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ABSTRACT Since the first patient reported in December 2019, 2019 novel coronavirus disease (COVID-19)
has become global pandemic with more than 10 million total confirmed cases and 500 thousand related
deaths. Using deep learning methods to quickly identify COVID-19 and accurately segment the infected
area can help control the outbreak and assist in treatment. Computed tomography (CT) as a fast and
easy clinical method, it is suitable for assisting in diagnosis and treatment of COVID-19. According
to clinical manifestations, COVID-19 lung infection areas can be divided into three categories: ground-
glass opacities, interstitial infiltrates and consolidation. We proposed a multi-scale discriminative network
(MSD-Net) for multi-class segmentation of COVID-19 lung infection on CT. In the MSD-Net, we proposed
pyramid convolution block (PCB), channel attention block (CAB) and residual refinement block (RRB).
The PCB can increase the receptive field by using different numbers and different sizes of kernels, which
strengthened the ability to segment the infected areas of different sizes. The CAB was used to fusion
the input of the two stages and focus features on the area to be segmented. The role of RRB was to
refine the feature maps. Experimental results showed that the dice similarity coefficient (DSC) of the three
infection categories were 0.7422,0.7384,0.8769 respectively. For sensitivity and specificity, the results of
three infection categories were (0.8593, 0.9742), (0.8268,0.9869) and (0.8645,0.9889) respectively. The
experimental results demonstrated that the network proposed in this paper can effectively segment the
COVID-19 infection on CT images. It can be adopted for assisting in diagnosis and treatment of COVID-19.

INDEX TERMS COVID-19, CT, deep learning, MSD segmentation network.

I. INTRODUCTION

Since December 2019, some hospitals in Wuhan City, Hubei
Province had found multiple cases of unexplained pneu-
monia with a history of exposure to the seafood market
in South China. It has now been confirmed as an acute
respiratory infection caused by 2019 novel coronavirus
(2019-nCoV) [1]-[3]. The pneumonia caused by 2019-nCoV
is named ’Corona Virus Disease 2019° (COVID-19) by World
Health Organization [4]. Up to June 30th, COVID-19 has
become global pandemic with more than 10 million total
confirmed cases and 500 thousand related deaths [5]. The
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number of infections and related deaths is still rising fast
every day in the world.

Early identification of patients, quarantine and appropriate
treatment are best approaches to slow and stop its rapid
spread. The SARS-CoV-2 real-time reverse transcription
polymerase chain reaction (RT-PCR) test of upper respira-
tory tract specimen is most recommended for suspected ones
according to WHO clinical management [6]. Nevertheless,
RNA test can identify whether a patient is infected with
COVID-19, but it does not identify the infection degree of the
patient. Therefore, it is difficult to carry out targeted treat-
ment. Computed tomography (CT) provides a non-invasive
and effective method for detecting the manifestations of
viral pneumonia. Computed Tomography can help identify
whether the patient is infected with COVID-19, and display
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the evolution of the lung infection area of the patient at
different periods. It may assist doctors in targeted treat-
ment, as well as study the infection process of COVID-19.
Computed Tomography is a key component of the diagnostic
procedure for suspected patients and its CT manifestations
have been emphasized in several recent reports [7], [8]. The
segmentation of infected lesions by CT scan is important for
the quantitative measurement of disease progression [9].

Typical COVID-19 presentation includes ground glass
opacity mainly distributed in bilateral lower lobes, peripheral
area under the pleura for mild cases, whereas consolidation
and mixed ones are more common in severe cases, as well as
thickened interlobular septa, involvement of the center areas,
pleural effusion and enlarged mediastinal nodes [10]. Accord-
ing to [11], pulmonary CT infection areas of COVID-19
patients can be divided into three categories: ground-glass
opacities, interstitial infiltrates and consolidation.

The use of deep learning is gradually increasing, and
is used in various applications, such as automatic driving,
machine learning, face recognition, medical image process-
ing [12]-[14]. It is an effective approach that uses deep learn-
ing for COVID-19 classification and lesion segmentation.
Many significant works on COVID-19 have been proposed
in [15]-[18]. For patients infected with COVID-19, different
infection degree great influence on the treatment. Accurate
segmentation of different types of lung infection areas can
assist doctors in specific treatment. However, for many rea-
sons, accurate segmentation of COVID-19 is a very difficult
task. First, different types of infected areas have various
complex appearances. For example, ground-glass opacities
present diffuse bilateral pulmonary ground-glass irregular
small nodules and consolidation presents irregular solid.
Secondly, the size of different infection types varies greatly,
as shown in Fig.1. And the same CT image may have multiple
different types of infected areas.

This article designs a deep learning neural network to
segment COVID-19 lesions into three categories: ground-
glass opacities, interstitial infiltrates and consolidation on CT.
There are many common image segmentation deep learning
networks, such as FCN [19], SegNet [20], U-net [21] etc.
Among them, U-net and improved network (U-Net++ [22])
are widely used in medical image segmentation. This
paper proposes a novel multi-scale discriminative net-
work (MSD-Net) for automated and accurate segmentation
COVID-19 CT images. The main contribution of the net-
work is:

1) We propose a multi-scale discriminative segmentation
network (MSD-Net), which combined pyramid con-
volution block (PCM), channel attention block (CAB)
and residual refinement block (RRB), for the accurate
segmentation of COVID-19 lung infection into three
categories.

2) Due to the difference in the size of the three types of
lesion areas on CT, we propose the pyramid convolu-
tion block (PCB) to increase the receptive field of the
network and further optimize the segmentation results.
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3) A new attention module named channel attention block
(CAB) is proposed to fuse two adjacent stages with
attention mechanism. Experimental results show that
CAB can significantly improve the segmentation effect
of the network compared with the existing attention
module.

The rest of this paper is organized as follows.
Section 2 introduces some work related to our method.
Section 3 describes the proposed method in detail and dataset.
We report the experimental results in Section 4 and the limi-
tations of the study in Section 5. At last Section 6 concludes
the paper.

Il. RELATED WORK

A. IMAGE SEGMENTATION

Image semantic segmentation is one of the important fields
of computer vision, which can classify images at the pixel
level. And many classic segmentation networks based on
deep learning have been proposed so far. Fully Convolu-
tional Network (FCN) [19] used deep learning for semantic
segmentation for the first time. It replaced fully connected
layers of CNN into convolutional layers, achieving pixel-
wise classification. Many subsequent segmentation networks
of encoder-decoder architecture are developed from FCNs.
Badrinarayanan [20] proposed SegNet on the basis of FCNs.
SegNet is a typical encoder - decoder structure and the
decoder uses the max-pooling indices received from the
corresponding encoder to perform upsampling of the input
feature map. PSPNet [23] used pyramid pooling module to
fuse multi-scale context information, and our model used
pyramid convolution block (PCB) to achieve multi-scale
receptive fields. Ronneberger [21] proposed U-Net that was
suitable for segmentation of biomedical images. Now it has
been applied in many fields. U-Net++4 [22] added a series
of dense, nested skip connections to improve U-Net. And
Attention U-Net [24] introduced an attention mechanism to
achieve better segmentation. The attention gate can suppress
the characteristic response of irrelevant background areas like
our channel attention block (CAB). Cigek, O [25] proposed
3D U-Net which converted 2D operations in U-Net to 3D.
And for practical application, Paszke A [26] proposed an
efficient neural network, called E-Net, which has fast run-
ning speed and high accuracy. RefineNet [27] introduced
multi-resolution fusion module, residual convolution unit and
chained residual pooling to achieve high resolution segmen-
tation. Residual convolution unit is similar to our residual
refinement block (RRB) which is improved from residual
block. The Deeplab v1 [28] introduced dilated convolution,
which can increase the receptive field. The Deeplab v2 [29]
proposed atrous spatial pyramid pooling (ASPP) which used
multiple filters with different rates to capture targets and
context at multiple scales.

B. MEDICAL IMAGE SEGMENTATION
Milletari [30] proposed a U-net based segmentation network
for prostate MRI images called V-Net. The V-Net combines
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FIGURE 1. CT manifestations of different infection types. The samples in 1-3 column content single category on a CT slice. The
samples in 4 and 5 columns include two categories. The last column shows the situation where the three types appear
simultaneously. In the figure, green represents ground-glass opacities, yellow represents interstitial infiltrates and red represents

consolidation.

different modalities of MRI images to realize the end-to-end
prostate segmentation. The NVIDIA Lab’s Myronenko [31]
proposed a new glioma segmentation network. The network
adds a decoder to the traditional encoder-decoder structure to
reconstruct the input image encoder feature extraction results.
The DUNet network proposed by Jin et al. [32] introduces
the idea of deformable convolution on the basis of U-Net.
It uses the local features of retinal vessels to achieve the end-
to-end segmentation task. The DUNet can adaptively adjust
the size of the convolution kernel according to the thickness
and shape of the segmented blood vessel, and obtain accurate
segmentation results of the blood vessel based on multi-
scale convolution. Fan et al. [33] proposed a new COVID-19
Lung Infection Segmentation Network (Inf-Net) to automat-
ically segment infected regions. The Inf-Net uses a paral-
lel partial decoder to generate a global map and aggregate
high-level features. Then it utilizes explicit edge-attention
and implicit reverse attention to enhance the representations.
Moreover, the author used weak supervision to train the
network. The dataset is 50 CT images with ground-truth
labels and 1600 CT images with pseudo labels. The DSC of
this model is 0.739, the sensitivity is 0.725, and the speci-
ficity is 0.960. Amyar et al. [34] created a multitask deep
learning network for COVID-19 classification and segmen-
tation. The DSC of this model is higher than 0.78. The paper
used 1044 patients including 100 normal ones, 449 patients
with COVID-19 and 495 of different kinds of pathology
for experiments. Wang et al. [35] proposed an automatic
segmentation network named COPLE-Net. It is characterized
by its noise-robust. The DSC of the result is 80.72 + 9.96.
This paper used 558 COVID-19 patients for the experiment.
Wang et al. [36] developed a weakly-supervised deep learn-
ing framework for COVID-19 classification and lesion local-
ization on CT. In this paper, a 3D framework DeCoVNet is
designed to predict the probability of COVID-19 infection.
By combining the CAM activation region in DeCoVNet and
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TABLE 1. The number of images with ground-glass opacities, interstitial
infiltrates, and consolidation in the COVID-19 CT segmentation dataset.

Infection types

Ground-Glass  Interstitial Consolidation Numbers
Opacities Infiltrates
v v v 17
v v 343
v v 33

v v 34 2506
v 879

v 1012

v 188

the unsupervised connected components, COVID-19 infec-
tion areas are located. This paper used 499 CT volumes for
training, and 131 CT volumes for testing. The algorithm
obtained 0.976 PR AUC and 0.959 ROC AUC.

Ill. MATERIAL AND METHODS
A. DATA COLLECTION
The COVID-19 CT segmentation dataset provided by The
Affiliated Hospital of Qingdao University contains multiple
CT sequences taken on different dates from 18 COVID-19
patients and 18 without COVID-19 including 20 women and
16 men. Their age is from 23 to 67 years old. We extracted
4780 2D CT axial slices from the 3D volumes, in which
2506 slices were with COVID-19 infected lesions and
2274 without. The dataset was divided into 3824 images for
training, 956 images for validation by using 5-fold cross-
validation. Each image with infected lesions was equipped
with multi-class labels annotated by professional doctors for
identifying different lung infections (including ground-glass
opacities, interstitial infiltrates, and consolidation). Table 1
lists the number of images with different infection in the
dataset.

Pulmonary CT infection areas of COVID-19 patients
were divided into three categories: ground-glass opacities,
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FIGURE 2. Overview of the proposed MSD-Net. PCB: Pyramid convolution block. CAB: Channel attention block. RRB: Residual

refinement block. (Best viewed in color).

interstitial infiltrates and consolidation. Their CT manifesta-
tions are shown in Fig.1. It can be seen in the figure that the
areas of different categories vary greatly, and the size of the
same category varies significantly. It is possible that multiple
categories of infection areas appear in the same CT image,
and the infection areas of different categories may be close
to each other. These conditions increase the difficulty of the
segmentation task.

B. NETWORK ARCHITECTURE

The U-net has often been used for medical image segmen-
tation. In this section, we introduce our framework inspired
by U-net for COVID-19 lung infection segmentation. The
overall framework of the proposed multi-scale discriminative
segmentation network (MSD-Net) is showed in Fig.2.

Our network takes lung CT images as input and outputs
four-channel (representing ground-glass opacities, intersti-
tial Infiltrates, consolidation, and background) segmentation
results in an end-to-end manner. We used the ImageNet pre-
trained ResNet-101 [37] as the backbone encoder of our
model, the proposed MSD-Net has four stages of feature
map scale. In addition, we added a global average pooling
layer at the top of the network to extract the global semantic
consistency from the encoder, because the receptive field had
expanded to the full image size. The output feature maps of
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each stage are fed into a pyramid convolution block (PCB)
to achieve multi-scale information. The PCBs effectively
expand the receptive field for reducing the loss of spatial
positioning information. Since the outputs of encoders have
weak semantic information and the features generated by
corresponding decoders have strong semantic information,
we concatenate the PCB output features and the output of
corresponding decoder as the inputs of the channel attention
block (CAB) to obtain a channel-wise attention vector. The
channel-wise attention vector contains the strong semantic
information of decoder features, which can generate features
with more discriminative capability. The feature maps of each
stage in our network all go through the residual refinement
block (RRB), which can further strengthen the discriminant
ability of each stages.

C. PYRAMID CONVOLUTION BLOCK

The idea of pyramid convolution block (PCB) aims to achieve
multi-scale receptive fields of input feature maps. The PCBs
following four Res-block stages combine different sizes and
number of convolution kernels, as illustrated in Fig.3(a).
It expands receptive field for reducing the loss of spatial
positioning information by using several large kernel con-
volutions. For each PCB-k (k € {1, 2,3, 4}), there are k
kernels with corresponding sizes. The corresponding size of
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FIGURE 3. Detailed structures of the (a) pyramid convolution block, (b) channel attention block, and

() residual refinement block.

TABLE 2. The channel information of the pyramid convolution
block (PCB).

Input channels PCB-1 PCB-2 PCB-3 PCB-4

1x1 1024 512 256 64
Convl1 256 128 64 16
Conv2 128 64 16
Conv3 64 16
Conv4 16
1x1 256 128 64 16

Output channels 1024 512 256 64

each PCB is from 4 k — 1 to 8 k — 5 which is spaced by 4.
For example, the kernel sizes of PCB-3 are 11 x 11,15 x
15,19 x 19 with k = 3. In order to reduce computational
complexity, we employ depth-wise separable convolutions
to reduce the parameters of the pyramid convolution. The
input and output channels of the PCB have not changed. The
channel information of the PCB is shown in Table 2.

D. CHANNEL ATTENTION BLOCK

Fig.3(b) illustrates the structure of channel attention block
(CAB). The two inputs of CAB, which from two adjacent
stages, are concatenated and pass through a global average
pooling to generate a vector with global information. Then
we use a 1 x 1 convolution and a sigmoid activation layer
to obtain the channel-wise attention vector. A channel-wise
multiply operation will apply on the channel-wise attention
vector and PCB output feature maps to enhance the semantic
discrimination of features. Finally, the enhanced feature maps
are combined with the later-features as the output of CAB.
This module does not change the number of channels.

E. RESIDUAL REFINEMENT BLOCK
The structure of residual refinement block is shown
in Fig.3(c). Inspired by the architecture of ResNet [37],

185790

TABLE 3. The channel information of the residual refinement block (RRB).

Input channels RRB-1 RRB-2 RRB-3 RRB-4

1x1 1024 512 256 64
3x3 512 256 64 32
3x3 512 256 64 32

Output channels 512 256 64 32

we designed the RRB based on the residual block (RB). The
first component of RRB is a 1 x 1 convolution to adjust the
channel number of feature maps and the following is a basic
residual block to refine the feature map. The outputs of all
convolutions in RRB are then summed with the input together
as the output. The feature maps output by CAB in each stage
will go through the RRB. With this design, the RRB can
further strengthen the discriminant ability of each stage. The
channel information of the RRB is shown in Table 3.

F. LEARNING OBJECTIVES

In general, loss function plays a significant role in training the
network. Since the class imbalance of the different infection
region, especially the proportion of negatives (background
areas) in the whole image is too large, we use focal loss [38]
to reduce the influence of class imbalance and improve the
network sensitivity to the under-represented categories. The
focal loss of class ¢ can be computed as:

88 ;
FL(pj) = —aj(l —p,') 10g(pj), jef0,1,...,c—1}
ey
where p. is the predicted probability of category ¢ . The sym-
bol y represents the modulating factor of focal loss, which in
our experiment is set to 2.0. The class weight a. is assigned

based on the proportion of pixels in different regions. Let
N = {Ni, N», N3, N4} represents the set of the pixel numbers
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FIGURE 4. Multi-class lung infection segmentation results obtained by the proposed model and other
methods. The green, yellow, and red labels indicate the ground-glass opacities, interstitial infiltrates, and

consolidation, respectively. (Best viewed in color).

in four different regions, the class weight a, can be computed
as:

jef0,1,....c—1} (2

IV. EXPERIMENTS AND RESULTS
A. IMPLEMENTATION DETAILS
The proposed method was implemented in Pytorch [39].
All the COVID-19 CT images in our experiments had been
resized to 512 x 512. In order to reduce the influence of
overfitting caused by limited datasets, we employed several
data augmentation operations, including random rotation and
random flipping (up-down or left-right in x-y planes). The
Adam optimizer [40] had been employed for training our
model in an end-to-end manner with an initial learning rate
of 0.001 and betas of (0.9, 0.999). The learning rate decayed
by 0.1 every 100 epochs. The batch size was set to 8 on an
NVIDIA GeForce GTX 1080ti GPU with 11GB memory.
Training MSD-Net on the training set which consisted
of 3824 CT images took about 4 hours and testing a CT image
costed an average of 0.023 seconds on an NVIDIA GeForce
GTX 1080Ti GPU.

B. EVALUATION CRITERIA
We implemented four widely used medical image segmen-
tation models, including U-Net [21], U-Net++ [22], and
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U-Net + CBAM [41] and Attention U-net [24] for a straight
comparison on the COVID-19 CT segmentation dataset.
These state-of-the-art models and the proposed network were
both evaluated using 5-fold cross-validation. The metrics
employed to quantitatively evaluate segmentation was dice
similarity coefficient (DSC) [42], sensitivity and specificity.
DSC is used to evaluate the similarity between the predicted
segmentation result P and ground truth G, which is calculated
as:

2|G N P

Gl + ||

where |-| represents the number of voxels. The value of DSC
ranges from O to 1, and a larger value represents a more accu-
rate segmentation result. Sensitivity and Specificity evaluate
the segmentation from the aspect of pixel-wise classification
accuracy, as shown in following:

DSC(G, P) (3)

TP

Sensitivity = ——— 4

ensitivity TP L EN “4)

Specificit ™ ®)
ecificity = ———
pectiely = IN T FP

C. SEGMENTATION RESULTS AND COMPARISONS

The multi-class segmentation results on CT images of
COVID-19 are shown in Fig.4 and the statistical results are
listed in Table 4. To compare the multi-class infection seg-
mentation performance, we evaluated the proposed multi-
scale discriminative segmentation network against four deep
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TABLE 4. Quantitative comparison of the proposed model and four widely used deep models for multi-class infection segmentation. (Mean + standard
deviation of DSC, Sensitivity, and Specificity, best results are highlighted in bold).

Method Infection type DSC Sen. Spec. P-value
Ground-Glass Opacities 0.6034 £0.073  0.7231 £0.011 0.9775 £ 0.010

U-Net [21] Interstitial Infiltrates 0.6423 4 0.081 0.7361 4 0.025 0.9756 4+ 0.008 1.09 x 10~8
Consolidation 0.7526 +0.036  0.8209 + 0.026  0.9863 £ 0.005
Ground-Glass Opacities  0.7160 +0.052  0.8017 £0.014  0.9675 4 0.004

U-Net++ [22] Interstitial Infiltrates 0.6971 £0.034  0.7829+£0.018  0.984740.008 3.15 x 10~°
Consolidation 0.8041 +£0.042  0.81724+0.009  0.9865 =+ 0.003
Ground-Glass Opacities  0.7226 +0.026 ~ 0.8038 £ 0.019  0.9665 £ 0.012

Attention U-Net [24]  Interstitial Infiltrates 0.7158 4+ 0.024 0.7953 £ 0.011 0.9812 + 0.007 1.56 x 10~%
Consolidation 0.8012 +£0.041  0.8147+0.015  0.9814 + 0.008
Ground-Glass Opacities  0.7037 +0.039  0.8172 £0.013  0.9675 4+ 0.005

U-Net+CBAM [41]  Interstitial Infiltrates 0.6824 £0.032  0.7975+0.018  0.943140.008 7.22 x 10~

Consolidation

0.8005 £ 0.052

0.8727 +0.021 0.9827 &+ 0.004

Ground-Glass Opacities 0.7422 £ 0.038 0.8593 1+ 0.018
0.7384 4+ 0.021 0.8268 £ 0.020 0.9869 #+ 0.005
0.8769 + 0.015 0.8645+0.017 0.9889 &+ 0.007

Interstitial Infiltrates
Consolidation

Our network

0.9742 £ 0.005

encoder-decoder networks which had been widely used for
medical image segmentation. Table 4 gives the Dice simi-
larity coefficient (DSC), Sensitivity (Sen.), and Specificity
(Spec.) obtained by the models in the 5-fold cross-validation
on the COVID-19 CT segmentation dataset.

It can be observed that the baseline U-Net achieves much
lower DSC and sensitivity for all categories. The Attention
U-Net [24] performed better on DSC and the U-Net +
CBAM [41] performed better on sensitivity than U-Net
and U-Net++ because of involving the attention modules.
Compared with Attention U-Net [24], our MSD-Net
improved the average DSC from 72.26% to 74.22% for
ground-glass opacities, 71.58% to 73.84% for interstitial
infiltrates and 80.12% to 87.69% for consolidation respec-
tively. The MSD-Net also achieved significant improvement
on sensitivity. Compared with U-Net + CBAM [41], our
model effectively improved more than 4 percentage of sen-
sitivity from 81.72% to 85.93% for ground-glass opacities.
And for interstitial infiltrates, the sensitivity increased from
79.75% to 82.68%. It can be seen that the proposed model had
better segmentation performance on ground-glass opacities
and interstitial infiltrates categories, which was also the
difficulty of COVID-19 accurate segmentation. We attributed
the improvement of our MSD-Net to the pyramid convolu-
tion block and channel attention, which provided significant
multi-scale discriminant feature maps. The specificity is
much higher than sensitivity and varied slightly for differ-
ent methods because that the true negative pixels without
COVID-19 were far more than the true positive samples.
All the p values are also given in Table 4. It is obviously that
our proposed model was significantly different from other
models with p<0.05.

Fig.4 shows the qualitative comparisons of our model with
the other four medical segmentation networks. It can be
observed that the infection lesions of the three categories were
with rich diversity in shape and area. This attribute caused
the difficulties of lesion segmentation. Our proposed pyramid
multi-scale and attention model can solve the problem to
some extent. The comparison results intuitively illustrated
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that our MSD-Net performed better than other start-of-the-
art segmentation models. Both the qualitative and quantitative
comparisons proved that our method can produced more
accurate segmentation results that were close to the ground
truth with less mis-segmented tissue. The PCB and CAB
can effectively improve the ability to segment all categories,
especially the high sensitivity to ground-glass opacitie and
interstitial infiltrates.

D. ABLATION EXPERIMENTS

We conducted several ablation experiments to evaluate the
contributions of each key component to the overall perfor-
mance of our proposed model, including pyramid convolution
block (PCB), channel attention block (CAB), and residual
refinement block (RRB). The results obtained by applying
the proposed network with RB (residual block), RRB, CAB,
and PCB to the COVID-19 CT segmentation dataset are given
in Table 3. It shows that using RRB to replace RB slightly
increases the performance at both three infection regions
(comparing the results in Table3 (1) and (2)). Employing
CAB greatly improves the segmentation performance at con-
solidation areas (comparing the results of (2) and (3)), which
suggests that CAB can enable our model to generate more
discriminative and accurate results. The PCB module effec-
tively increases the performance (comparing the results of (3)
and (4)) in terms of all metrics. This suggests that introducing
the PCB component can enable our model to acquire multi-
scale discriminative information and distinguish true infected
areas accurately.

E. VISUALIZATION STUDIES

The proposed MSD-Net can achieve more discriminative and
accurate results by using the semantic information. In order
to qualitatively illustrate the effectiveness of the network,
we selected several feature maps from each decoder layer.
The visualization of the feature maps provided some insight
view of the network segmentation performance. As shown
in Fig.5, the hotter color represents the higher response value.
Each column is the output feature maps from the decoder
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TABLE 5. Quantitative evaluation results of different modules used in our proposed model. RB: residual block, RRB: residual refinement block, PCB:

pyramid convolution block, CAB: channel attention block.

Method Infection type

DSC

Sen.

Spec.

Ground-Glass Opacities
Interstitial Infiltrates
Consolidation

(1) ResNet-101+RB (Backbone)

0.7034 £ 0.044
0.6958 + 0.026
0.7934 £ 0.020

0.8011 £ 0.019
0.7969 £ 0.020
0.8289 £ 0.025

0.9714 £ 0.011
0.9799 £ 0.009
0.9806 £ 0.012

Ground-Glass Opacities
Interstitial Infiltrates
Consolidation

(2) ResNet-101+RRB

0.7148 £ 0.041
0.7198 £+ 0.021
0.8066 + 0.020

0.8246 £ 0.021
0.8101 £ 0.018
0.8536 + 0.018

0.9729 £ 0.007
0.9832 £ 0.010
0.9833 £+ 0.009

Ground-Glass Opacities
Interstitial Infiltrates
Consolidation

(3) ResNet-101+RRB+CAB

0.7278 £ 0.039
0.7293 £ 0.026
0.8605 4+ 0.0151

0.8402 £ 0.019
0.8145 £ 0.0201
0.8502 £+ 0.019

0.9781 £+ 0.006
0.9862 £ 0.008
0.9891 + 0.005

Ground-Glass Opacities
Interstitial Infiltrates
Consolidation

(4) ResNet-101+RRB+CAB+PCB

0.7422 1+ 0.038
0.7384 + 0.021
0.8769 + 0.015

0.8593 + 0.018
0.8268 + 0.020
0.8645 + 0.017

0.9742 £ 0.005
0.9869 + 0.005
0.9889 £ 0.007

\
1
1
1
1
1
1
1
1
1
1
1
1
1 ~
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Ground Truth

1
\
~

Out Layer

FIGURE 5. Examples of three categories feature maps generated by each decoder-layer, the hotter color
represents the higher response value. RRB: residual refinement block. (Best viewed in color).

GT Result

CT Image

FIGURE 6. Results with different noise. The first column is the input CT
images. The second column is the ground truth, and the third column is
the segmentation results. The first row is the original input, the second
row is the input which is infected by gaussian noise with a variance

of 0.05. The third row is infected with a variance of 0.10.

RRBs block, and each raw indicate the high response areas
of the three infection lesion categories. It can be observed
that our designed network can indicate how much attention
should be paid to the infection areas.
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F. ROBUSTNESS

When the input CT data are infected with a higher level (but
still reasonable amount) of noise and artifacts, the perfor-
mance of the proposed model is still satisfied. We add differ-
ent types of noise to the input(gaussian noise with variances
of 0.05 and 0.10), and the results show that our network has
achieved good segmentation results, as shown in Fig. 6.

V. LIMITATIONS OF THE STUDY

Our study has some limitations.In terms of insufficient num-
ber of samples, there are fewer samples of mild symptoms,
and most of the patients are moderate and severe patients.
Mild symptoms are vague and difficult to distinguish. We use
Focal Loss [38] to solve the problem to a certain extent.
To further optimize the overall network, a strong backbone
model and optimal loss functions can be designed in the
future. Also new data enhancement methods can be con-
cerned to improve the accuracy.

VI. CONCLUSION

Because the spread of COVID-19 has not been brought
under control and testing kits are in short supply, the use
of deep learning for auxiliary diagnosis of COVID-19 is of
great significance. In this paper, we proposed the multi-scale

185793



IEEE Access

B. Zheng et al.: MSD-Net: Multi-Scale Discriminative Network for COVID-19 Lung Infection Segmentation on CT

discriminative segmentation network (MSD-Net) which can
perform multi-class infection segmentation. The CT infection
categories are ground-glass opacities, interstitial infiltrates
and consolidation according to lesions degree of symp-
toms and labeled by professional doctors. We involved
the pyramid convolution block and design an attention
block in the proposed MSD-Net to effectively increase the
segmentation results. Compared with other state-of-the-art
segmented networks, our method achieved significant per-
formance. The DSC indicators of the three infection cat-
egories were 0.7422,0.7384,0.8769 respectively. And for
sensitivity and specificity, the results were (0.8593, 0.9742),
(0.8268,0.9869), (0.8645,0.9889). Experimental results show
that the proposed MSD-Net can effectively segment CT infec-
tion lesions for COVID-19. The network also provides a
quantitative auxiliary analysis method for the diagnosis of
COVID-19.
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