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ABSTRACT In this paper, we show a simple but novel approach in an attempt to improve value-at-risk
forecasts. We use mutually dependent covariate returns to create exogenous break variables and jointly use
the variables to augment GARCH models to account for time-variations and breaks in the unconditional
volatility processes simultaneously. A study of hypothetical mutual dependencies between volatility and the
covariates is first carried out to investigate the levels of the shared mutual information among the variables
before using the augmented models to forecast 1% and 5% value-at-risks. The results provide evidence
of some substantial exchange of information between volatility and the lagged exogenous covariates.
In addition, the results show that the estimated augmented models have lower volatility persistence, reduced
information leakages, and improved explanatory powers. Furthermore, there is evidence that our approach
leads to fewer violations, improved 1% value-at-risk forecasts, and optimal daily capital requirements for
all the models. There is, however evidence of relative superiority of the majority of the models for the 5%
value-at-risks forecasts from our approach, although they have relatively higher failure rates. Based on these
results, we recommend the incorporation of our approach to existing risk modeling frameworks. It is believed
that such models may lead to fewer bank failures, expose banks to optimal market risks, and assist them in
computing optimal regulatory capital requirements and minimize penalties from regulators.

INDEX TERMS Exogenous break, mutual information, value-at-risk, volatility.

NOMENCLATURE
ARMA Autoregressive moving average
ADmean Mean Absolute Deviation
ADmax Maximum Absolute Deviation
BCMI Biased Corrected MI
EGARCH Exponential GARCH
GARCH Generalized Autoregressive

Conditional Heteroscedasticity.
GJRGARCH Glosten-Jagannathan-Runkle GARCH
MAE Mean Absolute Error
MCS Model Confidence set
MI Mutual information
MSE Mean Square Error
NAGARCH Nonlinear Asymmetric GARCH
QMLE Quasi-Maximum Likelihood Estimation
RMSE Root Mean Square Error
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SGARCH Standard GARCH
TGARCH Threshold GARCH
VaR Value-at-risk

I. INTRODUCTION
Risk measurement is one of the most important tasks in
financial risk management for banks, corporate treasuries
and portfolio management firms as well as other financial
institutions and practitioners. In financial institutions, risk
estimates are used to compute capital requirements - the
amount of capital that must be added to a position to make
its risk acceptable to regulators [21]. It is also employed in
decision-making regarding hedging of assets and portfolio
optimization. One of the most commonly used risk measures
among financial institutions is value-at-risk (VaR) with the
underlying asset’s volatility as an input. Inaccurate volatility
forecasts may lead to underestimation or overestimation
of the actual VaR forecast and financial institutions may
lose the opportunity cost or would not be able to recover
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losses at crisis periods [52]. Since VaR computation requires
volatility input, VaR accuracy is dependent on accurate
volatility forecasts. Accurate volatility forecasts yield optimal
VaR forecasts and less VaR violations, thus VaR forecasting
assessment provides an indirect assessment of the predictive
abilities of competing volatility models [15].

A common approach for computing the volatility input
of VaR models is the use of GARCH models [5], however,
findings from competing GARCHmodels demonstrate seem-
ingly poor volatility forecasts [16]. This problem has been
partly attributed to the models’ failure to account for breaks
and time-variations in the unconditional volatility [2], [43].
Models, which fail to account for breaks in the unconditional
variance lead to sizable upward biases in the degree of per-
sistence in the estimated GARCH models. The fitted models
thus may fail to track changes in the unconditional variance
and produce systematically underestimated or overestimated
volatility forecasts on average, over long horizons [43].

Risk premium theory links the returns of an asset to its
volatility [13] and asset returns move in tandem. Taking
into account of exchange rate co-movements and the
volatility-returns relationship of an asset, there is a possi-
bility of an implied reverse relationship between volatility
and inter-market1 covariate returns. Due to the perceived
reverse relationship and the fact that the inter-market covari-
ate returns are exposed to similar uncertainties in the market,
the covariatesmay be adequate proxies for uncertainties in the
markets which could also be used to construct break variables.
Several attempts in literature have addressed the problem of
structural breaks and time-varying unconditional volatility,
the use of inter-market covariates to proxymarket uncertainty,
and its break variables to account for time-variations and
breaks in the unconditional volatility of GARCH models,
however, have not been given much attention, thus a gap in
literature exist. The paper is an attempt to narrow this gap.

In narrowing this gap, the proxies (inter-market), and the
break variables (constructed from the proxies) are used to
augment GARCH models to account for changes, and breaks
in the unconditional volatilities. Empirical studies suggest
that changes in the levels of uncertainties in the market
affect the unconditional volatility of assets [2], [3], thus
this approach has empirical support. One advantage of the
approach is that, due to the high levels of co-movements
between assets, the proxies and the break variables may
share substantial levels of mutual information with volatility,
thus it is anticipated to yield improved volatility and value-
at-risk forecasts. The approach does not require structural
modifications of existing models, thus its implementation is
simple and could be easily integrated into various volatility
and value-at-risk modeling frameworks.

1Inter-market covariates are assets traded on the same market platform
with the same delivery date. For example, USD/ZAR, and EUR/ZAR rates
are considered inter-market covariate when they are traded on the same
market platform (such as the inter-bank forex market) and the same delivery
date (such as daily).

A pre-study of the hypothetical mutual dependencies
between pre-estimated volatilities and the exogenous vari-
ables (proxies together with their respective breaks) is under-
taken to investigate the levels of the dependencies and their
possible significance. The Jackknife-bias corrected Kernel
density estimation approach is used in computing the mutual
information while Pearson’s method is used in computing the
strength of the linear dependency. Simple t-tests are used to
test the significance of the linear dependencies. In assessing
the individual accuracies of the VaR estimates, the condi-
tional coverage test of [17] and the unconditional coverage
test of [35] are used. Competing models, which pass both
tests, are then ranked using the MCS procedure of [28].
We also employ several other model comparison tools to
assist in selecting the best models. To assess the usefulness
of the estimated models to banking institutions, we conduct
capital requirement analysis based on the regulations laid
down by the Basel accord II and III accords.

The paper is a contribution to literature on value-at-risk
forecasting for emerging markets. It would also provide
further evidence in support of theoretical and empirical
studies, which advocate that structural breaks have poten-
tially important implications for estimated GARCH models
and value-at-risk forecasts. Volatility and returns are linked
by risk premium, hence, evidence of mutual dependencies
between the covariates and volatility will indirectly support
the traditional theory of return co-movements. For the rest
of the paper, the concept of VaR is discussed in section
two. In section three, we formally establish the theoretical
link between inter-market covariates and volatility as well
as the construction of the exogenous break variables. Data
and methodologies are presented in section four. We present
the results and discussions in section five and summarize the
paper in section six.

II. THE CONCEPT OF VALUE-AT-RISK AND METHODS OF
ESTIMATION
Value-at-risk is concerned with the possibilities of losses
associated with a portfolio, at a given time. It is a downside
risk metric, which measures the risk as to whether the actual
return will fall below or above the expected returns. In simple
terms, it is the uncertainty about the magnitude of the differ-
ences in returns and the expected returns. It is the preferred
risk metric by many experts because of its perceived supe-
riority in backtesting the estimated losses [45]. Technically,
value-at-risk is defined as the maximum portfolio loss at a
given confidence level, α within a time interval [54].

Consider a scenario where there is a portfolio of risky
assets held over a fixed time in the horizon 1. If the loss
distribution associated with this portfolio has distribution
function FL (l) = P (L ≤ l), the maximum possible loss
inf {l ∈ R : FL (l) = 1} evaluates the level of risk associated
with holding the portfolio over the horizon 1. This sce-
nario leads to the technical definition of VaR below adapted
from [45].
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Definition 1: Given a confidence level α ∈ (0, 1), the VaR
of a portfolio is given by the smallest number l such that the
probability that the loss L exceeds l is no larger than (1− α),
that is:

VaRα = inf {l ∈ R : P (L > l) ≤ 1− α}

= inf {l ∈ R : FL (l) > α} (1)

In probabilistic terms, value-at-risk is a quantile of the loss
distribution. Given losses L, the generalized inverse F ← is
called the quantile function of L such that:

VaRα (L) = qα (L) := F← (L) = inf {l ∈ R : FL (l) ≥ α}
(2)

Alternatively, value-at-risk can be constructed from the prob-
abilistic function of the underlying returns, which is given in
definition 2 [45].
Definition 2: Consider the returns of an asset rt with the

change in the value of the asset over the next k periods defined
by1rt = 1V (k) = r (t + k)− r (k). The value of VaR over
time horizon k associated with the left tail probability α of
the returns’ distribution is defined as:

α = P [1V (k) ≤ VaRt ] = P [1r ≤ VaRt ] (3)

Value-at-risk is a function of time and the left tail quantile
of the distribution with probability α. Throughout this paper,
any computations and assessments relating to VaRmodels are
based on definition (2).

III. THEORETICALLY LINKING VOLATILITY TO RETURNS
OF INTER-MARKET COVARIATES
In linking volatility to the returns of inter-market covariates,
we make the following assumptions:

1. Exchange rate returns are second-order stationary pro-
cesses.

2. Exchange rate returns are co-integrated.
3. The relationship between two or more exchange rate

returns evolve via an ARMA process.
4. The expectation of the square of the ARMA process in

assumption (3) is analogous to an exogenous GARCH
process.

The plausibility of assumption (1) is derived from empir-
ical studies such as [53] among others. Assumption (2)
can be indirectly inferred from the empirical evidence of
exchange rate cointegration, which can be found in stud-
ies like [20], [34]. Assumption 3 can be deduced from
Wold’s representative theorem in conjunction with assump-
tion 2. Finally, assumption 4 can be statistically derived from
assumption 3.

Consider the endogenous exchange rate returns Rt and a
set of exogenous returns rj,t , where j = 1, 2, . . . k and k is the
total number of currency pairs. If Rt and rj,t are second-order
stationary cointegrated processes, then, there exist inte-
gers p, q and real coefficients λ1, λ2 . . . λk , ϕ1, ϕ2 . . . ϕp and

θ1, θ2 . . . θq such that by assumption 3 (adapted from [54]):

Rt = ϕ0 +
k∑
j=1

λjrj,t +
p∑
i=1

ϕiRt−i −
q∑

r=1

θrat−r + at (4)

where Rt−i is the autoregressive component, at−r is the
moving average term, and at is the mean corrected return
(innovations). By squaring both sides of (4), it can be shown
that:

R2t = ϕ
2
+

p∑
i=1

ϕiiR2t−i +
q∑

r=1

θrra2t−r+
m∑
k=1

λkrk,t+at (5)

For stationary asset returns, the unpredictability of the direc-
tion of the returns suggest that the autocorrelation function
up to lag 1 is ρ = 0. Applying the law of total variance and
taking expectation with respect to the information set F t−1,
the volatility ht can be expressed as

ht = δ +
p∑

r=1

ψra2t−r +
q∑
i=1

ϕiht−i+
m∑
k=1

λkEt−1
[
rk,t
]

(6)

It can clearly be seen that equation 6 is analogous to the
exogenous version of [14], where the exogenous term is rep-
resented by the last set of terms. These terms move in tandem
with volatility by the indirect implications of the asset-return
co-movement theory, thus, their absolute values are used to
proxy the degree of uncertainties in the exchange rate market
in this paper. The use of the absolute returns of the exogenous
terms as proxies instead of the original values are due to
the fact that market uncertainty is a positive measure. If one
considers the positive returns from the k exogenous exchange
rateswith a sample of sizeN , then, the lag-one break variables
Bj,t−1 are constructed using the definition below:

Bj,t−1 =

{
1, if

∣∣rj,t−i−1∣∣ < |rt−i|
0, if

∣∣rj,t−i−1∣∣ > |rt−i|
for i = 1, 2, . . .N and j = 1, 2, . . . k (7)

IV. DATA AND METHODOLOGY
A. DATA
We use daily inter-bank closing spot-ask prices from the
rand forex market to illustrate the empirical significance of
our approach. The rand forex market was chosen because
being an emerging market and ranked as the 18th world’s
most traded currency [8], it has not received much atten-
tion in terms of value-at-risk forecasting in comparison
to other emerging and developed markets. The period of
the data spans from July 6, 2011, to June 28, 2016. The
data were sourced from OANDA (https://www1.oanda.com)
and the currency pairs include the Swedish Kroner (SEK),
Norwegian Kroner (NOK), Botswana Pula (BWP), Brazil-
ian Real (BRL), Israeli Shekel (ILS), Indian Rupees (INR)
and Malawian Kwacha (MWK). Due to the data download
restrictions during the time of sourcing the data, fifteen
currency pairs including the most traded currency pairs on
the rand forex market such as the USD/ZAR, GBP/ZAR,
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and EUR/ZAR among others were selected. Due, however,
to problems such as autocorrelations and serial correlations of
some pairs and the fact that some pairs from developing and
emerging economies have not received substantial attention
in literature when it comes to volatility and value-at-risk
forecasting, only ten currency pairs were selected for the
empirical exercise. The daily returns used in the study are
continuously compounded as indicated in equation (8).

Rt= ln (Pt)− ln (Pt−1) and rt= ln (pt)− ln (pt−1) (8)

An upper case letter denotes an endogenous return while
lower case letter denotes an exogenous return.

B. MUTUAL INFORMATION
Information theory attempts to study communication sys-
tems. It can be employed in the study of statistical depen-
dency between random variables via mutual information
(MI). Mutual information measures the reduction in the
uncertainty about a random variable conditioned on the
knowledge of another variable, thus it is more closely related
to the concept of entropy (a measure of the uncertainty of
a random variable or the expected amount of information
contained in a variable) introduced by [49]. There are sev-
eral ways of measuring dependency [58] although, MI is
by far the best statistic in several ways [46]. Unlike linear
correlation, MI is more general in the sense that it contains
all information about the dependency of variables including
linear and non-linear and it is very effective in measuring
any kind of relationship [18]. MI also has a straightforward
interpretation, grounded in information theory and insensitive
to the size of data sets. Mutual information is a function of
the expected amount of information contained in a variable,
called entropy [47]. Given a pair of continuous random vari-
ables (X ,Y )with values over the space χ×y the entropy of X
denoted H (X) is defined by [18] as

H (X)=E
[
− log (f (X))

]
=−

∫
χ

f (xi) logb f (xi) dx (9)

where b is the base of the logarithm, f (xi) is the probability
density function of X ; and X = x1. If y = y1, the joint entropy
of X and Y is defined as

H (X ,Y ) = −
∫
χ,y

f (xi, yi) logb f (xi, yi) dxdy (10)

The mutual information between X and Y [18]:

MI (X ,Y ) = H (X)+ H (Y )− H (X ,Y ) (11)

Mutual information between bivariate variables can either be
zero (corresponding to independence) and positive (corre-
sponding to dependency). WhenMI (X ,Y ) = 0, observing Y
tells us nothing about X , thus the variables are independent.
MI is a positive unbounded measure i.e. MI ∈ [0,∞) with
unit in bits (base 2) or nats (base e).

Among the commonly used estimation approaches for
mutual information are the probability density-based meth-
ods such as the Burg’s maximum entropy method (Burg’s
MEM), the kernel density estimation (KDE), and the
nearest-neighbor approach. For instance, [9], [10] used the
Burg’s MEM to model the flow of information between
financial variables. Reference [42] also developed a newKDE
for application to large high-dimensional datasets frequently
used in genomic experiments. In as much the Burg’s MEM
of [9], [10] and the KDE of [42] are non-parametric estima-
tors and are suitable for high-dimensional datasets; however,
they differ in three major aspects.

In the first instance, the new Kernel density estimation is
based on Shannon’s definition of entropy and joint entropy.
The probability density function is estimated by filtering the
data with a kernel, which is then normalized with an integral
of one, which is usually symmetric and localized. The Burg’s
MEM on the other hand is based on the extrapolation of the
autocorrelation function of variables by using the entropy rate
definition after which the estimation of the power spectral
density is estimated by the Fourier transformation of the
extended autocorrelation function.

Secondly, the new Kernel density estimation is purposely
designed to model static relationship between variables while
the Burg’s MEM is designed to model dynamic relationship
and to predict future entropy of a time series by exploiting the
unknown but predicted autocovariance function of the future
time interval.

Thirdly, the Burg’s MEM relies on the assumption of
second-order stationary. If this hypothesis is not satisfied,
the series can be partitioned into smaller epochs, which are
approximately stationary, or the series can be represented
by alternative functions instead of the usual sine and cosine
functions. Simulation studies, however, have shown that the
Burg’s approach to spectral analysis is robust in the pres-
ence of non-stationarity. Unlike the Burg’s MEM, the KDE
does not rely on stationarity assumption, although, it relies
heavily on the choice of the tuning parameters, thus the
corresponding estimators may be very unstable or seriously
biased. This problem is addressed by using the Jackknife-bias
corrected algorithm. The Jackknife-bias corrected Kernel
density estimator automates the bandwidth selection such
that the optimal bandwidth is estimated. This helps to reduce
the bias at the boundary region and thus improve the effi-
ciency of estimation [58]. Unlike the randomized resampling
approaches for correcting bias in Kernel estimation, the Jack-
knife approach is deterministic in the sense that it gives the
same result when re-applied to any given data. In addition,
by restricting the resampling to a specific group of n sub-
samples, substantial computational costs can be avoided. The
approach puts an upper limit on the number of subsamples
and the relationships between Jackknife repetitions can be
exploited to avoid redundant computations [42].

Lastly, unlike the Burg’s MEM, the Kernel density esti-
mation models the distribution of a continuous variable as
a mixture of conditional distributions for each level of a
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categorical variable, thus it is suitable for the estimation of
mutual information between a mixture of continuous and
discrete variables. Due to this, KDE can be used to model
the relationship between a mixture of discrete or categorical
and continuous variables without the need for variable trans-
formation.

In comparison to other density-based estimation
approaches such as the mirrored KDE, ensemble KDE,
copula-based generalized nearest-neighbor graphs and the
mixed generalized nearest-neighbor graphs, the Jackknife-
biased corrected KDE is more computationally efficient.
In addition, the procedure is completely data-driven and there
is no need for a predetermined tuning parameter. It does
not necessitate boundary correction and yet it retains the
same estimation efficiency because the boundary biases
are eliminated automatically. Furthermore, the estimates are
numerically stable. Due to these advantages over existing
methods, the Jackknife-biased corrected KDE is employed
in this paper.

C. VALUE-AT-RISK ESTIMATION
There are several metrics for computing risk but in this
paper, we use the VaR metric. VaR metric corresponds to an
amount that could be lost at some pre-selected probability.
It also measures the risk of the risk factors and the risk factor
sensitivities. The metric applies to all activities and types of
risks in financial institutions and it can be compared across
different markets at different exposures. The metric can also
be measured at any level, from a single trade or portfolio case
up to a single enterprise-wide metric covering all the risks in
the firm. It can be used to find the total VaR of a very large
portfolio in aggregated form or to isolate component risks
corresponding to different types of risk factors in disaggre-
gated form. The metric, moreover, accounts for the depen-
dencies between the component of assets or portfolios [1].
The methods used in computing VaR includes the histori-
cal simulation method [33]. One of the advantages of this
approach is that it determines the joint probability distribution
of the market variables and avoids the need for cash-flow
mapping; however, it is computationally slow and does not
easily allow volatility updating schemes to be used [30].
Notwithstanding the disadvantage of the historical simulation
method, the study use this approach to estimate and forecast
VaR, because the conditional volatility models used here are
built on historical returns. The GARCH framework is used to
specify the volatility input. By definition [32] VaR is given
by

VaRDt = ZDα

√
ĥt + µ (12)

where VaRDt denotes the VaR estimate based on volatility
model with appropriate distribution D, ĥt is the forecasted
volatility at time t and µ is the estimated mean from
the volatility model. In considering the returns series Rt
we estimate the mean, µ and the volatility ht using the

ARMA-GARCH representation [54],

Rt = ϕ0 +
k∑
j=1

λjrjt−1 +
p∑
i=1

ϕiRt−i −
q∑
i=1

θrεt−r + εt

εt = ηt
√
ht (13)

where ϕ0, ϕi and θj are parameters, Rt−i is the ith lag autore-
gressive term with corresponding order p, εt−j is the jth lag
moving average component with order q and εt term is the
mean corrected return (innovations). The ηt is a sequence
of i.i.d random variables and ht is the conditional variance.
In this paper, we consider the conditional volatilities for
GJRGARCH, NAGARCH, SGARCH, TGARCH, and
EGARCH. The break variable in (9) and the absolute val-
ues of the exogenous covariates in (8) are passed to the
unconditional volatilities of the GARCH models to augment
the models. The augmented form of the standard GARCH
model of [14] is defined by adding the market uncertainty
proxy identified in equation (6) and the break variables from
equation (7), hence,

ht = α0 +9t +

q∑
i=1

αiε
2
t−i +

p∑
j=1

βjhj−i (14)

where 9 =

k∑
m=1

θmBt−1 +
k∑
l=1
λl
∣∣rl,t−1∣∣. To ensure that

ht > 0 the parameters are conditioned, such that α0 > 0,
αi ≥ 0 and βi ≥ 0. The necessary and sufficient condition
required for the existence of the secondmoment of the returns

is that
q∑
i=1
αi +

p∑
i=1
βi < 1. The GARCH model is popular

because of its simplicity in modeling very complex GARCH
processes. The GJR version [25] is formulated as

ht = α0 +9t +

q∑
i=1

(
αia2t−i − γiIt−ia

2
t−i

)
+

p∑
j=1

βjht−j

(15)

where It−i is an indicator function, which takes the value of 1
if a ≤ 0 or 0 otherwise. To ensure that the variance, ht > 0,
the parameters are constrained such that α0 > 0, αi ≥ 0,
βi ≥ 0 and αi+γi ≥ 0. The γi parameter provides information
about asymmetric effects. If γi = 0, there is no volatility
asymmetry, if γi > 0 negative shocks will increase volatility
more than positive shocks of the same magnitude and if
γi < 0, positive shocks increase volatility more than negative

shocks. The persistence parameter is
q∑
i=1
αi+

p∑
j=1
βj+

q∑
i=1
γiκ ,

where κ is the expected value of the standardized residuals zt
below zero (effectively the probability of being below zero)

defined by κ = E
[
It−jz2t−j

]
=

0∫
−∞

f (z, 0, 1, . . .)dz. The

exponential GARCH version [41] is formulated as

ln (ht) = α0 +9t +

q∑
j=1

αj ln
(
ht−j

)
(16)
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where Ht−1=
n∑

n=1
γn

(
εt−n√
ht−n

)
+

p∑
i=1
βi

(∣∣∣ εt−i√
ht−n

∣∣∣− E ∣∣∣ εt−i√
ht−n

∣∣∣),
αi, βj and γn are real constants with p and q being the respec-
tive orders. To ensure the existence of a second moment, α
is conditioned such that

∑q
j=1 αj < 1. The main advantage of

the EGARCH over the standard GARCH and GJRGARCH
is that the EGARCH model does not require any artificially
imposed non-negativity constraints on the model parameters.
The threshold GARCH version [57] of the augmented model
is

ht = ω +9t +

q∑
i=1

(αi + γiIt−i) α2t−i +
p∑
j=1

βjht−j (17)

where all notations are the same as the GJRGARCH.
The nonlinear asymmetric GARCH specification [19] is
formulated as:

ht = ω +9t +

q∑
i=1

αiht−i (zt−i − δi)2 +
p∑
j=1

βjh2t−j (18)

where δi is a parameter, which controls shift (asymmetry
for small shocks) in the news-impact curve. The existence
of the second moment requires that

∑q
i=1 αi

(
1+ δ2i

)
+∑p

j=1 βj < 1. Due to numerical difficulties encountered by
theQuasiMaximumLikelihood Estimation (QMLE)method,
we use variance targeting to alleviate the degree of these
difficulties [22].

D. BACKTESTING METHODS FOR EVALUATING VAR
ESTIMATES
Backtesting techniques require the simulation of VaR models
on past returns and the predicted losses fromVaR calculations
are then compared to the actual realized losses at a given
time horizon. The comparison identifies periods where the
portfolio losses are greater than the expected VaR. If the
expected return is less than the estimated VaR, a violation
or exception occurs, thus backtesting techniques are used to
systematically count the number of these violations or excep-
tions and compare them to acceptable rates at pre-selected
confidence intervals. Consider the realization of asset returns
over a fixed time interval Rt,t+1 with VaR estimated at time t
and probability of α defined by VaRt (α). The hit function as
defined in [32] is

It+1 (α)

=

{
1 if Rt,t+1≤VaRt (α)when violation occurs
0 if Rt,t+1>VaRt (α)when no violation occurs

(19)

If the loss at day (t + 1) is larger than the predicted
VaR estimate, the hit sequence returns 1 or 0 otherwise.
Reference [17] explains that the hit sequence of VaR
estimates needs to pass the tests based on the uncondi-
tional coverage and independence properties before they
can be deemed accurate. Under the unconditional coverage
property, the probability of loss at day (t + 1) being larger

than the predicted VaR estimate should be exactly (1− α)
or equivalently, the probability of loss at day (t + 1) being
smaller than the predicted VaR estimate should be exactly α.
Mathematically a VaR model has correct unconditional cov-
erage if:

P (It+1 (α) = 1) = E [It+1] = 1− α (20)

It also has correct conditional coverage if:

Pt (It+1 (α) = 1) = Et [It+1] = 1− α (21)

It should be noted that correct unconditional coverage is
implied by correct conditional coverage but not vice versa.
If violations are more frequent than α, the VaR model sys-
tematically underestimates the actual VaR and if violations
are less frequent than α, the model overestimates the expected
VaR [32]. The independence property requires that for any
i < j hits, It+i (α) and It+j (α) are independent if i 6= j.
In other words, when the exceedances are not clustered over
time, VaR estimates are said to be independent. Accurate VaR
estimates, therefore, have current violations at time (t + i),
which is independent of violations at previous time (t + j) or
has non-clustered exceedance over time. The hit sequences
from VaR estimates, It+1 (α) ∼ i.i.d . Bernoulli (1− α) with
success probability (1− α), thus, in testing for VaR violation
we are interested in the nulls:

H0 : E [It+1] = π = 1− α

H0 : Et [It+1] = π = 1− α (22)

π is the sample average. The first null corresponds to the
unconditional coverage test while the last one corresponds to
the conditional coverage test. In this paper, the unconditional
coverage Kupiec test [35] and the Christoffersen’s interval
forecast test [17] are used.

E. MODEL COMPARISON TOOL
Due to large set of models available for use by financial insti-
tutions, model comparison has become an integral part of the
model-building process. The Model Set Confidence (MSC)
test of [27] is convenient for comparisons where there is
no natural benchmark. This advantage of MCS’s procedure
makes it more suitable for use in this study because the refer-
ence models in this study are not natural benchmarks. Even
though the MCS procedure does not require a natural bench-
mark model as in the case of multiple comparison procedure
with controls, the procedure can still rank the models in order
of superiority after selecting the superior set of models. One
main advantage of this procedure is that after a set of superior
models have been selected, the models can be aggregated and
used to forecast future volatility levels, predict future levels of
observations, conditioned on past information [11] or forecast
value at risk levels [12].

V. EMPIRICAL RESULTS
A. DESCRIPTIVE ANALYSIS
Descriptive statistics are reported in Table 1 while time plots
of the log-returns of the entire length of the sample are
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TABLE 1. Descriptive statistics.

FIGURE 1. Time plots of returns for the sample period July 6, 2011, to June 28, 2016.

displayed in Figure 1. A look at Figure 1 reveals that high
returns are more likely to be followed by another high returns.
This is an indication of the presence of asymmetry in the log
returns. The Figure also depicts time-varying volatility clus-
tering of the log-returns. These observations confirm the suit-
ability of GARCH models for the data. In Table 1, relatively
extreme negative returns appear to be more pronounced than
extreme positive returns for the currency pairs: BWP/ZAR
and NOK/ZAR. In addition, it is observed that all the returns
are slightly and positively skewed except for BWP/ZAR and
MWK/ZAR pairs, which are negatively skewed. The excess
kurtosis for all the returns is large and far from zero and the
Jacque-Bera tests statistics are very large. This is an indi-
cation of non-normality of the return with associated heavy
tails, thus heavy-tailed distributions may be appropriate in
modeling the volatility of the returns.

B. ESTIMATION OF HYPOTHETICAL MUTUAL
INFORMATION
One of the main reasons we advocate the use of inter-market
covariates and their break variables to model time-variations
and breaks in the unconditional volatility of GARCH models
is their perceived mutual dependence with volatility, thus in

this section, we investigate the levels and the significance of
these dependencies. The latent nature of volatility implies
that actual shared information cannot be computed, thus
the mutual information computed in this paper are hypo-
thetical in a broader sense. Since we intend to compute
value-at-risk for the currency pairs: MWK/ZAR, BWP/ZAR,
BRL/ZAR, ILS/ZAR, and SEK/ZAR- it is more appropriate
to use pre-estimated volatilities for these pairs using similar
specifications (refer to Table 4), as that will be employed
in estimating the value-at-risks. Individual estimation of the
volatilities of the above currency pairs is time-consuming,
thus the simultaneous estimation approach implemented in
rugarch package [24] is utilized.

The GARCH estimation procedure used for computing the
value-at-risks in this paper is based on a moving window,
thus simple lag-one moving averages of the variables are
computed. The lagging is required because we are interested
in using the variables for forecasting. Since MI is a pos-
itive unbounded measure, to be able to compare two MI
estimates we normalize the estimates using equation (23)-
adapted from [18].

Normalized BCMI =
BCMI (X ,Y )
√
H (X)H (Y )

. (23)
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TABLE 2. Estimated BCMI and normalized BCMI between volatilities and returns.

TABLE 3. Estimated BCMI and normalized BCMI between volatilities and break variables.

The empirical results of the mutual dependency estimation
are reported in Table 2, 3, and Figure 2. From Table 2,
it is observed that the returns of SEK/ZAR have the high-
est percentage of exchanged information with the volatili-
ties of both MWK/ZAR and BRL/ZAR pairs. Between the
two volatilities, the information exchange is highest with
MWK/ZAR suggesting that returns of SEK/ZAR may have a
better chance of predicting the volatility of MWK/ZAR than
the volatility of BRL/ZAR. Similarly, returns of INR/ZAR
may have a better chance of predicting the volatility of
ILS/ZAR than the volatility of SEK/ZAR. Concerning the
volatility of BWP/ZAR, the returns of MWK/ZAR stand
a better chance of predicting the volatility of BWP/ZAR
than the other returns although there is only 5.9% shared
information.

In Table 3, the endogenous break variables for MWK/ZAR
and SEK/ZAR respectively share more percentages of mutual
information with their respective volatilities than the corre-
sponding exogenous break variables. In relation to the volatil-
ity of MWK/ZAR, the non-normalized shared information
with the exogenous SEK/ZAR break variable is, however,
slightly higher than that of the endogenous break variable.
In respect of the volatility of BWP/ZAR, the break variables
for SEK/ZAR and INR/ZAR have the highest percentage of
exchanged information with the volatility. A similar state-
ment can be made for the break variables for MWK/ZAR,
and SEK/ZAR with respect to the volatility of ILS/ZAR
although the non-normalized exchanged information is rel-
atively higher for the break variable of SEK/ZAR. Finally,
the break variable for MWK/ZAR exchanges the highest
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FIGURE 2. Correlation versus mutual information plots.

percentage of information with the volatility of BRL/ZAR.
In general, among the variable pairings considered in the
paper, the exogenous break variables tend to exchange rela-
tively higher mutual information with volatility in compar-
ison to the endogenous break variables. This suggests that
break variables constructed from exogenous returns have
higher likelihoods of volatility predictive abilities, hence, are
more likely to be adequate than the endogenous break vari-
ables in accounting for breaks in the unconditional volatilities
of exchange rates.

There are quite a lot of variable pairings with insignifi-
cant linear dependencies although their respective BCMI are
substantial. For example, the strength of the linear depen-
dency between the returns of BWP/ZAR and the volatility of
MWK/ZAR is abysmally low and insignificant although the
normalized BCMI is about 32%. This suggests that, it is very
unlikely that the two variables will move linearly together,
thus the nature of the relationship between the two variables
is more likely to be non-linear. This observation is consistent
with the rationale behind the concept of mutual informa-
tion in measuring dependency [18]. Based on the foregoing
deduction, the nature of the relationships between the variable
pairings in Tables 2 and 3 (indicated by cells with asterisks)
are more likely to be non-linear, hence non-linear volatility
models may be more appropriate for estimating volatility of
the exchange rate returns.

When the joint distribution of paired variables is a bivariate
normal, there is an exact logarithmic relation between mutual

information and linear correlation coefficient ρ which is
defined by [23]

MI = −0.5 log
(
1− ρ2

)
(24)

It is observed from Figure 2 that, the relationship between
MI and correlation coefficient does not assume the form of
equation (24) but rather it evolves randomly. This implies that
the joint distributions of the paired variables are not bivariate
normal, hence, since the individual variables are character-
ized by heavy-tailed distributions (see the data description
section); the bivariate joint distributions may be a mixture
of heavy-tailed distributions. In addition, the relationship
suggest that increased levels of mutual information are not
associated with increased strength of linear dependencies,
thus there may be low levels of shared information between
variables, although, the strength of the linear dependency
structure may be comparatively higher.

In conclusion, the levels of exchange mutual information
between volatilities and their respective lagged covariates
provides substantial evidence of the predictive abilities of
the covariates and these may be adequate in modeling vari-
ations and breaks in the unconditional volatilities of GARCH
models for exchange rates. The results indirectly support the
findings of returns dependencies from [40].

C. VOLATILITY AND VALUE-AT-RISK ESTIMATIONS
In this and the next section, the VaR estimation procedures
discussed in the methodology section are applied to data from
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TABLE 4. Specifications of estimated VaR model.

the inter-bank rand forex market. The data for estimation
consists of 1819 days of closing returns from the seven
selected currency pairs, which are divided, into two sub-
samples. The first sample consisting of 1379 returns from
2011/11/07 to 2015/04/15 is used for the in-sample estima-
tion, while the second sample consisting of the remaining
440 returns from 2015/04/16 to 2016/06/28 is used to backtest
the VaR estimates. The VaR estimates were computed for
the single asset portfolios namely – MWK/ZAR, BWP/ZAR,
BRL/ZAR, ILS/ZAR, and SEK/ZAR using the summarized
specifications in Table 4. Hereafter, the augmented VaRmod-
els are represented as VaRA while the benchmark (reference
or non-augmented) models are represented as VaRB. For each
model, one-step-ahead VaR forecasts at 5% and 1% confi-
dence levels (corresponding to the risk metrics methodology
and the requirements of the Basel II accord) were obtained.
The rolling window with a re-fitting interval of 100 days
was used. From the empirical characteristics of the data
under the descriptive analysis section, the return data were
found to be heavy-tailed with high peaks, thus the inno-
vations from the standard VaR-GARCH, VaR-NAGARCH,
and VaR-GJRGARCHmodels are modeled with the Jonson’s
SU reparametrized distribution (JSU). The skewed general-
ized error distribution (SGED) is used to model the inno-
vations from the VaR-EGARCH model while the normal
inverse Gaussian distribution (NIG) is used to model the
innovations from the VaR-TGARCH model.

1) IN-SAMPLE VOLATILITY ESTIMATION
In this section, we discuss the in-sampling performances
of the volatility models. The empirical results are reported
in Table 5. With the exception of the GJRGARCH model,
at least one of the regressors has a significant impact on
volatility. For instance, the break variables have significant
effects on the volatilities of BWP/ZAR, SEK/ZAR, and
BRL/ZARwhile proxy 1 has significant effects on the volatil-
ities of ILS/ZAR, and BRL/ZAR. These observations suggest
that the levels of uncertainties surrounding the exchange rate
markets indeed have significant impacts on the estimated
volatility. Furthermore, they suggest that extreme events as
captured by the break variables have significant impacts on

the estimated volatility. The aggregated impacts of all the
regressors are seen in the improved statistical efficiencies of
the estimated models as discussed below.

The log-likelihood estimates from the unrestricted mod-
els (augmented) are significantly higher than the values
from the restricted versions (non-augmented). Consequently,
the absolute AIC values for the unrestricted models are
higher than the values for the restricted versions. The results
suggest that, the incorporation of the mutual information into
the volatility modelling process has the tendency to reduce
information leakages in GARCH models. Furthermore, it is
observed that, shocks persist more in the non-augmented
models than they do in the augmented models. Consequently,
it takes a shorter time for half of the shocks in the aug-
mented models to decay than it takes in the non-augmented
models. The augmented models also yielded lower esti-
mated unconditional variances. The adjusted R-squares from
the Mincer-Zarnowitz regression suggest that the explana-
tory powers of the augmented models are higher than the
non-augmented models. By implication, the consistent lower
MAE and RMSE values observed from the augmented mod-
els indicate that the models have relatively superior predictive
abilities over the non-augmented versions. The volatility
persistence results as well as the predictive accuracies are in
full support of the results from [43].

2) OUT-OF-SAMPLE VOLATILITY ESTIMATION
Summary statistics of the forecasted volatility components of
the VaR models and their performance metrics are reported
in Table 6. It is evident from the Table that the augmented
models have larger log-likelihoods and these are signifi-
cant in three of the models. These suggest a possibility
that the augmentation may have controlled significant infor-
mation leakages from the forecasted models. In addition,
the volatility persistence of the augmented models is con-
sistently smaller, thus they may be suitable for modeling
series that exhibit IGARCH effects. These results are consis-
tent with the in-sample observations. In terms of the RMSE
and MAE values, the non-augmented models for SGARCH
and GJGARCH are relatively superior to the augmented
versions. Similarly, the augmented models for NAGARCH
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TABLE 5. Summary of in-sample estimation.

TABLE 6. Out-of-sample 1-day ahead rolling forecasts estimation.

and TGARCH are relatively superior to the non-augmented
versions, however, neither versions of the EGARCHmodel is
superior to each other. This is because the augmented version
is superior in terms of the MAE while the non-augmented
version is superior in terms of the MSE, thus there is no
clear superiority of any of the versions. Based on the overall
observations, we cannot generalize the superiority nor the
inferiority of the augmented models in forecasting volatil-
ity. The results are in full agreement with [42] in terms of
volatility persistence but in partial contrast to the same study
in terms of the accuracy of the forecasts.

3) BACKTESTING VALUE-AT-RISK MODELS
Figures 3 to 5 in the Appendix display the plots of realized
returns, out-of-sample VaRs predictions, and VaR violations.
Inspections of the plots give impressions that there were very
few VaR violations in all the models (represented by the
red dots) for the 99% quantile but relatively more violations
for the 95% quantile. There is pre-indication that all the
models may respond early to changing market conditions.
This is due to the fact that the evolutions of the VaR estimates
seem to be non-clustering, however, albeit useful, the visual
inspections do not constitute proper backtest analysis, hence,
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TABLE 7. Coverage and independence tests.

we proceed to discuss the Kupeic’s and the Christoffersen’s
tests reported in Table 7. The critical values corresponding
to 1% and 5% Chi-Squares with one degree of freedom
are 6.635 and 3.841 respectively. Similarly, the correspond-
ing two degrees of freedom critical values are 9.21 and
5.99 respectively. A good VaR estimate must pass both the
unconditional coverage and the independence tests, thus our
interest is in failing to reject the nulls of these tests. The
nulls are rejected when the test statistics are higher than the
corresponding critical values.

It is noted from the Table that the test statistics for all the
models are below the corresponding critical values except
for the VaR (GJR) and VaRA(S) models for the 5% VaR
estimates, therefore, the nulls for correct exceedances and
independence of failures are not rejected for the models with
smaller test statistics. These signify that the respectivemodels
passed the tests at 1% and 5% confidence levels.

Observations from Table 7 indicate that all the mod-
els for the 99% VaR estimates, with the exception of the
VaRB(T) have LRUC test statistics, which are less than the
6.635 critical value, thus we failed to reject the nulls of correct
exceedances of VaR violations from the models. Similarly,
we fail to reject the nulls of correct exceedances of VaR viola-
tions from the 95% estimated VaRmodels, with the exception
of the VaRA(GJR), VaRB(GJR) and VaRA(S) models. These
results suggest that all the models are significantly accurate
and acceptable for making risk decisions, however, we cannot
categorically make this conclusion. This is due to the fact
that, the unconditional test does not account for time-varying
volatility, in the sense that it ignores the time losses which

occur, thus, the test may fail to reject a model that pro-
duces clustered VaR violations [45]. To address this problem,
we use the conditional coverage test. Observations from
Table 7 indicate that the nulls of correct exceedances of VaR
violations and independence are not rejected for all the mod-
els except the 95% VaR(GJR) models. The observed failure
rates of all the models except for the 95% VaR(GJR) models,
hence, are not significantly different from the corresponding
expected rates. We can, therefore, categorically conclude that
with the exception of the 95% VaR(GJR) models, the VaR
estimates from all the models are significantly accurate and
would respond early to changing market conditions, without
clustering over time.

4) COMPARING VALUE-AT-RISK MODELS
In comparing the superiority of the estimated VaR models,
the MSC procedure alongside with the number of VaR vio-
lations, VaR violation failure rates and the ADmean and
ADmax of VaR violating returns contemplated in [39] are
used. In theory, the number of expected violations with 95%
and 99% confidence levels for 1-step ahead forecasts are
22 and 4.4 (5% of 440 and 1% of 440) respectively. Models
with violations closer to the expected violations tend to have
less failure rates. VaR estimates only an upper bound on the
losses that occur with a given frequency; thus, we do not
know anything about the sizes of the potential losses, which
is of much interest to financial risk practitioners. To address
this theoretical drawback of VaR, an alternative risk measure,
the expected shortfall (ES), is used. Given an integrable loss L
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TABLE 8. Model comparison metrics.

with E (|L|) < ∞ having a continuous distribution function
FL and a confidence level α ∈ (0, 1), the expected shortfall
is defined as [45]

ESα = E (L|L ≥ VaRα) =
1

1− α

1∫
α

VaRu (L) du (25)

In addition to the VaR estimates, we report the mean ES
values as well as the MSE values for comparison purposes.
A model with smaller mean VaR, mean VaR loss, mean ES
and MSE of the expected shortfall, less failure rate, superior
MSC rank, as well as a minimum ADmax and ADmean,
is preferred. It may not be possible for a model to be superior
in terms of all the eight metrics, hence, a voting criterion
based on these metrics is introduced to help in selecting the
model with overall superior ability (i.e. a model with majority
of the votes is adjudged superior).

The results of the comparison metrics are reported
in Tables 8. A look at the MCS values reveals that, all
the augmented models were selected into the superior set
of models at both 1% and 5% confidence levels and they
are consistently ranked number one. The VaRB(NA) and the
VaRB(T) models were eliminated by the procedure, thus in
terms of this test; the corresponding augmented models have
superior predictive abilities.

On the average, the augmented models yield lower failure
rates in comparison to the referenced models at 1% confi-
dence level but not at 5%, which is in agreement with the

results from [36], hence, the 1% confidence level VaRmodels
may lead to fewer bank failures. In addition, the augmented
models tend to have lower MSE values from the expected
shortfall estimates and lower mean VaR losses, hence; the
augmented models have superior predictive abilities in com-
parison to the reference models, however there are exceptions
to this generalization as seen in the VaR(S) and VaR(E)
models. It is further observed that, the mean absolute VaR
estimates from the augmented models are consistently lower
than the estimates from the reference models. Furthermore,
the mean ES for all the augmented models are lower than
the values for the corresponding reference models, except
for the VaR(S) and VaR(E) models, therefore, on average,
it is anticipated that the use of these augmented models may
lead to lower bank costs. The augmented models also tend
to have lower mean absolute deviations for VaR violating
estimates but produce large maximum absolute deviations in
some instances.

The overall predictive abilities of the models based on
the voting patterns indicate that, the augmented models are
relatively superior to the reference models for all the 1%
VaR estimates. The same conclusion cannot be made for
the 5% VaR estimates. This is because; there is a split of
votes among the VaR(S) models. It is worth noting that,
although the VaRA(GJR) model was decisively adjudged
superior to the VaRB(GJR), neither can be used in making
risk decisions because they all failed the independence and
the unconditional coverage tests. In general, the available
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evidence suggests superiority of the proposed method in
forecasting VaRwhich agrees with the results from [36], [43],
and [44].

It seems on the surface that models with more accurate
volatility forecasts do not necessary yield better VaR forecasts
when we compare the superiorities of the volatility models
in Table 6 to the superiorities of theVaRmodels, however, this
may not be fully true. The use of squared returns as a proxy
for actual volatility tend to over-exaggerate true volatility,
thus they lead to inflated MSE with distorted forecasts [4].
VaR forecast evaluation measures are therefore more appro-
priate in assessing volatility forecast. In this regard, based
on the superiority of the augmented VaR models for the
1% VaR estimates we can conclude that our approach of
modeling changes and breaks in the unconditional volatilities
of exchange rates yielded improved volatility forecast. On the
other hand, we cannot make such generalization for the 5%
VaR estimates although majority of the augmented models
outperformed the non-augmented versions.

5) CAPITAL REQUIREMENT ANALYSIS
Although our approach yielded superior VaR and ES esti-
mates for all models at 1% and the majority at 5%, they
are of no practical importance to risk practitioners espe-
cially, the banks when they are unable to use the estimates
to compute acceptable regulatory capital requirements (as
set out by the Basel II Accord). The capital requirements
are used to control and monitor market risk exposure of
financial institutions. Furthermore, they act as a buffer for
adverse market conditions. Overestimation of value-at-risk
forces institutions to hold significant amounts of capital and
lose opportunity costs, while underestimation overexposes
institutions to market risks and losses in their balance sheets
that cannot be recovered at crisis periods [15]. This may lead
to repercussions on their positions, on the market. Basel II
accord allows banks to use their internal models to compute
VaR estimates. Reference [39], however, emphasizes that,
banks have the responsibility to demonstrate the accuracy of
their models sufficiently through backtest analysis based on
the number of VaR violations. In addition to this, the Base II
accord has instituted penalty zone (see Table 9) to penalize
bad models in terms of a multiplicative factor k , based on the
VaR estimates over the last 250 business days. Based on the
penalty zones, the capital requirement is defined by [7]

Capital requirementt = max
{
−VaRt−1,− (3+ k)VaR60

}
(26)

where VaR60 is the average VaR over the last 60 business
days. In line with the quantitative standards prescribed by the
Basel Committee, we focus the backtest analysis on the 99%
quantile VaR estimates.

Table 10 reports the mean daily capital require-
ments (MDCR) for the out-of-sample period. A result that
immediately emerges from the Table is that the augmented
models consistently produced lower MDCR in comparison

TABLE 9. Penalty thresholds.

TABLE 10. Mean daily capital requirement.

to the non-augmented versions. The superior performance of
the augmented models in terms of the MDCR coincides with
our previous analysis based on the eight model comparison
metrics. Furthermore we can observe that, majority of the
augmented models avoided the regulatory penalty zone while
a few of them slipped into the yellow zone with the associated
penalties; however, the converse of this statement is the case
for the non-augmented models. These observations suggest
that most of the augmented models would easily (no imposed
penalty) pass the scrutiny of regulatory bodies unlike the
non-augmented versions. The outcomes in the yellow range
are plausible for both accurate and inaccurate models; how-
ever, the presumption that a model is inaccurate grows as the
number of exceptions increases in the range [7]. In Table 7,
the expected violations for the VaRA(T) model is smaller
than that of VaRB(T), the VaRA(T) models, thus, would face
less hurdles (penalties) in passing through the scrutiny of
regulatory bodies, unlike the VaRB(T). Both versions of the
VaR(S) models, however, will face similar challenges before
been certified accurate by the regulatory bodies.

VI. CONCLUSION
There are undesirable consequences associated with inac-
curate VaR estimations for banks, thus accurate forecasting
of value-at-risk forms an integral part of decision-making
and long-term stability of financial institutions. In this paper,
1% and 5% value-at-risk were estimated using univari-
ate GARCH models augmented with exogenous variables.
Hypothetical mutual dependencies between pre-estimated
volatilities and the exogenous variables were computed
to investigate the levels of exchanged information. The
Jackknife-biased corrected Kernel density estimation was
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used in computing the mutual information while Pearson’s
method was used in computing the strength of the linear
dependencies. In assessing the individual accuracies of the
VaR estimates, the conditional coverage and the uncondi-
tional coverage tests were used. Competing models, which
passed both tests, were then ranked using the model set
confidence test procedure. Several other model comparison
tools were also employed to assist in selecting the best
models. We also conducted a capital requirement analysis to
assess the usefulness of the models to banking institutions in
computing mean daily capital requirements. In the next four
paragraphs, we briefly discuss the main contributions of the
study in relation to existing studies.

In studying dependencies among the variables (volatility,
returns, and dummy or break variables constructed from
returns), to the best of our knowledge, this is the first
study to employ the concepts of mutual entropy and the
Jackknife-biased corrected KDE approach to data from the
rand forex market. Hence, this aspect of the study serves as
a contribution to literature on the relationships among the
dynamics of exchange rate markets of emerging economies
from the perspective ofmutual information. Themutual infor-
mation concepts can be used to re-examine and re-affirm the
various established forms of theoretical and phenomenologi-
cal relationships in literature. In addition, due to the insensi-
tiveness of mutual information to the size of data sets, it can
be used to study the relationships between financial variables
with limited or small data samples

In speculative asset markets, asset returns are related to
their volatilities via the risk premium theory [13]. This rela-
tionship is the underlying basis for computing risk premium
and can be used to study the effects of an asset’s volatility
on its returns. The reverse of this relationship is used to
study the concept of volatility asymmetry. Assets move in
tandem, hence, a cross-asset returns-volatility relationship
(the relationship between the volatility of one asset and the
returns of another asset) and its reverse may exist. These rela-
tionships may be useful in studying the effects of cross-asset
risk on asset returns and asymmetric effects of exogenous
returns on volatility respectively. The reverse of cross-asset
returns-volatility relationship has been useful in studying
spillover of volatility asymmetry across different speculative
asset markets [56], as well as the improvement of multivariate
volatility forecasts [48]. Cross-asset returns-volatility rela-
tionship is a theoretical construct, thus empirical evidence of
substantial mutual dependencies between volatility and the
exogenous returns support the plausibility of this hypothesis.

The study also contributes to the extant literature on VaR
estimation. In its unique contribution, it brings on-board,
a simple but a novel approach to account for breaks and
changes in the unconditional volatility of GARCH-type mod-
els. The approaches used in [2], [43], and [44] to model
breaks and time-variations involve relatively complicated
procedures which are sometimes not easy to incorporated
into other modeling frameworks. However, in comparison
to these approaches, our methodology is simple and easy

to incorporate into other volatility frameworks such as the
stochastic volatility framework. Furthermore, since the break
variables used are exogenous unlike [31], they prevents
the compounding of bias, which may be introduced by
consecutive endogenous outliers in the parameter estima-
tion. In addition, our approach takes into consideration the
actual economic state of volatility in constructing the break
variables unlike [31]; hence, periods of crises are modeled
differently from periods of increased volatility. Again, due
to the superiority of the models built on our approach and
the fact that the MCS procedure ranked all models built
on our approach number one, our approach, thus, provides
alternative or complementary tools, which can be used to
mitigate risk in financial institutions comprehensively. It is
also useful to individual traders and investors who may
not have any standard approach of computing financial risk
associated with their daily decision-making.

Finally, the forecasting structures of non-time varying
GARCH models such as [14] induce a monotonic
mean-reversion path on the long-run forecasts, thus the
forecasts converge or revert along a monotonic path, which
is inconsistent with the underlying stochastic path. This is
because the conditional forecasts converge to a monotonic
non-time varying long-run variance. The evidence of sig-
nificant estimated coefficients of the break and the proxy
variables as reported in the bottom section of Table 5 indi-
cates a potential source of uncertainties, which can induce
time-variations in the long-run variance of GARCH models
so that the conditional forecasts revert or converge to a
stochastic time-varying long-run variance consistent with
realized volatility.

The main findings of the study include the following:
• The joint distributions of all the paired variables used
in the hypothetical study are not bivariate normal
and since the individual variables are characterized by
heavy-tailed distributions, the bivariate joint distribu-
tions may be a mixture of heavy-tailed distributions

• The hypothetical study provides evidence of substan-
tial percentages of exchanged information between the
lagged exogenous variables suggesting that there is a
better chance of predicting exchange rate volatility with
these variables.

• In general, the exogenous break variables tend to
exchange relatively higher mutual information with
volatility in comparison to the endogenous break vari-
ables, thus, suggesting that break variables constructed
from exogenous returns have higher likelihoods of
volatility predictive abilities. They are, hence, more
likely to be adequate in accounting for breaks in the
unconditional volatilities of exchange rates.

• Our approach led to a significant reduction of infor-
mation leakages in the in-sample fitted models and
perceived reductions of information leakages in the
out-of-sample models. In addition, the approach also
yielded less persistent volatilities, reduced half-life, and
improved in-sample explanatory powers of the models.
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FIGURE 3. VaR plots for EGARCH.

FIGURE 4. VaR plots for NAGARCH.

In addition, there were improvements in the predicted
volatilities from all the models; however, the same can-
not be said about the forecasted volatilities.

• Our approach yielded better forecasts for all the 1%
VaR models and the majority of the 5% VaR models.
Accurate volatility is implied by an accurate VaR fore-
cast [15], thus our approach yielded similar superiorities
in terms of the volatility forecasts.

• On the usefulness of the VaR estimates in computing
daily capital requirements, our approach consistently

produced lower MDCR for all the models. Furthermore,
majority of the models built on our approach avoided the
regulatory penalty zones while few of them slipped into
the yellow zone with relatively less associated penalties.

In conclusion, our approach led to fewer VaR violations,
improved 1% value-at-risk forecasts, lower ES forecasts,
and optimal daily capital requirements, thus, the models are
preferred from regulatory and institutional point of views,
because theywould lead to optimal bank costs and fewer bank
failures. The 5% value-at-risk forecasts for the VaR(NA),
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FIGURE 5. VaR plots for TGARCH.

FIGURE 6. VaR plots for SGARCH.

VaR(T) and VaR(E) models, however, may not be pre-
ferred from regulatory point of view, although they yielded
improved VaR and ES forecasts. This is due to the fact that

the models have relatively higher violations; hence, they may
lead to frequent bank failures or severe regulatory penal-
ties. However, from an institutional point of view, they are
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FIGURE 7. VaR plots for GJRGARCH.

recommended because of their perceived lower bank costs.
It should be noted that our proposed methodology per se
might not be the cause of the relative higher violations for
the 5% VaR estimates. This may be due to the use of inap-
propriate volatility model specifications and or inadequate
market uncertainty proxies and exogenous break variables to
estimate the volatility inputs of the VaR model. In a broader
sense, the results are in support of studies, which advocate
that failure to account for breaks in the unconditional variance
lead to sizable upward biases in the degree of persistence
in the estimated GARCH models with forecasts that sys-
tematically underestimate or overestimate volatility and the
subsequent value-at-risk on average, over long horizons [43].

The proposed method depends on substantial levels of
mutual dependencies among assets, thus, it is unlikely to yield
improved forecasts when there is no substantial evidence
of mutual dependencies. In addition, the approach is not
parsimonious because it sometimes requires more exogenous
covariates and higher-order ARMA-GARCH terms to guar-
antee optimal parameters that may ensure forecast accuracy.
Themethodology can be extended to multivariate case, where
common exogenous covariates can be incorporated into the
volatility processes to improve value-at-risk forecasts. The
methodology may also be useful in forecasting value-at-risk
for other speculative class of assets, which are known to be
mutually dependent. In future, attentionwould be focussed on
applying the methodology to broader exchange rate markets
in an attempt to generalize the findings.

APPENDIX
The first rows of each of the graphs in Appendix 3 to 7 rep-
resent 99% VaR models while the second rows are for the
95% VaR models. In each row, the first model represents the
augmented model while the last represent the non-augmented
versions.
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