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ABSTRACT The fine extraction of water boundaries is of great significance for water resource monitoring,
water environment monitoring, and flood prevention. MODIS images are widely used for water extraction
due to their high temporal resolution, wide coverage, gratuity, and long observation period. However, owing
to their low spatial resolution, the water boundary results are often blurred. It is difficult to extract water
boundaries accurately. The subpixel mapping algorithm can solve this problem. In this article, Dongting
Lake and its surroundings are adopted as the experimental area. The digital elevation model (DEM) is used
to modify the subpixel/pixel spatial attraction model (SPSAM) mapping results. The proposed algorithm
is referred to as the DEM-modified SPSAM (D-MSPSAM). Based on the visual results of the two sets
of experiments, the modified results suitably maintain the spatial details of the water, and many of the
underestimations caused by the similarity of the spectral characteristics of the surroundings to those of
the water have been corrected. In this paper, the accuracy of Landsat-8 water extraction is used as a
reference. Based on the quantitative results, the D-MSPSAM method has a higher extraction accuracy than
the traditional threshold method, and the accuracies of the extraction for high water and low water have been
increased by 3.56 percentage points and 2.77 percentage points, respectively. Furthermore, these results also
confirm the potential application of DEM data for flood submergence extraction and provide new ideas
for the improvement of the subpixel mapping model. The proposed method can accurately generate water
distribution maps in a practical and economical way.

INDEX TERMS DEM, pixel unmixing technology, subpixel mapping, water extraction.

I. INTRODUCTION
Water boundaries, which are the junctions where water
and land meet, include lakeshores, river banks, coasts and
flood boundaries. In water remote sensing applications, water
boundaries and areas must be extracted, and the extrac-
tion accuracy will directly affect the accuracy of subsequent
research. During water boundary extraction, the mixed pixel
problem occurs. The influence of image spatial resolution
on the result of water boundary extraction varies based on
the area of the water body; the resolution may have little
impact on a large water body, but it has a great impact on a
small water body when using, for example, Landsat, Sentinel
and other medium-resolution images [1]. When monitoring
large water bodies (e.g., 100-ha lakes), medium-resolution
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data such as Landsat and SPOT can be used to achieve highly
precise results and errors as low as 1-2% [2], [3]. SPOT (up to
2.5 m) is expensive and has a long revisit cycle (unless images
are ordered ). Landsat images are free and combining imagery
from two Landsat satellites (e.g. aboard Landsat 8 and Land-
sat 7) can provide images every 8 days. Sentinel -2 (up
to 10 m) (2A and 2B) can have a revisit time of 5 days,
basically meeting the needs of flood monitoring. However,
the rapid changes of the flood in a short period of time cannot
be captured. Moreover, Sentinel-2 has only provided services
in recent years and lacks historical reference data. In com-
parison, although the spatial resolution of MODIS images is
low (250 or 500 m), it can obtain data every day, covering
a wide range, with rich historical data since 2000. There-
fore, MODIS images have broad application prospects in
dynamicmonitoring fields, such as floodmonitoring, drought
monitoring and marine environment monitoring. Most of
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these applications require a wide range of coverage and high
monitoring frequencies. [6], [7]. However, the low spatial
resolution of MODIS images causes mixed pixels, which
greatly limits the accuracy of MODIS water extraction and
the application of MODIS in the field of water remote sens-
ing. However, the need for unmixingmethods is not limited to
low spatial resolution imagery such as MODIS, as even with
10-m imagery, boundary error can be high on small water
bodies. This method has potentially even greater benefits
when studying small water bodies for which these border
effects are more important.

Through pixel unmixing, the percentage of each feature
among the mixed pixels (i.e., the end element abundance)
can be obtained. However, to determine the specific spatial
locations of the various types of features, the subpixel map-
ping algorithm is still required. In 1997, Professor Atkinson
of the university of Southampton in the United Kingdom
proposed the concept of subpixel mapping. For subpixel
mapping, which is based on the theory of spatial correlation,
the distributions of the feature category within and between
pixels are assumed to be spatially correlated; therefore, pixels
that are closer together are more likely to belong to the same
type than pixels that are farther away [8].

Atkinson proposed a pixel swapping algorithm (PSA)
based on the spatial correlation theory of pixels. Due to the
correlation between a subpixel and its neighboring subpix-
els, subpixels can be exchanged to gradually increase the
spatial correlation until stability is attained [9]. Ling Feng
and others used cellular automata to exchange subpixels to
maximize the spatial correlation [10]. Tatem proposed a sub-
pixel mapping process for two types of features (i.e., target
and background features) in combination with a Hopfield
neural network (HNN) and then extended the model for
the position determination of various target categories [11].
Subpixel mapping has been successfully applied in multiple
remote sensing image applications [12], [13]. Kasetkasem
et al. used Markov random fields (MRFs) to describe the
statistical correlation between pixels by considering spatial
and spectral constraints and realized subpixel mapping by
calculating the probability of the various types of features
belonging to subpixels [14]. Verhoeye et al. studied the math-
ematical model of the spatial correlation theory and trans-
formed subpixel mapping into a linear optimization problem.
On this basis, Mertens et al. proposed a genetic algorithm
(based on the BP neural network (BPNN) [15], [16]) called
the subpixel/pixel spatial attraction model (SPSAM) [17],
[18]. For the SPSAM, according to spatial correlation theory,
similar types of features are assumed to attract each other
without prior information.

Although these algorithms are implemented differently,
their basic principles are similar. For example, they are all
based on the spatial correlations of feature information (i.e.,
the similarity principle), and they readily obtain compact
figure shapes and are suitable for most types of figures.
Subpixel mapping is an underdetermined inversion problem
with constraints that are much less rigid than those of the

solution parameters, which leads to large uncertainties in
the mapping results. Additional spatial distribution features
describing the types of objects inside mixed pixels can be
included. Auxiliary information, such as DEM elevation
data, high-resolution remote sensing images, and feature
boundaries, can be adopted as a constraint to improve the
accuracy of subpixel mapping [19]–[21]. The distribution of
water is closely related to the topography. Digital elevation
model (DEM) data have been applied in many studies in
combination with remote sensing image data for water dis-
tribution monitoring [7], [20].

Therefore, in this paper, a modified subpixel mapping
algorithm is proposed. This method introduces DEM data
and uses elevation values to determine whether a subpixel is
a submerged pixel, thus, the traditional subpixel mapping is
modified, and a higher accuracy for the submerged subpixel
mapping of water bodies is achieved.

II. THEORY AND METHODS
Remote sensing image classification methods can be divided
into two categories: hard classification methods and soft
classification methods. Hard classification methods, which
include supervised classification, unsupervised classification
and decision tree classification, divide each pixel into a spe-
cific feature category, which will lead to the loss of a large
amount of useful information and easily cause overestima-
tion and omission. Soft classification methods calculate the
percentage of a mixed pixel represented by each land type,
obtain a rich image dependent on the number of ground
classes, divide the mixed pixel into a plurality of subpixels,
and determine each type of feature of the subpixel. Clearly,
soft classification methods are scientific and reasonable, and
they can optimally preserve useful image information.

A. END ELEMENT EXTRACTION
The endmember is a pure pixel that contains only one type of
feature. Common algorithms for endmember spectral extrax-
tion include the pure pixel index (PPI), N-FINDR, and itera-
tive error analysis (IEA) [22], [23]. The purity degree of end
element selection has a great influence on the decomposition
result of the mixed pixel. The PPI algorithm is the most
mature and widely used approach, but it is sensitive to noise
anomalies. There is no suitable selection rule for the inter-
mediate process parameters, and the end element spectrum
cannot be visually evaluated. The actual feature category is
represented; thus, the accuracy of the algorithm in selecting
the endmember is not guaranteed.

In view of the shortcomings of the PPI algorithm, this paper
proposes a method that obtains the endmember directly from
theMODIS image by using the high-resolution image surface
coverage and PPI image as prior knowledge. Specifically,
high- and low-resolution images acquired on the same day
are almost the same in terms of surface coverage, and the
PPI index indicates the pixel. We can first set the PPI index
image to a higher threshold and then select the corresponding
low spatial resolution based on the surface coverage of the
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high-resolution remote sensing image. The spectrum of the
corresponding position on the image is generated to obtain the
endmember spectrum. This operation mode can intuitively
control the type and quantity of the selected feature according
to the actual object type, which greatly improves the effi-
ciency and accuracy of endmember extraction.

B. ABUNDANCE INVERSION
The process of obtaining the end-element spectrum of the
various types of features extracted frommixed pixels is called
pixel unmixing. Existing pixel unmixing models mainly
include linear and nonlinear models. Currently, the most
widely used model is the linear spectral mixture model
(LSMM). The LSMM assumes that the spectral features of a
feature in a pixel are similar and exhibit linear additivity. The
reflectivity of the pixel in a certain band is composed of pix-
els, and a linear combination of the end element reflectance is
adopted as the weight factor of the pixel area ratio [23], [24].

C. SUBPIXEL MAPPING
Subpixel mapping is mainly based on the decomposition of
mixed pixels, and it uses the feature types and their cor-
responding abundance values to cut the mixed pixels into
smaller units, subdivide the units into subpixel levels, and
determine the mixed pixels. The specific spatial location of
the included feature types is used to obtain a subpixel-scale
feature classification map to improve the spatial resolution of
remote sensing feature images.

Based on Atkinson’s theoretical research, Verhoeye et al.
proposed a mathematical model that transforms the subpixel
mapping problem into a subpixel distribution problem by
using linear optimization. The model assumes that a large
pixel is divided into S2 small pixels, among which class c
subpixels account for NSPc. The numerical value of NSPc
is obtained from an abundance map. SDVc,j represents the
spatial attraction of subpixel pj when it is assigned to class
c. When xc,j is equal to 1, subpixel pj is of class c, and when
xc,j is equal to 0, subpixel pj is of a different class. The model
can be expressed as follows:

Maximize Z

=

∑
c

∑
j

xcj · SDVcj, (1)

xcj =

{
1, if subpixel pj is assigned to class c,
0, otherwise.

(2)

The model has two constraints:∑
c

xcj = 1, (3)

∑
j

xcj = NSPc . (4)

Equation (3) indicates that subpixel pj must be one of c
types of ground objects, and equation (4) indicates that in a
mixed pixel, the number of subpixels c should be equal to the

number of subpixels NSPc determined by the decomposition
of the mixed pixels [1].

The SPSAM is a simple and effective solution to the
above spatial relation theory. The SPSAM is based on the
following assumptions: First, the neighborhood pixels are
spatially attracted to the subpixels in the central pixel, and
gravity is determined based on the abundance and distance of
the neighborhood pixels. Second, the subpixels in the central
pixel are attracted by only the neighboring pixels (in general,
there are eight such pixels). Third, other pixels are considered
to be too far from the central pixel to produce attraction; a
pixel near the center pixel is more attracted to the center pixel
than the pixel far from the center pixel.

FIGURE 1. Illustration of the subpixel/pixel spatial attraction model
(SPSAM) (adapted from [20].

The SPSAM calculates the attraction based on the
Euclidean distance. In the SPSAM, the correlation is
described by the spatial attraction, and the category of each
subpixel is determined by calculating the spatial attraction
between each subpixel and its corresponding neighborhood.
Figure 1 is a schematic diagram of the distance calculation of
the SPSAMwhen the segmentation scale factor equals 4. The
distance between subpixel Pij and neighboring pixel PMN in
the central pixel can be expressed as:

d
(
PMN , pij

)
=

√
[i+0.5−S(M +0.5)]2 +[j+0.5−S(N +0.5)]2,

(i, j = 0, 1, . . . , 8;M ,N = 0, 1, 2). (5)

When subpixel pij is designated as class c, the spatial
attraction of a neighboring pixel is expressed by SDVc,j, and
the equation is as follows:

SDVc,ij =
∑

M

∑
N

1
d(PMN ,Pij)

Fc(PMN ), (6)

where Fc(PMN ) is the abundance value of class c objects in
the neighboring pixel PMN [21]. The SPSAM algorithm, as a
simple subpixel location method without prior information,
has been widely used [18].
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D. SUBPIXEL MAPPING CORRECTION
This paper attempts to introduce DEM elevation information
to correct subpixel mapping errors. This method is referred
to as the D-MSPSAM (DEM-Modified SPSAM), and it is
written by Python. The basic idea of the algorithm is that the
elevation of water is generally the lowest value of the pixel,
and subpixels can be assigned to submerged pixels according
to DEM elevation value. First, the number of water subpixels
(n) in each pixel is obtained according to the abundance
map (segment scale factor S2 × water abundance). Then,
n minimum values are taken from the corresponding DEM,
which are regarded as the normal elevation range of water
body, and each subpixel in the MODIS pixel is traversed.
If the subpixel elevation is within the normal elevation range
of the water, but the subpixel received a non-water classifi-
cation, then the result is corrected to water; if the subpixel
elevation is greater than the normal elevation range of the
water, but the subpixel received a classification of water, then
the classification is updated to reflect the species with the
highest content. During this process, the water abundance
is seen as a constraint (i.e., the number of subpixels is still
n). This algorithm can greatly reduce underestimation and
overestimation and thereby reflect the most reasonable dis-
tribution state of the water.

E. ACCURACY VERIFICATION
At this stage, there is no clear evaluation index to use to
evaluate the subpixel mapping accuracy. However, since the
result of subpixel mapping is usually the classification result,
a traditional classification result evaluation index, such as
the overall classification accuracy (OA), kappa coefficient,
or confusion matrix, can be used to evaluate the subpixel
mapping accuracy. The main flow chart of this work is shown
in Figure 2.

III. EXPERIMENTS AND RESULTS
A. STUDY AREA OVERVIEW AND DATA SOURCES
Dongting Lake, which is the second largest freshwater lake
in China, covering an area of 2625 km2, is an important lake
for sedimentation and storage in the Yangtze River Basin,
and it maintains the ecological balance of rivers and lakes
[25]. Water body distribution monitoring in the Dongting
Lake area will provide a reference for flood risk management,
disaster prevention and mitigation in the region and is of
great significance for maintaining the safety in themiddle and
lower reaches of the Yangtze River.

The Moderate-resolution Imaging Spectroradiometer
(MODIS) is mounted on Terra and Aqua satellites; Terra
is a morning satellite, while Aqua is an afternoon satellite,
and the two satellites cooperate to cover the entire surface
of Earth every 1-2 days [26]. The MOD09GA/MYD09GA
surface reflectance data are daily surface reflectance data that
include 7 bands and are ideal remote sensing data for extract-
ing flood submersion ranges. However, the spatial resolution
of these data is 500 m, and the mixed pixel phenomenon

FIGURE 2. The main flowchart of this work.

is severe. Experiments with two MYD09GA images have
been conducted for areas with high and low water [27].
Furthermore, two 30-m-resolution Landsat 8 Operational
Land Imager (OLI) images acquired on the same day were
selected as a reference for the water extraction results, and 30-
m-resolutionASTGTM2DEMdata were selected as subpixel
mapping auxiliary correction data [28]. SRTM (Shuttle Radar
TopographyMission) and ASTERGDEM (Advanced Space-
borne Thermal Emission and Reflection Radiometer Global
Digital Elevation Model) are currently two mainstream free
DEM data. From the practical experience, the SRTM data is
suitable for the study of large-scale areas with large terrain
fluctuations. In comparison, ASTER GDEM is more suitable
for the scale of the current study area [29]. So, in this article,
we chose the second edition of ASTGTM2 published by
ASTER GDEM in October 2011. The specific experimental
data are summarized in Table 1.

TABLE 1. Description of the data used in this study.

1) PRETREATMENT
In the pretreatment of theMYD09GA image, firstly, theMRT
tool is used to re-project the corrected and calibrated image,
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FIGURE 3. The result of the extraction of the flood submerged range under high water conditions. (a) Landsat reference image (31.25 m); (b–d) the results
from MNDWI (250 m), SPSAM (31.25 m), and D-MSPSAM (31.25 m); (f-h) partially enlarged views of the results from the MNDWI, SPSAM, and D-MSPSAM.

and the projection was converted to UTMWGS84. Then, the
image is resampled to 250 m by cubic convolution interpola-
tion. Finally, the study area is obtained by cropping the image.
Although the original pixel value is destroyed, compared with
other methods, high-frequency information can be retained to
the greatest extent, and noise can be smoothed. For Landsat
images, radiometric calibration is first based on the MOD-
TRAN5 radiation transmission model. Then, the Fast Line-
of-sight Atmospheric Analysis of Hypercubes (FLAASH)
model is used for atmospheric correction. Finally, the test
area is cropped and resampled to 31.25 m. Here, the MODIS
image resolution is an integer multiple of the Landsat image
resolution (i.e., a MODIS pixel is divided into 8 × 8 subpix-
els). The MODIS image has the same resolution as the Land-
sat verification data after segmentation, and thus it can be
accurately registered with MODIS data to facilitate superim-
position analysis. Similarly, the DEM is resampled to 31.25m
at the same size as the subpixels after segmentation to modify
the subpixel mapping results pixel by pixel.

2) MIXED PIXEL DECOMPOSITION
Based on the ground cover types in the study area, the
end-element spectra of five ground cover types, including
water, cultivated land, woodland, grassland, and bare soil,
were extracted by using the end-element extraction method
combined with the medium- to high-resolution images pro-
posed in this paper. Then, the LSMM-based fully constrained
least squares (FCLS) method is used to perform pixel unmix-
ing and obtain the end-element abundance map and RMSE

image. The statistical RMSE frequency distribution revealed
that RMS errors smaller than 0.020 accounted for more than
94 % in the two sets of experiments, which indicates that the
end-element extraction algorithm proposed in this paper has a
high accuracy and meets the subpixel mapping requirements.

3) SUBPIXEL MAPPING AND CORRECTION
Taking the end-element abundance map obtained from pixel
unmixing as an input, the SPSAM algorithm is used to realize
subpixel mapping of the flood submerged area. The subpixel
mapping results are shown in Figure 3 (c). The result after
adding DEM auxiliary information to modify Figure 3 (c) is
shown in Figure 3 (d). Figure 3 (a) and Figure 3 (b) show
the results of Landsat 8 and MODIS (500 m) extracted by
the Normalized Difference Water Index (MNDWI) threshold
method with 0 as the segmentation threshold [30]. To more
intuitively compare the extraction effects of the algorithms,
Figure 3 (a), (b), (c), and (d) are partially enlarged to obtain
Figure 3 (e), (f), (g), and (h), respectively. The experiments
considering the low water conditions were treated in the same
way, and the results are shown in Figure 4.

4) ANALYSIS OF RESULTS
Comparing (a), (b), and (c) in Figures 3 and 4, it can be found
that the subpixel mapping method and its modified results
have clearer and more delicate water boundaries, thereby
avoiding a large loss of detailed spatial information. Although
the MNDWI threshold method can roughly extract the water
range, the boundary is approximate, and the visual effect is
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FIGURE 4. The result of extracting the flood submerged range under low water conditions. (a) Landsat reference image (31.25 m); (b–d) the results from
MNDWI (250 m), SPSAM (31.25 m), and D-MSPSAM (31.25 m); (f-h) the partially enlarged views of the results from the MNDWI, SPSAM, and D-MSPSAM.

poor. The partially enlarged views (e), (f), and (g) show that
both methods neglect some water bodies with widths of less
than 5 MODIS pixels. This phenomenon occurs due to the
lower spatial resolution of the MODIS image itself, which is
unavoidable. Comparing (a), (c), and (d) in Figures 3 and 4,
it can be found that, after the DEM correction of the subpixel
mapping results, the water boundary is further corrected. The
positions of the red boxes of (g) and (h) in Figures 3 and 4 can
be compared, and in Figure (h), these areas are reclassified as
non-aqueous bodies. Combined with the true color images,
these areas correspond to cities and paddy fields, respectively.
Because the spectral characteristics of cities and paddy fields
are similar to those of water bodies, they will be classified
as water bodies in (g). This classification is modified by
addition of the height limitation condition of the position. The
D-MSPSAM method can thus remove irrigated paddy fields
from the classified image and more accurately distinguish
areas where the flood propagates. Conversely, by excluding
these irrigated fields, the D-MSPSAM method may be less
suited when monitoring all areas under water, for instance in
research on evapotranspiration and agriculture.

The experimental water extraction results were super-
imposed on the Landsat reference images, as shown in
Figures 5 and 6. The figures clearly show the correctly
classified, overestimated and underestimated points. Over-
estimated pixels are classified as submerged pixels in the
extraction results but are nonsubmerged pixels in the Landsat
reference image. Underestimated pixels are classified as non-
submerged pixels in the extraction results but are submerged
pixels in the Landsat reference image.

It can be seen from Figures 5 and 6 that all three measures
can correctly extract the main lake area to meet the needs
of basic flood monitoring, but there are also underestimation
errors, mainly in the small tributaries and basins. The results
of the MNDWI threshold method clearly show areas that are
incorrectly segmented, mainly along linear water boundaries.
However, in the subpixel mapping results, such errors have
been significantly reduced. After DEM correction, overesti-
mation phenomenon is further reduced.

Based on the accuracy evaluation chart, certain accuracy
evaluation indexes can be calculated, such as the overestima-
tion error, underestimation error, overall accuracy and kappa
coefficient (see Table 2). By analyzing Table 2, the following
conclusions can be drawn.

1. The D-MSPSAM has the highest overall accuracy, fol-
lowed by the SPSAM, and the MNDWI threshold method
has the lowest overall accuracy. Under high water condi-
tions, the overall accuracy of the D-MSPSAM algorithm
increased by 0.23 percentage points compared to that of the
SPSAMand by 3.56 percentage points compared to that of the
MNDWI. For the low water conditions, the overall accuracy
of the D-MSPSAM algorithm is improved by 0.54 percentage
points compared with that of the SPSAM and 2.77 percentage
points compared with that of theMNDWImethod. The kappa
coefficient of the three methods also verifies this finding. The
kappa values of the three results in the two experiments are
all above 0.5, which indicates the experimental results are
consistent with the Landsat reference images. DEM correc-
tion has the highest consistency, which shows it is the most
consistent with the actual water distribution.
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FIGURE 5. Accuracy evaluation of water extraction results under high water conditions. (a–c) the accuracy evaluation results from MNDWI ((31.25 m),
SPSAM (31.25 m), and D-MSPSAM (31.25 m).

TABLE 2. The accuracy evaluation indexes of the results.

2. The MNDWI threshold method has the largest overes-
timation error, and the subpixel mapping error is reduced by
more than half. Thus, the subpixel mappingmethod can effec-
tively reduce overestimation and improve the precision of
water boundary extraction. Furthermore, the overestimation
error of the subpixel mapping results after DEM correction
is further reduced to as low as approximately 1.6 %, and
the extracted water boundary is more refined. In terms of
the underestimation error, the three methods are not very
different because they are limited by the lower spatial resolu-
tion of the MODIS data itself, and objects smaller than that
resolution are not easy to identify.

3. The overall accuracy and kappa coefficient of the
subpixel mapping results after DEM correction are further
improved, the overestimation error is greatly reduced, and the
underestimation error is slightly increased. The underestima-
tion error slightly increases because of the Landsat reference
image itself. Some regions with spectral information similar
to water bodies, such as cities and urban areas, will be classi-
fied as water bodies. This is due to the modification of the
correction algorithm by introducing elevation information.

In addition, the water to the right of the red rectangle in
Figure 4 (h) is not very visible. Through observation, it is
found that the main reasons for this phenomenon are as
follows: First, on both sides of the river bank in the area,
the elevation is close to that of the water body, which is
difficult to correct due to the limitations of the D-MSPSAM
algorithm. Second, there is a deviation in the registration
of the DEM and MODIS images. Third, due to the image
quality and extraction algorithm, there are abnormal values in
the abundance extraction in this area. These underestimation
problems must be addressed in future research. In summary,
the experimental results demonstrate that the DEM corrects
the subpixel mapping results, which verifies the application
potential of the meta-location error and the effectiveness of
the D-MSPSAM algorithm proposed in this paper.

4.The methods seem to work well for both the high and
low water conditions. However, the results are better for the
low water condition. We can see that the underestimation and
overestimation errors at the low water condition are lower
than those at the high water condition. The main reason for
the low underestimation error under the low water condition

VOLUME 8, 2020 179209



N. Zhang et al.: Fine Extraction of Water Boundaries Based on an Improved Subpixel Mapping Algorithm

FIGURE 6. Accuracy evaluation of water extraction results in low water conditions. (a–c) the accuracy evaluation results from MNDWI ((31.25 m),
SPSAM (31.25 m), and D-MSPSAM (31.25 m).

TABLE 3. The accuracy evaluation indexes of the results in the test area.

is that many small rivers are cut off or dried up, and the
proportion of the total pixels is reduced. The low overestima-
tion error during the low water condition is due to the small
area and proportion of paddy fields and tidal flats, which are
prone to overestimation. In addition, for the low water con-
dition, the overall area of the water is small, and the areas of
underestimation and overestimation are small. Thus, for small
water bodies, subpixel mapping and correction algorithms
can achieve good results.

The above discussion evaluates the accuracy of the whole
image. The two areas of Figure 3 (e) and Figure 4 (e) in
the two groups were selected as typical test areas for accu-
racy evaluation and effect analysis. Figure 3 (e) shows an
urban area that contains large surface water bodies, linear
water bodies, black surfaces and other non-aqueous bodies.
Figure 4 (e) is a nonurban area that contains information
on non-aqueous bodies such as small planar water bodies,
small linear water bodies, and paddy fields. The accuracy
evaluation results in Table 3 show that the overall accura-
cies of the D-MSPSAM in the two groups of experiments
were 91.31 % and 89.10 %, which are better than those of
the SPSAM and MNDWI threshold methods. In the high
water condition, the overestimation error of the SPSAM and
D-MSPSAM are reduced, and the overestimation error of

the D-MSPSAM is at least 1.66%. As this region contains
cities and its spectral features are similar to water bodies, it is
easy to be mistaken for water bodies in Landsat reference
images, so its underestimation error is slightly higher than
MNDWI threshold method. The rules of the SPSAM and
D-MSPSAMcorrected this issue. In the lowwater conditions,
the underestimation errors of SPSAM and D-MSPSAMwere
significantly reduced. Compared with MNDWI threshold
method, the overestimation error of D-MSPSAM decreased
by 4.58 percentage points, and the underestimation error of
D-MSPSAM increased by 3.82 percentage points, because
the area contains rice fields. Furthermore, because the spec-
tral characteristics of rice field are similar to those of water
bodies, it is easy to mistakenly extract these areas as water
bodies based on the Landsat reference image. The rules of
the SPSAM and D-MSPSAM corrected this issue. In general,
the accuracy verification results of the test area show the
same trend as the overall accuracy verification results, and the
conclusions are consistent. The subtle differences are related
to the actual feature distribution in the area.

The experiment found that the extraction accuracy of the
water body is mainly affected by two factors. The first factor
is the type of water body in the study area. When the study
area is dominated by planar water bodies, the classification
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accuracy is high (as shown in Figure 3 (e)); when the study
area is dominated by small linear water bodies and there are
few planar water bodies, due to the influence of mixed pixels,
the classification accuracy will be low (Figure 4 (e)). The
second factor is whether the area contains construction land
and non-water body information such as mountain shadows,
paddy fields or black surfaces.

IV. CONCLUSION AND DISCUSSION
Subpixel mapping technology can effectively enhance the
spatial resolution of hyperspectral images and thereby
improve the accuracy of target monitoring and recognition
and promote the application of hyperspectral images in many
fields. Therefore, it is of great significance to study subpixel
mapping. Based on MOD09GA data, this paper uses the
SPSAM algorithm to extract the water area of Dongting
Lake. An improved D-MSPSAM subpixel localization algo-
rithm has been proposed by adding elevation information to
improve the positioning accuracy. The following conclusions
can be drawn.

1. In this paper, the threshold method, subpixel mapping
method, and improved subpixelmapping algorithmwere used
to performwater extraction experiments in the study area. The
overall accuracy of the latter two methods are all above 91%,
which exceeds the threshold method. Compared with the
traditional hard classification water extraction methods, the
subpixel mapping algorithm can improve the effective extrac-
tion of small water bodies and better maintain the spatial
details of the water boundaries,and the overestimation error
for the high water and lowwater conditions decreased by 4.06
percentage points and 3.48 percentage points, respectively.

2. Considering the close relationship between the DEM
and water distribution, DEM elevation information was intro-
duced to modify the subpixel mapping results. The exper-
iment have proved that the accuracy of the subpixel map-
ping results after the DEM correction were further improved,
which has provided a new idea for the improvement of the
subpixel mapping model. The method proposed in this paper
can be applied tomany fields such as surface cover extraction,
coastal zone extraction, and change monitoring. However,
due to the low spatial resolution and complex ground spectral
information, the subpixel mapping results still show over-
estimation and underestimation errors. In addition to con-
tinuously improving the algorithms to improve the mapping
accuracy, various auxiliary information can be introduced to
modify the subpixel mapping results.

Based on the research results of this article, the following
issues need to be further studied:

1. End-element extraction, pixel unmixing, and subpixel
mapping are closely related. In the application process,
end-element extraction, mixed pixel decomposition, and
finally subpixel mapping are sequentially performed. Previ-
ous results are used as inputs for the next step, and the inputs
can have a very large impact on the final result. Therefore,
the previous link cannot be disconnected from the subsequent
step, and it is thus necessary to build a comprehensive mixed

pixel analysis model. A suitable and comprehensive analyti-
cal model with universal applicability is needed.

2. The spatial distribution of features is the focus of
subpixel mapping. Although many methods describe such
distributions, such as the theory of spatial correlation maxi-
mization, these methods all have shortcomings. Thus, a more
effective description of the correlations among complex
objects is still needed.

3. This paper validates the improved subpixel mapping
method by adding the DEM elevation information through
two sets of experiments. Different terrain distributions will
have a certain impact on the performance of the algorithm.
For hyperspectral images of different regions, the influ-
ence of the terrain distribution on the mapping accuracy
must be reduced. In addition, since satellite-based DEM has
some problems in gap correction and vegetation correction,
the results are uncertain. Therefore, in subsequent research,
we will try other types of DEMs (e.g., merit DEM, Tandem-X
DEM) to improve the accuracy of the D-MSPSAM.
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