti-
vated sensor. The differential amplifier subtracts the signal
amplitude of the first input with the second input. Thus, when
the primary input sensor is not activated, the primary sensor’s
noise will be canceled by the second input’s reference signal.
On the other hand, an activated sensor is the first input
with much higher amplitude than the reference input. The
subtraction of the activated primary sensor signal from the
reference input will still provide a high amplitude signal.

The main configuration required four segments of 32 sen-
sors for a total of 128 input sensors. Each board served one
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FIGURE 1. (a) the layout of the sensor, (b) vertical cut area of the sensor,
(c) one segment of 32 foil sensors, (d) one single sensor(two layer;
sensing and ground separated by vinyl), and (e) data acquisition and
processing board.

segment of 32 sensors, shown in Figure 1(e). We used the I>C
communication protocol to send and receive data between the
boards. I>C requires assigning one board to be the master
and the others to be slaves. Since we have 128 sensors and
four boards in our system, each board connects to 32 sensors
segment, designated as segments A, B, C, and D. The master
is the board connected to segment A and the others are slaves.
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FIGURE 2. The differential amplifier circuit that accepts the scavenged
signal (left) and subtracts the 60 Hz noise signal to get the electric signal
corresponds to the activity on the sensor(right).

Both master and slaves read the data from their own 32 sensor
segment and store it in their local memory. The master board
gathers the data first in the system. Once the master has data
from all boards, it then sends the data to a computer for
further processing and analysis. The same boards used to test
and experiment with different carpet segments and features
of the carpet; for example, we used all the carpet segments
(128 sensors) for Fall detection experiments; two segments
to study GAIT analysis see Figure 1(c) above. We used a
single sensor to study analog signal characteristics and extract
features to identify people (see Figure 1(d). In multiple peo-
ple (socializing) experiments, we deactivated segment C to
provide one consistent path of walk-in same and opposite
directions.

As shown in Figure 3, the system consists of the sensors
embedded under the carpet, a data acquisition electronic sys-
tem, and a microcontroller system. The scavenged sensors
signals converted into digital values with an experimentally
determined threshold using a 10-bit Analog to Digital con-
vertor. An ASCII frame is s result that is sent to the cloud
for processing. The software components process the data
frames and use different computational intelligence methods
to perform the required operations like fall detection, gait
estimation, people counting, data visualization, and notifi-
cation. The smart carpet data acquisition system scans the
sensors at N frames/second. We parse the frame data into a
binary image that corresponds to the carpet layout. Where 1’
means the sensor is activated, and ’0’ means it is not activated.
This image becomes the data structure to perform compu-
tations. We conducted different experiments using different
people (stunt actors) and layouts depending on the study’s
functionality.

A. FALL DETECTION

Our smart carpet is used to detect motions and falls. It con-
sisted of four segments, each with 32 sensors. The data acqui-
sition system in Figure 2 scans the sensors and store the data
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FIGURE 3. System overview: floor-based sensors, data acquisition,
analysis, and reporting.

in an ASCII frame sent to the cloud for further analysis and
computing. When there is mobility on the carpet, the voltage
generated by the sensors that exceed a certain threshold,
determined experimentally, is considered active. To study fall
detection, ten subjects, each performed eight walk sequences.
In each sequence, they performed a fall. The falling patterns
adopted from previous work by our eldercare technology
research group [3], [45] can be divided into four categories:
falling from standing, falling form tripping, falling from sit-
ting on a chair, and falling from slumping. Figure 4 shows
one walk-tripping-fall backward pattern performed by one of
the subjects. The sequence consists of 101 frames, which is
equivalent to 14 seconds. Figure 3 below shows the count of
the sensors activated once per frame. As shown in the graph,
the count is zero at the walk’s beginning, with no sensors
activation. The moment the subject stepped on the carpet, the
sensors activated and counted in each frame. Counts increase
or decrease, depending on sensor activation, rate of scan
relative to the walk, and noise. So low levels of count occur
until a fall occurs, causing a sharp increase in the number of
active sensors noticed as seen in frames (71-76).

An ideal scenario for a fall is a jump in the count of active
sensors and then a sharp decrease to zero (Frames 92-100).
We see that if the fallen walker stays stationary on the ground,
the counts are all zero. Figure 5 below shows the walk-fall
pattern. Each rectangle represents a set of frames (each
frame resulted from one complete scan of the 128 sensors).
We sliced the walk into different sizes (window sizes-W.S)
depending on the activated sensors count. Each of these slices
represents different time intervals. We studied different time
intervals and applied computational intelligence algorithms
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FIGURE 4. Walk-Trip-Fall backward pattern in 14 seconds. The y-axis shows the count of the sensors activated per frame.

to detect the fall. Recorded videos were used as the gold
standard to verify the accuracy of the algorithms. We devel-
oped and studied three different algorithms; Connected Com-
ponent Labeling (CCL) [51] with varying sizes of window,
the Convex Hull area [53], [7], and a heuristic algorithm
based off the count of the activated sensors and their spatial
characteristics.

Walk Walk |walk | walk [Walk |
Walk
Walk wak  [wak _ [wok [

FIGURE 5. Complete walk-Fall pattern. Rectangles represent one frame or
multiple ones depending on the window sizes used.

The connected components labeling algorithm classifies
the fall when the largest contiguous sub-region size is higher
than a predefined threshold determined experimentally. Con-
vex Hull with different window sizes uses the quick convex
hull algorithm on the activated sensors’ list per frame or
group of frames. The area of the polygon resulted from the
points forming the convex Hull is computed. To detect a fall,
we run the algorithm for different window sizes/sliding win-
dows (WS) and thresholds (TH). Having a constant Threshold
with changing sliding window size didn’t give a good result.
Our approach is to make the threshold variable based on
the number of active sensors forming the Hull. The new
threshold(THp,,;;) is given by equation (1).

TH gy = WS % CS * agu (1)

WS: the sliding window size,

CS: Convex Size; the number of points forming the convex
ina WS.

opy - constant determined experimentally = 0.3
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The heuristic algorithm maps the sensors into a binary
image of 128 pixels where ’1° represents an activated sensor
and ’0’ otherwise. The count of the neighboring activated
sensors computed. Fall determined if the count meets or
exceeds some threshold (THyeyristic) given by equation (2).

TH geuristic = WS * dgeuristic (2)

WS: the sliding window size,

O Heuristic - constant determined experimentally = 1.2

We conducted the experiments to determine the perfor-
mance of the different classifiers in detecting falls. Table 1
shows the confusion matrix of all methods and algorithms.
The relation between Predicted and Actual classes gives
four outcomes. The true positives (TP) and true nega-
tives (TN) are correct classifications. A false positive (FP)
and false-negative (FN) is when the outcome is incorrectly
predicted. We computed both Sensitivity and Specificity.
Sensitivity refers to the proportion of patterns with actual
patterns with a fall classified as falls (TP). Specificity refers
to the percentage of actual patterns with no fall classified as
no fall, 1 — FP.

TABLE 1. Confusion matrix: fall detection.

Predicted Class

Fall No fall
Fall True Positive | False Negative
Actual Class (TP) (FN)

No Fall False Positive | True

(FP) (TN)

Negative

B. GAIT MEASUREMENT
To measure and estimate the gait, we used to modify the
system by building two new sensor segments. Each segment
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consists of 32 sensors. We chose to have moderate resolution
square sensors with length 6 inches. The scanning rate was
14 frames/second. We used two segments, each 8 feet long,
to match the mat we used the GAITRite system as the gold
standard [54]. This system is an electronic walkway used to
measure the temporal and spatial parameters by activating
its sensors during a walk. Footfall data from the activated
sensors are collected by a series of on-board processors and
transferred to the computer through a serial port. The gait
parameter used in this study: Ambulation time defined as the
time elapsed between the first contact of one foot and the
last footfall. Step time: Time elapsed from one foot’s first
contact to the opposite foot’s first contact. The step length of
the right foot is defined as the distance between the center of
the left foot and the right foot’s center along the progression
line. Stride time: Time between successive footfalls of the
same foot. The spatial gait parameter of Stride length is
the distance between consecutive footsteps of the same foot.
Walking speed: Distance traveled divided by the ambulation
time. The subjects walked on the two segments laid on the top
of the GAITRite mat. Data is acquired, and gait parameters
are extracted and computed.

Multiple subjected asked to walk across the carpet various
times (9 subjects with nine walks each) maintaining the same
pace. Six walks data dropped due to carpet segment mal-
function (the ground plane under sensors disconnected from
the board and caused one of the segments sensors to activate
simultaneously) during the experiments. To estimate the gait
parameters of walking speed, stride time, and stride length,
we computed the distance traveled and ambulation time.
We determined the number of footfalls using computational
and heuristics rules. Deciding a good footfall was our first
challenge. We used the active sensor count for a given win-
dows size (sliding window of N active sensors). We choose
the threshold experimentally. To compute the walking speed,
we calculated the time and the distance between the first
contact of one foot and the last contact with the carpet. The
time difference is the elapsed /(ambulation) time. Walking
speed can be calculated by dividing the distance by the ambu-
lation time. The step time, the time elapsed, divided by the
number of steps. Step length is measured by dividing the
distance traveled by the number of steps. Similarly, the stride
length is computed by doubling the step length. Algorithm-I
above shows the procedure to calculate and estimate the gait
parameters: Waking speed, stride and step lengths and speeds.

C. SOCIABILITY

o count the plurality of people and measure the sociability of
the elderly aging in place, we activated the three segments.
We turned off only segment D, as shown in Figure 6. Four
volunteers walked across the carpet from A to C or C to
A (Longitudinal Direction). The longer traveled distance,
the more activated sensors, compared to waking from seg-
ment D direction bottom-up (Transverse Direction). We used
a binary display of the activated and non-activated sensors
on the carpet to see the individuals’ traversal, as shown
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Algorithm 1 Gait Parameters Extraction
Nframes = 0; // Number of Frames
Nactive = 0; // Active sensors
WS; // Sliding window size
FOR each frame F in WS {
Parse into Binary Image();
++ NFrames
IF (NFrames == WS){
UPDATE (Ngciive); //Update number of active sensors
IF (Nactive >= TH) // Threshold defined
experimentllay ++Footfalls
IF (F == Last Frame){
TimeElapsed = FinishTimer g — StartTimegr;
DistanceWalked = LastActiveSensorLocation -
FirstActiveSensorLocation;
Compute (Number of Steps)
Compute (Walking Speed )
Compute (Step time, Stride time, Step length
stride length )

}
}

Output: Gait Parameters

in Figure 7 below. Each person, individually, performed ten
walk trials in traverse direction from the bottom of segment
A to segment B and back to the beginning. Then, multiple
persons participated in 2 people, three people, and four people
walk trials ten times each. The smart carpet data acquisition
system scans the carpets at nine frames per second. Each data
frame consists of 128 sensors, where all segment D sensors
turned off. However, we used them to build a 12 x 12 binary
image. Where ’1” means the sensor is activated, and ’0’ means
it is not activated. This image becomes the base data structure
to perform the computation to recognize people on the carpet.

A\ 3 C
Longitudinal
I direction
D)
No Sensors
Transverse Direction

FIGURE 6. Carpet layout: Active segments A, B and C. Sensors in D are
turned off. This layout used for all the experiments.

We used Connected Component Labeling (CCL) algo-
rithm. We applied the same procedure for both individual
frame and window size of frames encompassing a variable
number of frames: 3, 5, and 9. Each window corresponds
to time (WS = 3 frames correspond to 0.2 seconds, WS =
5 frames corresponds to 0.5 seconds, and WS = 9 frames
corresponds to 1 seconds) WS = total number of frames
corresponds to fotal travel / ambulation time). We used the
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Segment D
Sensors turned OFF

FIGURE 7. Active sensors map: Two people walk in Opposite directions:
Longitudinal Direction (A <-> C). All sensors in Segment D turned OFF.

8-connect neighborhood for our experiments to ensure we
do not ignore the effect of interference among the sensors,
and so we have biased results. Figure 8 shows the carpet
layout’s binary image for the "Two People Walking in Oppo-
site Directions" scenario. It took 4 seconds to perform the
walk. At the start of the walk fop image, the persons were
at a separable distance. They were recognized and by their
subgroup. However, as shown in the middle, they became
closer and were not separated. Then when they reached the
end of the walk, bottom, they were recognized gain.

Segment D
Sensors turned OFF

FIGURE 8. Active sensors map: Two people walk in Opposite directions:
Longitudinal Direction. frames are grouped in a window of siaze

9 frames/sec (i.e. 1 second ambulation time). Top: Start of the walk,
middle: End of the walk, and bottom: the full walk.
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We considered the count of the total sensors activated for
the full walk, and then divided by the average number of sen-
sors activated per individual(s) who performed the walk. For
example, the "Two people walking in opposite directions," we
took the average count of active sensor performed by the two
people when they walk alone on the carpet and then divided
the total active sensors of the full walk by this average number
to count several people.

D. COOPERATIVE CLOUDLET MIODEL

We presented a cooperative cloudlet model. The sensed
data processed in the nearest Cloudlet in the mobile cloud
computing model, and the results to be sent to the proper
users to extract the suitable decision. Several user move-
ment scenarios in the cooperative cloudlet model are shown
in Figure 9 [36]. The collaborative cloudlet model consists of
several cloudlets covering a specific area where users move
within that area. If a user requests certain services, then the
nearest Cloudlet will provide the user’s requested service if it
is available. If the nearest Cloudlet can’t provide the service,
then the request will be routed to another remote cloudlet
to execute the user’s request (Figure 9-b). The cooperation
process continues until the capable Cloudlet runs the request
and sends the results back to the user through the same route.

The
CL2 senice
cL3 / cL1
1- send req.
[ N 2- Responce
(@) II
Mobile user
The
senice
— 3- Responce
\
— CL2 o send req.
L=
CL3 .
CL1
1- send req.
[ N 4- Responce
(b) I I
Mobile user

FIGURE 9. Cooperative cloudlet model.

The application of the cooperative cloudlet model in our
system implies processing the sensed data, analyzing it, and
committing the user’s decision. This approach will save time
compared to the classical model where the users have to
communicate with the primary Enterprise Cloud system, send
the sensed data, and wait for the decision [55]. Moreover,
this cloudlet model’s application becomes more critical, espe-
cially in the health-related situation when making decisions
in a short time based on collected data is crucial in saving
people’s lives.
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Another important aspect is protecting the data from mali-
cious attaches and unauthorized access during transmis-
sion and processing (Confidentiality and Authentication) and
incorporating security techniques and encryption algorithms
in the intermediate communications between the cloudlet
members to secure the data the transmission [56], [57].

lIl. EXPERIMENTAL RESULTS AND DISCUSSION

Here we discuss the experimental results for different system
characteristics and features. The floor-based sensor system
is represented by a binary image where "1" is activated,
and "0" deactivated sensor. Since the sensor is deactivated
(discharged) when stepping off the sensor segment, we can
track the person’s path and determine the area of walk
and fall. Using the Connected Component Labeling algo-
rithm to detect the connected sub-region and based on this
sub-region size, we can conclude a fall, non-fall, or a walk.
The sub-region size will help eliminate the noise generated
from sensors far from the walk /fall path. Similarly, we calcu-
lated the convex hull area generated by the activated sensors
to distinguish between walk and fall.

We studied both algorithms using different sampling rates.
We decide to apply the algorithms at various times that can
be represented by the sliding windows (# of frames). We used
the recorded video as golden standards, so we determined the
constant on both algorithms experimentally—these constants
independent of the person’s age and traits. We tested the sys-
tem on ten different people (age, gender, height, and weight).
These were all controlled tests in the lab, so we limited
the study to ten people. We ran the algorithms to create
the data set for the classifiers. We used the recorded video
(attached as supporting material) for the real falls. We used
Weka framework algorithms such as multilayer perceptron,
SVM, and role-based classifier C4.5. Most of them gave close
results.

We used the same data representation (binary image of
the activated sensors). Different subjects and scenarios help
estimate the gait parameters (Nine subjects each perform nine
walks) and measure the degree of sociability (Four subjects
performed individual walks, in groups of two, three, and
four).

A. FALL DETECTION

We studied the performance of the different detection algo-
rithms and their combinations. We used recorded videos as
ground truth for our results. Table 2 shows the sensitivity
and specificity of the three algorithms and some possible
combinations. Connected component labeling algorithm with
10fold cross-validation shows an acceptable result suffered
from the true negatives. Convex Hull showed better sen-
sitivity but low specificity. We fused different algorithms;
convex Hull and heuristics provided the best results of 95%
sensitivity and 85% specificity using WS = 7, « = 0.3, and
1.2. Combining the two methods increased the true negatives,
but better than any of them individually.
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TABLE 2. Fall detection algorithms performance: WS = 7, apeyristic = 1.2,
apun = 0.3.

(Sensitivity) (Specificity)

Algorithm
Convex Hull Area 90% 80%
Heuristic 86% 80%
Connected Component, Labeling

. 81% 98%
with 10XV
Convex Hull AND Heuristic 75 % 89%
Convex Hull OR Heuristic 95 % 85%

B. GAIT ANALYSIS

In Gait estimation experiments, we collected 81 walks
(75 valid and six invalids). The invalid walks dropped due to
malfunction in the carpet. The ground plane got disconnected
from the electronics, and the sensors became very sensitive to
the noise and activated all sensors in the affected carpet seg-
ment. We used collected data from the nine subjects’ walks
to compute and estimate the gait parameters; walking speed
and stride time and length. We compared our results with
the readings from the GAITRite system. Figure 10 shows
plots of walking speed, stride time, and stride length for each
of the walking sequences for both the smart carpet and the
GAITRite systems. The walk sequences’ estimated walking
speed ranged from 66.3 cm/sec to 135.4 cm/sec. Stride length
ranged from 41 to 73 cm.

The gait parameters estimated using the smart carpet
achieved an excellent agreement with the GAITRite system
results. In a few walk trials, we had errors; that is a difference
from each system’s parameters’ average value. For example,
for one trial’s walking speed, the percentage difference was
high, about 10.1%. In that walking sequence, the number
of footfalls differed from the number of footfalls measured
by the GAITRite; we believe it is due to how our algorithm
calculated the number of footfalls. The smart carpet measured
time 6.869 seconds, which is bigger than the actual time
on the GAITRIite 5.96 seconds; the distance traveled on the
carpet as measured by the locations of the active sensors
was 15.5 foot (472.44 cm) is slightly higher than the one
on the GAITRIite 14.95 foot (455.8 cm). These differences,
we believe, arise from the spatial sampling nature of our
devices. In future work, we will build higher resolution carpet
segments to identify the footfall more accurately.

We compared the performance of our system with two
other systems developed by the Eldercare Technology
research group: Kinect [18], web camera [20], and motion
capture-Vicon [22]. These systems used GAITRite as ground
truth for all validation. The mean percentage difference
between the systems and the GAITRite are; 1.34% (smart
carpet), 2.9% Kinect, and 0.18%(Web Camera).

C. SOCIABILITY
We performed ten experiments for each scenario: individual,
two people (same and opposite directions), Three people
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and Stride Length. Nine subjects walk with repetition results comparing walking speed from Smart Carpet and GAITRite

systems. Walks sorted in ascending order of speed.

Start of Wak

Middle of Wak

End of Wak

FIGURE 11. Active sensors map: Four people walk in Opposite directions: Longitudinal Direction. frames are grouped in a window of size 9 frames/sec).

Segment D sensors turned OFF.

(same direction), and four people (equal and opposite detec-
tions). In Figure 11, four people walk in opposite directions.
At the start of the walk left, the persons were at a separable
distance. They were recognized and by their subgroup. How-
ever, as shown in the middle, they became closer and were not
separated. Then when they reached the end of the walk, right,
they were again separable. We further studied one scenario
for two, three, and four people walking in the same direc-
tion (transverse direction). We ran the hybrid algorithm for
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different window sizes of frames. We applied the algorithm
for ten walk trials. Results showed that we could reliably
count the number of people for the "two" and "three" people
scenarios. However, when the number of people increased for
the same size as the carpet used, it became difficult to count
the people reliably (accuracy of 20%). Accuracy is propor-
tional to the number of people walking on the carpet to the
carpet size. We could not determine the optimal window size
of frames that fit all scenarios, especially when the number of
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people to the carpet size is big. Figure 10 shows that the count
of people for two, three, and four people walking in the same
direction at a window size of nine (WS = 9 frames, i.e., the
algorithm determines the count of people at time intervals
one second). As Figure 12 shows that at WS = 9 frames,
the accuracy of counting people is 100% for two people, 90%
for three, and 30% for four people.

TABLE 3. People plurality count using the ration of total activated sensor
to the individual walk active sensors count.

Activated Activated .
Scenario Sensors sensors Algorithm

(Average) | (individual) |  Tesult
One Individual

13.62 13.62 1
Two Individuals walk in
the same direction 27 14.20 2
Two Individuals walk in
the opposite direction
25 14.20 2

Three Individuals walk
in the same direction 49 14.10 3
Four Individuals walk in
the same direction 58 13.62 4
Four Individuals walk in
the opposite direction 72 13.62 4

We evaluated the binary image by counting the *1” pixel
value, which corresponds to an active sensor. TABLE 3 shows
the average activated sensors count for different scenarios.
It is evident that the bigger the area is, the more people
walking on the carpet. The count of the active sensors is
72 rounded to the whole number. Comparing this to the 58 for
the same amount of people but in the same direction. The
carpet layout and the time spent for the opposite directions
(6 seconds) activate more sensors than and the same direc-
tions (4 seconds) of walking on the carpet. We obtained the
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count of the plurality of people walking on the carpet by
dividing the activated sensors count of the full walk by aver-
age of the activated sensors counts produced by a person’s
walk. The result was rounded to obtain the whole number.

IV. CONCLUSION

Aging in place is possible with the help of a floor-based
sensor system. The system unobtrusive, non-wearable, and
ensure privacy. Our system is showing a good fit for assistive
living. While in the home, it can detect falls with high accu-
racy, display the data in real-time, and estimate important gait
parameters that may help monitor a functional decline; this
will help unaffected seniors and those with mild cognitive
impairment to live independent lives. When we have multiple
people visiting the elderly aging in place, we can determine
the degree of sociability by counting the number of guests.
As an observer, we can determine if multiple people are
walking on the carpet. However, our approach fails when the
distance between people tiny compared to the dimension of
the sensors we use. In the future, we are considering enhanc-
ing fall detection and gait estimation, and scavenged signal
analysis in a more fine-grained level. We will be considering
higher resolution sensors segments with smaller sensor sizes.
With this new design, we can study and develop algorithms
to identify the individuals and keep track of their movements.
With that in mind, we are considering multi-sensor data
fusion. We will build a framework for sensor data fusion
and mining this data in real-time. We will create a dynamic,
efficient, scalable, and secure runtime of parsing and handling
multi-sensor data. How to deal with obstacles such as data
imperfections and inconsistencies, misled data association,
data fusion portability, machine independence, security vul-
nerabilities, etc.
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