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ABSTRACT The pose of texture-less objects is very important for intelligent manufacturing and intelligent
assembly. Existing methods cannot accurately estimate pose when partial features are missing or cluttered
due to shading, reflection, and occlusion. We propose a hybrid framework based on the warped hierarchical
tree for pose estimation which integrates template matching and sparse representation classification in this
paper. Firstly, the template is formed by the prospectively cumulated orientation feature (PCOF), which is
a probabilistic representation of orientations extracted from template images. And the warped hierarchical
tree can be built offline according to the parameters for projecting the 3D object and the similarity between
templates. Then the online searching can be repeated through the warped hierarchical tree until the template
candidates have been found. Finally, the pose corresponding to the best-fitting template can be obtained
by sparse representation classification based on the dictionaries consisted of the spreading orientations
of template candidate images. The experiment results show the effectiveness of our method when partial
features are missing or cluttered.

INDEX TERMS Pose estimation, template matching, sparse representation classification.

I. INTRODUCTION
Pose estimation is one of the hottest subjects in the field of
computer vision, which is crucial for intelligent manufactur-
ing and intelligent assembly [1]. The objects in intelligent
manufacturing and intelligent assembly usually have shiny,
highly reflective, and texture-less surfaces. The pose estima-
tion of these texture-less objects has drawn attention due to
their specificity [2], [3].

Recently, the RGB-D cameras have been used for pose esti-
mation, but it is not suitable for texture-less objects. Because
the shiny and highly reflective surfaces affect the measure-
ment of depth [4]–[6]. Besides, the multocular cameras can
be used for estimating the pose of texture objects [7], [8], but
it is difficult to extract and match feature points accurately
from the multiple images of texture-less objects [9]–[11].

The methods using monocular camera for pose estima-
tion include CNN-based methods, geometry-based methods,
and template-based methods. CNN-based methods use con-
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volutional neural networks (CNN) to extract features and
describe the texture-less objects by the features in different
convolutional layers, but the network needs to be retrained
using the new dataset when new objects are added [12].
Geometric features such as points, lines, and circles have
excellent quality due to its invariance to scale, rotation, and
illuminations. But the geometry-based methods rely on the
quality of feature extraction and matching. Extracting and
matching features is difficult because the features will change
when the posture change [13]–[15]. Template-based methods
are performed to obtain the pose corresponding to best-fitting
template based on the similarity between the sub-block of test
image and templates. The methods have high running speed
and precision. Besides, learning new objects does not need
to retrain, only requires extracting and storing features of the
new objects, which is very convenient for practical applica-
tions. However, it cannot work well when partial features are
missing or cluttered due to shading, reflection, and occlusion
in local areas. Generally, the similarity between the sub-block
of test image and templates will decrease with increasing
the ratio of missing or cluttered features. Then the similarity
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between different templates may not be significantly differ-
ent. That will lead to wrong matching [16]–[18].

So we propose a hybrid framework which integrates tem-
plate matching and sparse representation classification based
on the warped hierarchical tree for pose estimation of texture-
less objects in this paper. The main contributions are as
follows: (1) We build the warped hierarchical tree based
on the parameters for projecting the 3D object and similar-
ity between templates to accelerate the search online. The
warped hierarchical tree compared with the hierarchical pose
tree [31] built just based on similarity is more reasonable
and not easily trapped in a local optimum. Besides, the tech-
nique of building warped hierarchical tree with parameter
constraint can greatly reduce training time. (2) A new frame-
work integrating template matching and sparse representation
classification based on the warped hierarchical tree for pose
estimation of texture-less objects is proposed. The framework
can work well when partial features are missing or cluttered
due to sparse representation classification.

The paper is organized as follows. A total review of related
work on pose estimation using monocular camera is given
in section II. The warped hierarchical tree and the hybrid
framework for pose estimation algorithm are introduced in
section III. The proposed method is evaluated in section IV.
The conclusion of the paper is given in section V.

II. RELATED WORK
Themethods usingmonocular camera for pose estimation can
be summarized in three classes.

A. CNN-BASED METHODS
The features extracted by CNN can comprehensively describe
the objects compared to manual features. There are emerg-
ing algorithms for object detection such as Faster-RCNN,
YOLO, SDD. They have achieved huge success in various
fields. Some methods using CNN have been presented for 6D
pose estimation. SSD-6D [19] was trained on synthetic data,
which consists of an SSD network and autoencoder network.
The method showed that the color information alone can
already achieve a good detection rate. YOLO-6D [20] utilized
a single-shot CNN architecture to predict the 3D-bounding
box and the object’s class without additional post-processing.
Posenet [21] was a robust and fast CNN architecture by
modifying GoogLeNet, which regresses the 6-DOF camera
pose with no need of additional engineering or graph opti-
mization. Crivellaro et al. [22] utilized CNN to detect parts
and predicts the projections of the control points to estimate
pose. These methods based on CNN are very fast on the
graphics processing unit (GPU), but the weights of network
describing the objects need to update when new objects are
added.

B. GEOMETRY-BASED METHODS
Geometry features such as the corner points, lines, and curves
on the contour are used to estimate the pose based on the
3D features and 2D features. Lepetit et al. [23] used four

virtual control points to express the 3D points and estimated
the coordinates of the virtual control points. Pribyl et al. [24]
used the direct linear transformation to solve the Perspective-
n-Line (PnL) problem. The redundant 3D points and 3D lines
for expressing the 3D structure can reduce the minimum of
required lines. For larger line sets, the method has high accu-
racy and small reprojection error. Meng et al. [25] utilized the
perspective view of circle and line in the image to estimate
the pose. The false pose was identified by re-projecting the
random point on the line. However, these methods are fragile
for cluttered background. The corner point, line, and curve
features in background will interfere with feature matching.
Then false correspondences will lead to wrong pose parame-
ter [26], [27].

C. TEMPLATE-BASED METHODS
The template images captured from different viewpoints can
represent the 3D structure of the object. The pose corre-
sponding to the best-fitting template can be obtained by
searching in the template set. Note that the accuracy of
these methods heavily depends on the number of templates.
Tombari [18] proposed the object recognition approach using
the sum of the normalized dot products to find the best-
fitting template, which has the maxima of the similarity in the
transformation space. Hinterstoisser et al. [28], [29] proposed
the LINE-2D and LINE-MOD. LINE-MOD used comple-
mentary depth information compared with LINE-2D. They
were based on the spread orientations which are robust to
the background clutter and illumination change than gradient
directions. Besides, the methods were accelerated by precom-
puting response maps and linearizing the memory. However,
the spread orientation cannot deal with the feature changes
caused by posture changes. Ulrich et al. [30] used the sum of
the normalized dot products as similarity and built the hier-
archical model by merging the views with high similarity to
accelerate the exhaustive search. But the hierarchical model is
easily trapped in a local optimum. Because they only consider
the similarity between templates. Ren et al. [31] used struc-
tural symmetry and context constraint as prior-knowledge to
estimate pose. The object was represented as combination of
sub-objects. Then the pose estimation was implemented by
the fitting algorithm. Zhang et al. [32] utlized the similarity
of the input image and template images to find the most
similar subset. Then they established 2D-3D correspondences
by feature matching and performed pose estimation. Konishi
et al. [33] proposed the perspectively cumulated orientation
feature (PCOF) and hierarchical pose tree for pose estima-
tion. PCOF is a probabilistic representation of orientations
extracted from template images, which is not sensitive to the
feature change caused by posture change. And the hierar-
chical pose tree built by clustering and downsampling can
accelerate the exhaustive search. However, it cannot work
well when partial features are missing or cluttered due to
shading, reflection, and occlusion. Besides, the clustering
approach is easily trapped in a local optimum, because they
does not utilize the prior information of the template. And
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FIGURE 1. Spherical coordinate system fro projecting the CAD model. The
viewpoint can be determined by the longitude, the latitude, the distance,
and the rotation angle around the optical axis.

the training of hierarchical pose trees based on clustering and
downsampling needs much computation and time.

III. PROPOSED METHOD
A. SIMILARITY MEASURE
The similarity is used for evaluating the fitting degree of the
sub-block of test image and the templates in the template
set. The template images can be generated by projecting the
CAD model into the image plane. The spherical coordinate
system for projecting the 3D object is shown as Figure 1.
The viewpoint for projecting the CAD model is determined
by four parameters those are the longitude (λ), the latitude
(ϕ), the rotation angle (γ ) around the optical axis, and the
distance (d). To make the discrete template robust to feature
changes caused by posture changes, the PCOF [33] which is
a probabilistic representation of quantized gradient directions
of template images is presented.

Assuming the parameters of the central viewpoint for pro-
jecting the CAD model to produce the template T are p =
{λ, ϕ, γ, d} and parameters of sub-viewpoints for computing
the template T are p+1. Konishi et al. [33] used the random-
ized sub-viewpoints within the defined range to generate tem-
plate images. But the randomized sub-viewpoints are redun-
dant, and it will lead to a lot of calculations. So we choose the
sub-viewpoints whose parameters are at fixed intervals. In our
research, the range of 1 were ±12 degrees for the longitude
and latitude, ±10 degrees for the rotation angle and ±40
mm for distance. The parameters of sub-viewpoints are with
longitude step of 2◦, latitude step of 2◦, rotation step of 2◦,
and distance step of 10mm. We can generate 720 template
images for the template T .

The RGB channel values of each face of CAD model
are set to its normal vector. The gradients are computed
using CANNY operators on three channels separately. The
maximum gradient which exceeds a given threshold in RGB
channel is used.

C(x) = arg max
C∈{R,G,B}

∥∥∥∥∂C∂x
∥∥∥∥ > t (1)

where R, G, and B are the RGB channels, x = [x, y] is the
coordinate in image coordinate system.

FIGURE 2. (a) Colored quantized gradient direction. (b) The similarity in
between the sub-block of the test image and the template.

The gradient amplitude is determined by the angle between
the normal vectors of neighboring faces. So the threshold
t can be computed by the minimum face angle, and the
quantized gradient directions are used as features discarding
gradient magnitudes. The quantized gradient direction named
as orientation is disregarded its polarities as Figure 2(a). The
orientation histogram in each pixel is built by voting from
the orientation of all the template images. Then the dominant
orientations extracted from the histograms are represented
by 8-bit binary number. In our researcher, the threshold for
extracting domain orientations was 90. We use the maxi-
mum frequency of the orientation histograms in each pixel
as weights to calculate the similarity.

The template T is represented as follows.

T : {xj, yj, orij,wj|j = 1, · · · ,m} (2)

where m is the number of PCOF in the template T . xj, yj,
orij, andwj are x-coordinate, y-coordinate, quantized gradient
direction and weight of the jth PCOF in the template T .

The similarity score between the subblock of test image I
and the template T is given by the following equation.

S =

∑m
j=1 δ(ori

I
(x+xj,y+yj)

∈ oriTj )∑m
j=1 wj

(3)

where m is the number of PCOF. x and y are the coordinates
of the top left corner of the sub-block in the test image. xi
and yi are the coordinates of jth PCOF in template. The delta
function is defined as equation (4). If the orientation in the
template T includes the orientation in the test image I as Fig-
ure 2(b), the weights which are the maximum frequencies of
the histograms are added to the score. The similarity score is
the ratio of weights of the matching features to total weights.

δ(oriI ∈ oriTj ) =

{
wj if oriI ∧ oriT > 0
0 otherwise

(4)

where ∧ represents the bitwise AND operation.

B. BWARPED HIERARCHICAL TREES
The runtime complexity of the exhaustive search is linearly
dependent on the number of templates. The hierarchical tree
is the key to accelerating exhaustive search.
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FIGURE 3. (a) Updating to the neighboring cluster. (b) Part of warped
hierarchical tree.

Warped K-means [34] is a clustering procedure with
sequence constraints. It is applied to the clustering of sequen-
tial data generated from motion sensors, eye trackers, and
e-pens. The sequential information reflects the relationship
between data. Clustering based on sequence information can
quickly converge to a good local minimum due to check-
ing neighboring clusters in each step. In our application,
the parameters of the central viewpoint for each template also
reflect the relationship between templates. Therefore, we use
this idea to build the warped hierarchical tree with parameter
constraint.

Assuming the template set can be represented as X0 =
{T1, · · · ,Tn} and the parameters corresponding to template Ti
is pi = {λi, ϕi, γi, di}. The four parameters can be regarded
as the four dimensions in the 4D space. Each template is a
single point in the 4D space. Neighboring points have similar
parameters. And the neighboring templates have high similar-
ity. So we choose the central point as an initial cluster center,
and the neighboring points are classified into the cluster.
Note that 180◦ and −180◦ are the same points. The initial
cluster determined by the parameter constraint is conducive
to convergence. And the template is only allowed to move
to neighboring clusters as Figure 3(a). And the cluster center
is the template with the smallest maximum similarity to the
other templates in each cluster.

Except for clustering with parameter constraint, the scale-
space effects should also be taken into account. The image
pyramid building by downsampling can result in higher
robustness and speed. Therefore, our warped hierarchical
pose can be built by clustering and downsampling. The pro-
cess of building the warped hierarchical tree is shown in algo-
rithm 1. Firstly, we initialize the cluster center with parameter
constraints in 4D space. Secondly, the clusters and centers are
updated based on the similarity. Then the cluster centers are
downsampled to get new templates in different resolutions.
We repeat the steps until the minimum number of feature

Algorithm 1 Building Warped Hierarchical Tree
Input: templates set X0, the parameters of central view-
point for each template
Output: warped hierarchical tree
Initialize the hierarchical level k ← 1
loop

Initialize the cluster center Xk with parameter
constraint
for each template do
Computer the similarity with the cluster center
Update the cluster with parameter constraint

end for
for each cluster center do
X ′k ← downsampling the cluster center Xk

end for
N ′k ← the minimum number of feature point

if N ′k > Nmin then
Xk++← X ′k

else
break

end if
end loop

points is less than the predefined threshold. Part of the warped
hierarchical tree is shown in Figure 3(b). The blue horizontal
line represents the level obtained by downsampling. The dark
horizontal line represents the level obtained by clustering.

C. SPARSE REPRESENTATION CLASSIFICATION
The best-fitting template can be found by scanning the
warped hierarchical tree when features are complete. How-
ever, the similarity between the sub-block of test image and
templates will decrease with increasing of the ratio of fea-
ture loss and clutter, which will lead to wrong matching.
The sparse representation which assumes the test sample
can be linearly represented by the dictionary is robust to
noise, clutter, and occlusion. It has been widely used in
face recognition and object tracking because it is robust to
feature loss and clutter [35], [36]. The orientation can reflect
the relationships between neighboring pixels points and the
underlying inherent structure of images. So we use sparse
representation classification based on orientation to find the
best-fitting template.

Assuming the atom of the dictionary can be represented as
ai,k ∈ Rm and the test sample can be represented as u ∈ Rm.
The dictionary can be represented as

A = [A1, · · · ,Ah] = [a1,1, a1,2, · · · , ah,n] ∈ Rm×n (5)

where h is the number of classes of template candidate
images. n is the number of template candidate images. m is
the dimension of the atom.

The dictionary and the test sample are both transformed
from two-dimensional matrices of the orientation of the
template candidate images and sub-block of the test image.
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We generate 16 atoms by spreading the orientation to neigh-
boring ±2 and ±4 pixels in the X direction and Y direction
for each class of template candidate image to build dictionary.
To increase the robustness, we build an extended dictionary
B ∈ Rm×m, which is an m-dimensional identity matrix. Then
the test sample can be linearly represented with A and B.

u = [A,B]
[
β

c

]
+ z (6)

where β = [β1, · · · , βn] and c = [c1, · · · , cm] are the
coefficients. The coefficients βi reflect the degree of fitting
with the ith template candidate image. The coefficients c
reflect the degree of feature loss and clutter. z is the noise
term.

To make the equation (6) undetermined, we utilize random
projection [37] for dimension reduction. The elements pi,j of
projection matrices P are defined as

pi,j =
√
s ·


+1 with probability 1/(2s)
0 with probability 1− 1/s
−1 with probability 1/(2s)

(7)

where s is the random value between 2 and 4.
The equation (6) can be expressed as

Pu = P[Ai,B]
[
βi
c

]
+ z (8)

The equation (8) can be solved by l1 minimization.[
β̂

ĉ

]
=arg min

β

∥∥∥∥[βc
]∥∥∥∥

1
s.t.

∥∥∥∥Pu− P[A,B] [βc
]∥∥∥∥ ≤ ε

(9)

where ε is the optimal error tolerance.
Then the best-fitting template can be directly determined

by the sparse coefficients as follows.

class = arg min
i=1,··· ,h

ri(u) = arg min
i=1,··· ,h

∥∥∥∥Pu− P[A,B] [ β̂iĉ
]∥∥∥∥

2
(10)

where β̂i is the vector by setting the coefficients as zero expect
for ith class. ri(u) is the difference between the original test
sample and the reconstructed test sample.

D. HYBRID FRAMEWORK FOR POSE ESTIMATION
To improve the accuracy of pose estimation when partial
features are missing or cluttered due to shading, we adopt
a hybrid framework which integrates template matching and
sparse representation classification for pose estimation. The
region of object in image and the template candidate images
can be got by template matching. Then sparse representation
classification is used to find the best-fitting template based on
the dictionary consisted of the spread orientation of template
candidate images.

The difference between the templates is big in the high
levels of warped hierarchical tree, and the difference between
the templates is small in the low levels of warped hierarchical

FIGURE 4. The flow chart of the hybrid framework.

tree. when partial features are missing or cluttered due to
shading, the wrong matching will occur in the low levels.
So we use sparse representation classification to find the best-
fitting template in the lowest level. Firstly, we extract the
orientation features of the test image and build the pyramid.
Secondly, template candidates can be got by scanning the
warped hierarchical tree to the bottom. Then we can build the
dictionary by spreading the orientation of template candidates
in the X direction and Y direction. Finally, the best-fitting
template can be directly determined by the sparse coeffi-
cients. The algorithm flow chart of our method is shown
in Figure 4. The 6D object pose can be calculated by mini-
mizing the distance between the edge points in the test image
and edge points in the template image.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
We used the dataset made by Konishi and the dataset made
by Hinterstoisser to evaluate our method.

The dataset made by Konishi consisted of nine texture-
less metal objects. The images in the dataset were captured
using monocular camera from viewpoints within the range
of −60◦ ∼60◦ longitude and latitude, −180◦ ∼180◦ rota-
tion and 660mm∼800mm distance. The resolution of these
images is 640× 480. Each object which is in cluttered back-
grounds has approximately 500 images. Besides, The pose
information of the object estimated based on the AR markers
was given in the dataset [38].

The dataset made by Hinterstoisser consisted of fifteen
texture-less objects. The images in the dataset were captured
using RGB-D camera from viewpoints within the range of
0◦ ∼360◦ longitude, 0◦ ∼90◦ latitude, −45◦ ∼45◦ rota-
tion and 650mm∼1150mm distance. We only used the color
images whose resolution is 640 × 480. The ground truth
pose estimated by the markers in the image was given in the
dataset.
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The existing methods proposed by Hinterstoisser et al.
[29], Ulrich et al. [30], and Konishi et al. [33] were compared
with our method on the dataset. All the programs were run
on a PC with 64G RAM and Xeon E5-2630 2.60GHz CPU
and developed using C++ language on the Visual Studio
2017 platform.

The range of the parameter corresponding to templates
was same as the range of objects in the dataset. For objects
from dataset made by Konishi, we generated 38025 templates
from various viewpoints with longitude step of 10◦, latitude
step of 10◦, rotation step of 12◦, and distance step of 30mm.
There were 3380 templates after first clustering, 383 tem-
plates after second clustering, and 23 templates after third
clustering. For objects from dataset made by Hinterstoisser,
we generated 38880 templates from various viewpoints with
longitude step of 10◦, latitude step of 10◦, rotation step of 12◦,
and distance step of 30mm. There were 3000 templates after
first clustering, 288 templates after second clustering, and 32
templates after third clustering.

B. SPEED
The runtime of train and search are independent of the struc-
ture of the object. They are related to the number of templates,
the size of templates and the type of features. They are both
critical for practical applications.

Although the hierarchical tree is constructed offline,
the long training time is still a problem that cannot be ignored.
The complexity of clustering ormerging determines the speed
of building the hierarchical tree. Assuming that the number of
templates is N and the number of clusters is k . For merging
[30], each template needs to compute similarity with the
other template, so the computational complexity of merging
is O(N (N − 1)). For X-means [33], the computational com-
plexity is O(N log k). For our clustering algorithm, the tem-
plate only needs to compute similarity with the neighboring
clusters in 4D space. So the computational complexity of
our clustering algorithm is O(16N ), and it is much less than
merging and X-means.

For the runtime of the search, we randomly selected
10 images from the datatset made by Konishi and cal-
culated their average processing time by different meth-
ods. The average processing times (ms) were shown in
Table 1.

The search strategy of Hinterstoisser’s method [29] is not
effective for a large number of templates. But the similar-
ity measure is optimized by precomputed responce maps,
which is faster than the bitwise operation. Ulrich’s method
[30] used the floating-point arithmetic to measure similar-
ity, so it is slower than other methods using bitwise opera-
tion or precomputed responce maps. Konishi’s method [33]
used the hierarchical pose tree to accelerate the search, so
its speed is faster than Hinterstoisser’s method. Our method
which integrates template matching and sparse representation
classification achieves a little bit slower than the Konishi’s
method [33].

TABLE 1. The processing time.

TABLE 2. The success rate.

FIGURE 5. (a) The test images. (b) The coefficient of linearly represented
by dictionary.

C. ROBUSTNESS
For similarity measure, Hinterstoisser’s method [29] used the
summation of cosine based on spread orientation. Ulrich’s
method [30] used dot product based on gradient direction. But
they will produce wrong matching in cluttered background
and are not robust to the feature change caused by posture
change. Just as the discussions mentioned in [33], PCOF
compared the other similarity measure is robust to posture
changes and cluttered background.

We showed the robustness of sparse representation clas-
sification using the example as Figure 5(a), in which partial
features are missing or cluttered. Firstly, we got the candidate
templates and position of the object in the test image by tem-
plate matching. Then the dictionary was built by the spread
orientation of the template candidate images. The sub-block
of the test image was linearly represented by the dictionary
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FIGURE 6. The example images of the dataset are presented. (a) Bracket. (b) Connector. (c) Flanger. (d) HingeBase. (e) L-Holder. (f) PoleClamp. (g)
SideClamp. (h) Stopper. (i) T-Holder. (j) Cat. (k) Duck. (l) Can.

as Figure 5(b). There were 320 atoms in the dictionary and
20 classes of template. As we observe, the coefficient is
sparse and corresponds to the correct class whose coeffi-
cient is dense. Besides, some example images with partial
occlusion from the dataset made by Konishi and the dataset
made by Hinterstoisser were shown in Figure 6. For texture-
less objects with different colors, shapes, and backgrounds,
our method can correctly find the best-fitting template using
hybrid framework integrating template matching and sparse
representation classification

D. ACCURACY
We evaluated the accuracy of our method compared with the
other methods using the dataset made by Konishi.

We presented some images of Connector from the dataset
made by Konishi with different partial occlusion dealt by
differents methods in Figure 7. The first row were the results
of Hinterstoisser’s method. The second row were the results
of Ulrich’smethod.The thrid rowwere the results of Konishi’s
method. The forth row were the results of our method. Our
method got better results, which are best-fitting compared
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FIGURE 7. The first row are the results of Hinterstoisser’s method. The second row are the results of Ulrich’s method. The thrid row are the results of
Konishi’s method. The forth row is the results of our method.

with the other method’s results. The region in 2D image and
pose of object are interdependent. The correct positions in 2D
image are beneficial to pose estimation. And the correct pose
is also beneficial to determine the region in 2D images. The
cluttered background often affects determining the region of
object in 2D image. The false region often occurs when the
feature of template and background is similar. Table 2 showed
the rate of the correct pose estimation for the dataset made by
Konishi. We regarded the template with the highest similarity
as the best-fitting template and defined that the pose whose

errors were within 12◦ for the longitude and latitude, 10◦ for
the rotation angle, and 40mm for distance were correct. The
results showed that ourmethod has higher accuracy compared
with the other methods. It is robust to the feature change
caused by posture change, partial feature loss, and clutter.

V. CONCLUSION
A hybrid framework based on the warped hierarchical tree
which integrates template matching and sparse representation
classification was proposed for improving the accuracy of

179820 VOLUME 8, 2020



Y. Guo et al.: Hybrid Framework Based on Warped Hierarchical Tree for Pose Estimation of Texture-Less Objects

pose estimation in this paper. The warped hierarchical tree
built with parameter constraint can accelerate the exhaustive
search. The hybrid framework which integrates the template
matching and sparse representation classification is robust to
shading, reflection, and occlusion. The experiments on the
texture-less datasets show that our method can achieve better
results.

Large-scale variances still constrain the improvement of
accuracy. In the future, the research for large-scale variances
will be one of the important research contents.
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