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ABSTRACT In this paper, a reinforcement learning algorithm is applied for the first time to find a
ferromagnetic core structure with optimal coupling coefficient between transmitting (Tx) and receiving (Rx)
coils of a wireless power transfer (WPT) system. Since formula-based theoretical design is not available due
to the non-linear magnetic field distortion stems from the presence of the ferromagnetic core in a WPT
system, the proposed design has been achieved through finite element analysis (FEA) simulation-based data
learning. The proposed design methods are so general that they can be applied to any conventional WPT
coil types. We applied the proposed algorithm to the ferromagnetic core structure design of a simple dipole
coil first. By training only 2.3 % data out of total possible cases, it is experimentally verified that the core
structure obtained by the proposed method has a coupling coefficient 7 % higher than that of the example
design level in the case of 98 cm distance between Tx and Rx coils.

INDEX TERMS Ferromagnetic core, wireless power transfer (WPT), coil design, reinforcement learning,
neural network.

I. INTRODUCTION
In 2016, people of the world were astonished at the result of
AlphaGo versus Lee Sedol, known as the Google DeepMind
Challenge Match [1]. After the Go match, Lee said, ‘‘I ques-
tioned human creativity.’’ The CEO of Google DeepMind
remarked, ‘‘AI is a powerful tool to help people do their jobs.’’
This suggests that reinforcement learning can be applied
wherever creativity is needed [2], [3].

In the era of the 4th industrial revolution, which requires
a large amount of computation based on big data, the battery
problem of electronic devices is becoming a major issue, and
wireless power transfer (WPT) technology has been studied
as one of the promising solutions. WPT technology has been
researched and commercialized by many research groups and
industries [4]–[21].

The system efficiency and power ratings of a WPT system
are considerably affected by the magnetic coupling between
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the transmitting (Tx) and receiving (Rx) coils [4], [18],
[22]–[30]. Since ferromagnetic cores have high relative per-
meability characteristics (∼2000), they have the advantages
of increasing the magnetic coupling between the Tx and Rx
coils [22]–[25], and shielding the magnetic flux of undesired
directions [18], [25]. Due to these advantages, ferromagnetic
cores have been widely used in theWPT coils in spite of their
heavy weight and high price.

Magnetic field distribution according to the different fer-
romagnetic core structures of the Tx coil is shown in Fig. 1.
The straight shape ferromagnetic core is applied in Fig. 1(a),
and the C-shape ferromagnetic core is applied in Fig. 1(b).
It is obvious that the magnetic field distribution near the
Tx and Rx coils varies depending on the shape of the fer-
romagnetic core. However, the problem is that since the
magnetic field distribution is non-linearly distorted by the
presence of the ferromagnetic cores, key variables affect-
ing the performance of a WPT system, such as the cou-
pling coefficient, mutual inductance, and the magnetic flux
density at a specific location, still cannot be theoretically
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FIGURE 1. Magnetic flux distribution by the different bipolar-coil-based
Tx ferrite cores: (a) Straight shape core and (b) C-shape core.

analyzed by using electromagnetic theory. For this reason,
numerous past studies analyzing the effects of ferromagnetic
materials on magnetic field distribution have entirely relied
on the simulation-based analysis or empirical equations so
far [31]–[33].

Therefore, in the conventional method for developing the
ferromagnetic core layout design of a WPT system, the ini-
tial structure design for obtaining high coupling coefficient
was mostly designed by the experience, creativity, and intu-
ition of skilled WPT designers. After this initial step, many
times of simulation and experiment were conducted for the
detailed design until specific criteria are satisfied such as
maximum efficiency or load power. The problem is that it
is still not clear whether the initial structure produced by the
designer’s intuition and experience will show the best per-
formance under the given application constraints, and even
worse, the initial structure design may be difficult or can
take a considerable amount of time if the constraints are very
complicated.

In the meanwhile, machine learning is known as one of
tools for analyzing non-linear systems. In 2015, machine
learning outperformed humans in the field of image recog-
nition, which has very non-linear input and output relation-
ships [34]. In the same way, the machine learning can be also
used to learn the characteristic of non-linear magnetic field
distortion caused by ferromagnetic core in aWPT system, and
to determine the optimal layout of ferromagnetic core having
high performance.

Since WPT technology is basically based on a hardware
design, there has been no research using software algorithms
such as machine learning to date. Taking into consideration
the background above, a ferromagnetic core structure design
of a WPT system using a machine learning algorithm is
proposed for the first time in this paper. With application of
the machine learning algorithm to the core structure design
of a WPT system, because it is possible to find an innovative
core structure of Tx and Rx coils that transcends the existing
knowledge and to establish an opportunity to generalize it,
it is expected that this will open a new chapter in future studies
of WPT technology.

II. THE NECESSITY OF A REINFORCEMENT LEARNING
FOR WPT COIL DESIGN
There are a number of variables that affect system efficiency
and power ratings of a WPT system, but one of the major
influences is the coupling coefficient between Tx and Rx
coils [4], [24], [26]–[30]. Therefore, by optimally designing
the structure of the ferromagnetic core having a high coupling
coefficient between Tx and Rx coils in a given condition,
the performance of a WPT system can be improved.

In WPT, the coupling coefficient between Tx and Rx
coils, k , which depends largely on the surrounding ferromag-
netic core shape, always exists, and an approximate value that
is almost similar to the actual value can be obtained through
a finite element analysis (FEA) simulation. It is worthy to
note that the coupling coefficient between the Tx and Rx coils
can be predicted with relatively low error by FEA simulation
compared to the other variables affecting power efficiency
and power rating [35], [36], e.g., AC and DC loss of coil
resistance, hysteresis and eddy current loss of the ferromag-
netic core, core characteristics, equivalent series resistance
(ESR) of capacitors, and the efficiency of the inverter and
rectifier. This characteristic enhances the reliability of the
proposed learning algorithm based on simulation data in this
paper, which will be demonstrated through algorithm results
in section III.

WPT coils have been extensively studied to date with vari-
ous geometries such as traditional circular (loop) coil, bipolar
(dipole) coil, DD coil, and DD quadrature coil [37]–[41].
Recently, as a patent of wireless power TV using dipole-coil-
based WPT system by Samsung Electronics Corp. has been
disclosed to the public [42], the shape of the bipolar coil
is expected to be widely used in future electronic products.
Therefore, in this paper, a dipole coil shape is selected as
a design example. It is worthy to note that the proposed
methods are so general that they can be freely applied to any
conventional WPT coil geometries.

Fig. 2(a) is the basic setup used in this paper for the FEA
simulation. The default size of a cube is 1 cm × 1 cm ×
1 cm, and the dipole shaped Tx and Rx coils consist of
two cubes with characteristic of the ferromagnetic core and
1 turn of winding with characteristic of copper. The distance
between the Tx and Rx coil is fixed to 10 cm. The 16 cubes
in a 4 × 4 array on the right side of the Tx coil are all
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FIGURE 2. Basic simulation environment for applying the proposed
machine learning algorithm: (a) Basic simulation setup, (b) An example of
randomly selected eight ferromagnetic cubes among total 16 cubes.

characteristic of a vacuum. The color of the ferromagnetic
cube is gray, and that of the vacuum cube is green. Fig. 2(b)
shows an example where eight cubes out of 16 vacuum cubes
are changed to ferromagnetic materials. In this paper, for
the purpose of intuitive understanding and simplicity of the
research, the ferromagnetic core structure is symmetrical with
respect to the y-axis, facing each other, and the height of
the ferromagnetic cores is fixed at 1 cm. In the case of a
ferromagnetic cube, the corresponding position is represented
by ‘1’, and in the case of a vacuum cube, the corresponding
position is represented by ‘0’. The final target of this paper is
to select the eight cubes among the 16 vacuum cubes, which
make the coupling coefficient between the Tx and Rx coils
high when changed to a ferromagnetic material. It is worthy
to note that the design constraints used in this study are one
of the examples. It can be freely changed depending on the
specific application or the intention of the designer.

Because permeability of the ferromagnetic material is sev-
eral thousand times higher than that of the vacuum, gener-
ally, the coupling coefficient between the Tx and Rx coils
in WPT varies greatly depending on the location of the
surrounding ferromagnetic cores [31]. Based on the effect,
it was assumed in this paper that each cube in a 4 × 4 array
would influence the coupling coefficient when it changed to
a ferromagnetic material, respectively. It can be seen that
the influence represents the non-linear magnetic field dis-
tortion by the ferromagnetic core, and if the influence can
be successfully analyzed, it is obvious that a core structure

with a high coupling coefficient can be found. Based on this
rationale, a machine learning algorithm, which can analyze
the non-linear characteristic of the ferromagnetic cores on
the coupling coefficient and propose a ferromagnetic core
structure having high coupling coefficient, as learning pro-
gresses, is firstly introduced in this paper to obtain the high
performance ferromagnetic core shape of a WPT system.

The initial method of this study was to learn and pre-
dict the influence of the ferromagnetic cores, which cause
non-linear magnetic field distortion, on the coupling coef-
ficient between the Tx and Rx coils by machine learning
(supervised learning). However, unlike the conventional case
where machine learning algorithm is trained from thousands
to tens of thousands of data, there are two special constraints
in this WPT application. One is that the FEA simulation
takes around 4 minutes to obtain one data set of input and
output. The other is that the number of possible cases to select
ferromagnetic cubes increases exponentially as the number of
selectable vacuum cubes increases. Therefore, it is difficult to
obtain a sufficient number of training data sets for training the
neural network in a limited time. For these reasons, to achieve
high performance with limited time and data, reinforcement
learning algorithm that can also learn the non-linear systems
by using the neural network and select the optimal action
through reward system by analyzing every possible action in
each state is applied in this study.

In the case of Q-learning, which is one of the well-known
types of reinforcement learning, when an agent takes an
action, the environment gives a reward for the action. As the
reward data accumulate, the agent selects the next action in
the direction of maximizing the reward [2], [3]. Similarly,
if the coupling coefficient between the Tx and Rx coils is
given as the reward of Q-learning, the Q-learning algorithm
will analyze the influence of each location of the ferromag-
netic core on the coupling coefficient as the reward data
accumulate, and then propose a core structure having a high
coupling coefficient. This is similar to the situation in which
an agent learned through Q-Learning solves complex mazes,
or, in a brick-breakout game, an agent breaks the edge first
to clear the stage as quickly as possible [43]. Therefore,
if a reinforcement learning algorithm is utilized, there is a
high possibility that more innovative features or principles,
hitherto unimagined by human designers, can be found in
future WPT research.

III. FERROMAGNETIC CORE STRUCTURE DESIGN BY
Q-LEARNING ALGORITHM
In this section, the Q-learning algorithm is utilized to
find optimal core structures with a high coupling coef-
ficient between the Tx and Rx coils in an WPT sys-
tem. The basic framework of the Q-learning algorithm was
implemented through Python with reference to the open
source [2], [3], [44], and the coupling coefficient between
the Tx and Rx coils obtained from the ANSYS Maxwell
FEA simulation will be used as a reward of the Q-learning
algorithm.
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FIGURE 3. Operation mechanism of the proposed Q-learning algorithm.

A. APPLICATION CONSTRAINTS
The constraint condition of reinforcement learning in this
application is that the number of data is small. When run-
ning on computing power of Intel Core i7, 64GB RAM, and
GTX 1060 6GB, the analyzing time per one simulation for
obtaining a coupling coefficient is about 4 minutes. Note that
the total number of possible cases of selecting eight cubes
out of 16 equals 16C8, 12870, and it takes about 35 days
to fully analyze all cases. Because it is almost impossible
to investigate all cases when the number of cubes increases
or becomes a 3D shape in this application, how to achieve
high performance with limited time and data is considerably
important.

In this paper, to observe the creativity of the proposed
method, the algorithm was not implemented by considering
the actual situation; i.e., the ferromagnetic cubes should not
always have to be attached. However, for the practical usage,
a condition that all ferromagnetic cubes have to be always
attached can be added in the future study.

B. Q-LEARNING ALGORITHM FOR FERROMAGNETIC
CORE DESIGN
Fig. 3 shows the operation mechanism of the proposed
Q-learning algorithm for core structure design ofWPT.When
the Q-learning algorithm receives the initial state, it takes
an action by the decaying Epsilon-greedy (E-greedy) policy.
The decaying E-greedy policy is a policy that selects cubes
at random in the early episodes of learning (exploration),
and selects cubes that are predicted to produce high cou-
pling coefficients between the Tx and Rx coils by using
accumulated reward data stored in the neural network as
the end of learning is reached (exploitation). Note that an
action in this paper is defined as selecting eight ferromagnetic
cubes out of 16 vacuum cubes by the decaying E-greedy
policy.

After the action selection, the selected ferrite information
(terminal state) is input to the environment, which is ANSYS
Maxwell. After running the simulation, the environment
returns a reward, which is the coupling coefficient between
the Tx and Rx coils. The reward becomes an action-value

function (Q-value), as described in the following equation [2]:

Q
(
s, a;θ−

)
= k (1)

where θ− is the main neural network and s, a, and k in (1)
are state, action, and the coupling coefficient between the Tx
and Rx coils, respectively. Note that the application of this
paper does not consider the future reward because it reaches
the terminal state with an action only.

After training the neural network, finally, the state is reset
to the initial state and one episode ends. Operating other
Q-learning algorithms is implemented based on the open
source [44], and Table 1 summarizes the design parameters
of Q-learning algorithms used in this paper.

TABLE 1. List of design parameters of the Q-learning algorithm.

C. NEURAL NETWORK TRAINING
Fig. 4 shows the input and output information for training the
neural network. The input layer used in the neural network
represents the information of the eight selected ferrite cubes
out of the total 16 vacuum cubes, which is terminal state.
The output layer used in the neural network is also designed
as a [1 × 16] array with the information of the coupling
coefficient at selected ferrite locations. Because nodes of
the input layer, hidden layers, and output layers are fully
connected, the output of one node is the input for all nodes in
the next layer. For the node, the simplest linear model where
each node has one weight and one bias, respectively, is used
in this study.
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FIGURE 4. Proposed neural network training structure in this study.

FIGURE 5. Example design structures and the maximum case under the given constraints: (a) Example design A, (b) Example design B,
(c) Example design C, and (d) The structure with maximum k (Result of complete enumeration).

In the neural network training, because only the coupling
coefficient is the variable to be trained, the output layer
can be basically expressed as a [1 × 1] array. However, for
implementing the exploitation in this study, it is necessary
to find the terminal state representing the specific eight fer-
romagnetic cubes that are predicted to have a high coupling
coefficient among the 16 cubes.

Assuming the output layer is set as a [1× 1] array with the
coupling coefficient only, the neural network must be used
reversely to find the terminal state representing the specific
eight ferromagnetic cubes that are predicted to have a high
coupling coefficient. However, this is not suitable because the
neural network is originally designed to operate only in the
forward direction.

Therefore, in this paper, the output layer used for training
the neural network is also designed as a [1 × 16] array
with the information of coupling coefficient at selected fer-
romagnetic locations, as shown in Fig. 4. Therefore, as learn-
ing progresses, the contribution of each ferromagnetic cube
to the coupling coefficient between the Tx and Rx coils
can be separately analyzed. After training several data sets,

by assigning the input layer of the [1 × 16] array with all
components of ‘1’ (by assuming all cubes are selected as
ferromagnetic material), it can be shown that the Q-values
in the output layer predicted by the trained neural net-
work have a degree of influence on the coupling coeffi-
cient at the corresponding locations. Accordingly, location
information of the top eight Q-values out of 16 Q-values
predicted by the trained neural network will be selected as
the following action of exploitation. As the learning pro-
gresses, in the late episodes, those cubes having an influence
on high coupling coefficient can be selected with a high
probability.

Training neural network is conducted by taking the gradi-
ent descent to the following loss function [2], [3], [44]:

Loss = (Q
(
s, a;θ−

)
− Q (s, a;θ))2 (2)

where θ− is the main neural network and θ is the target
neural network. Batch learning is applied for stability of the
networks, and the target network is updated identically as
the main network for every five episodes in the proposed
algorithm.
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D. ANSYS MAXWELL PROGRAM SETTING
With theANSYS scripting function provided by theMaxwell,
one can run the program fully automatically by using Python.
When the terminal state is input to the Maxwell, a code
that returns the coupling coefficient between the Tx and
Rx coils as an output by conducting FEA simulation is
implemented. Therefore, the learning mechanism includ-
ing action selection, simulation for electromagnetic design,
reward acquisition, neural network training, and reset process
in Fig. 3 is completely implemented only by Python in this
research.

Throughout this paper, all simulations were performed by
using ANSYSMaxwell version 17.0. Solution frequency was
set as 100 kHz, which meets the Qi standard (Design standard
forWPT system). Material for ferromagnetic cores and wind-
ings were selected as ferrite core and copper, respectively.
Boundary conditions were set to insulate the surfaces of the
Tx & Rx windings. The detail information used in the FEA
simulation is summarized in Table 2.

TABLE 2. Simulation setup for finite element analysis.

E. PERFORMANCE OF THE PROPOSED LEARNING
ALGORITHM
Under given conditions, three example designs are shown
in Fig. 5(a) to Fig. 5(c). Since there are no general rules for
designing the ferrite core structure in the conventional WPT
researches, only the example designs are introduced in this
study. The structure with the maximum coupling coefficient
between the Tx and Rx coils under given conditions is shown
in Fig. 5(d) by investigating all possible cases. The results of
the coupling coefficient normalized to the maximum value
are in parentheses.

Fig. 6 shows the magnetic flux distribution of the example
design A and the core structure with the maximum coupling
coefficient between the Tx and Rx coils under the given
conditions. It is worthy to note that the 10th, 11th and 15th fer-
romagnetic cubes in a box of Fig. 6(b) contribute to increasing
the coupling coefficient between the Tx and Rx coils.

FIGURE 6. Magnetic flux distribution of the different structure of
ferromagnetic cores (Simulation results): (a) Example design A, and
(b) The core structure with maximum k under the given constraints.

Fig. 7 shows six examples of core structures obtained by
the proposed learning algorithm. The algorithm learned a few
general rules by itself to find a core structure having a high
coupling coefficient under given conditions. It is worthy to
note that the reinforcement learning algorithm even chooses
the 10th, 11th, and 15th cubes with high probability, which
provide high magnetic coupling between the Tx and Rx
coils, by independently analyzing the ferrite cubes, as shown
in Fig. 7(b).

To obtain high performance in a short time, and to avoid
excessive time-consuming iteration of the learning algorithm,
the number of episodes of the proposed learning algorithm
was set to simulate 2.3 % (300 episodes) out of the total
possible cases, 12870 episodes, which will be described in
detail in the following sub-sections.

The reason the proposed algorithm cannot always find
a core structure with the maximum coupling coefficient is
that the proposed algorithm has to search for the high per-
formance structure through learning with not only limited
data (300 episodes), but also unknown final destination core
structure.
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FIGURE 7. Six examples of the ferromagnetic core structure obtained by
the proposed Q-learning algorithm: (a) Result 1, (b) Result 2, (c) Result 3,
(d) Result 4, (e) Result 5, and (f) Result 6.

F. COMPARISON WITH GENETIC ALGORITHM
The goal of this study is to find out the ferromagnetic core
structure having a high coupling coefficient between the

FIGURE 8. Flowchart of the genetic algorithm in this study.

Tx and Rx coils in a short time by analyzing the non-linearity
of the magnetic field distortion in the WPT system.

In general, genetic algorithm is considered to be useful
when the search space is large, complex or poorly understood,
the domain knowledge is scarce, expert knowledge is difficult
to encode, and a mathematical analysis of the problem is
difficult to carry out [45], [46]. In this respect, the genetic
algorithm can be also applied to the WPT application in this
study, therefore, the comparison study between the reinforce-
ment learning algorithm and genetic algorithm is conducted.

For the comparison, the key point is whether the algo-
rithm can converge quickly. There are two reasons. At first,
exploration in this study is costly and impossible to carry
out all cases. Secondly, to obtain an action-value function
data, which is fitness function in the genetic algorithm,
the FEA simulation which takes around 4 minutes to analyze
the non-linearity should be used. Therefore, the comparison
between the two algorithms was conducted in terms of the
convergence of the coupling coefficient compared to the num-
ber of training sets.

Fig. 8 shows the flowchart of the genetic algorithm to
design the ferromagnetic core structure in this study. It starts
from making a random population. When fitness function
receives the first generation, it analyzes the coupling coeffi-
cient of all the ferromagnetic core structures of the first gen-
eration by using FEA simulation. After the fitness function,
best samples and lucky samples are selected as survivors.
By using the survivors, crossover step is implemented. In the
crossover phase, the child always inherits the positions of
the ferromagnetic cubes that both parents have, and for the
remaining number of cubes, the child randomly inherits the
unique positions of the ferromagnetic cubes by each parent.
In the mutation stage, there is a low probability that one
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FIGURE 9. The comparison results of the 10 times operations of two algorithms: (a) Reinforcement learning algorithm, and (b) Genetic algorithm.

randomly selected ferromagnetic cubewill turn into a vacuum
cube, and one randomly selected vacuum cube will turn into
a ferromagnetic cube. The design parameters of the genetic
algorithm used in this study are summarized in Table 3.
Considering the long computation time of the FEA simulation
in the WPT application, the population and iteration of the
genetic algorithm is set equal to the time required for the FEA
simulation of the reinforcement learning algorithm.

TABLE 3. Design parameters of genetic algorithm.

The comparison results of the 10 times operations of the
two algorithms are shown in Fig. 9. Unlike the reinforce-
ment learning algorithm, which converges rapidly with a high
coupling coefficient of 99.3 % on average at 300 episodes,
the genetic algorithm converges relatively slowly and find a
coupling coefficient of 97.7 % on average at 300 episodes.
This is because the influence of each ferromagnetic cube
on the coupling coefficient has a considerably non-linear
characteristic. Genetic algorithm that eliminates the explicit
information concerning less desirable actions, as generations
evolve, is slow to converge. On the contrary, in the case of
the reinforcement learning algorithm, all contributions of the
ferromagnetic cubes to the coupling coefficient are trained
through the neural network, so that the optimum coupling
coefficient can converge quickly.

Fig. 10 shows the number of times selected per cube out of
100 times operations by the proposed reinforcement learning
algorithm. With the proposed algorithm, the 1st, 2nd, 3rd,
4th, and 5th cubes are selected with a very high possibility.

FIGURE 10. Selected number of times per cube out of 100 times
operations by reinforcement learning.

In addition, the 10th, 11th, and 15th cubes are selected with
a high possibility.

Fig. 11 shows histogram results of the reinforcement learn-
ing algorithm and genetic algorithm for 100 times operations,
respectively, when the final episodes equal to 300. Note that
300 structures out of the total 12870 possible structures were
searched at an operation for each algorithm. As a result of
100 times operations, the reinforcement learning algorithm
finds a core structure with an average coupling coefficient
of 99.3 % compared to the maximum value. In the case of
genetic algorithm, a value of 97.7 % is obtained.

Therefore, by using the software algorithms, it is expected
that an innovative core structure that cannot be even imagined
by the WPT designer can be found. For the WPT applica-
tion, comparison results show that the reinforcement learning
algorithm has higher performance compared to the genetic
algorithm. However, it turns out that both two algorithms are
all effective considering that the ferromagnetic core structure
with the highest coupling coefficient could not be easily
imagined by the WPT designer. The two algorithms will
show more powerful performance when the given constraints
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FIGURE 11. Results of 100 times operations of the reinforcement learning
and genetic algorithm when episodes = 300.

become more complicated or the number of selectable cubes
is increased. Furthermore, it is possible to find the optimal
core structure of the Tx coil while fixing the structure of the
Rx coil in a specific shape, or to discover a core structure of
the Tx coil that can provide a similar coupling coefficient to
multiple Rx coils; this is left as further work.

G. STABILITY AND CONVERGENCE OF THE ALGORITHMS
It is known that there are difficulties in analyzing the sta-
bility and convergence of the algorithms where mathemati-
cal or theoretical relationships between the input and output
data are not identified [47]–[51]. To address the stability and
convergence issues of the reinforcement learning and genetic
algorithm used in this study, the authors are conducting
research to formulate the non-linear magnetic field distortion
phenomena caused by the ferromagnetic core in a WPT sys-
tem. However, since the non-linear magnetic field distortion
in the WPT system is still beyond physical theory, theoret-
ical formulation of the input and output relationship may
take a considerable time. Due to this limitation, the authors
use trial-and-error techniques to determine the number of
episodes in this study. As shown in Fig. 9(a), the result of
adjusting the episode to 300 shows that the reinforcement
learning algorithm can converge quickly. The authors hope
that the methods and results of this study will be used to
support future research that will physically characterize the
mathematical models between the ferromagnetic cores and
magnetic fields.

IV. EXPERIMENTAL VERIFICATIONS
Experiments were conducted to measure the coupling coeffi-
cient between the Tx and Rx coils for the example design A
and the core structures obtained by the reinforcement learning
algorithm. Since the ferromagnetic cube used in the algorithm
has a problem of precise ferrite machining, a customized
prototype was used for the experimental verifications. PM12
from TODAISU was adopted for the ferromagnetic cores;

it has 3200 relative permeability at the conditions of room
temperature and 100 kHz measuring frequency. The size of
one customized PM12 is l× w × t (= 98 mm × 48 mm ×
4 mm). The number of turns for the Tx and Rx coils was
set to 6 to prevent small inductance values, and the distance
between the Tx and Rx coils was set to 10l (= 98 cm),
as shown in Fig. 12. In the experiment, inductance values
were measured by an impedance analyzer, E4990A made by
KEYSIGHT. To minimize the effect of the floor concrete
structures, the measurement was carried out on a 100 cm high
wooden table.

FIGURE 12. Basic setup for experimental verifications.

Example design A (Fig. 5(a)) and two results obtained
by the proposed algorithm (Fig. 7(b) and Fig. 7(f)) were
fabricated, as shown in Fig. 13. In each case, the coupling
coefficient between the Tx and Rx coils was measured by the
following equations [52], [53].

LTotal = L1 + L2 ± 2M (3a)

M = k
√
L1L2 (3b)

where L1 and L2 are the inductance of the Tx and Rx coils,
respectively, k is the coupling coefficient between the Tx and
Rx coils, and M is the mutual inductance between the Tx
and Rx coils. Note that LTotal is the sum of the individual
inductances connected together in series.

FIGURE 13. Fabricated structures of the Tx and Rx coils:
(a) Example design A in Fig. 5(a), (b) Result 2 by proposed algorithm
in Fig. 7(b), and (c) Result 6 by proposed algorithm in Fig. 7(f).

In Table 4, the measurement results of L1, L2, k , and
M for the fabricated structures in Fig. 13 are summarized.
Measurement results show that the structures obtained by
the proposed algorithm outperform the example design with
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TABLE 4. Measured parameters of the example design and results obtained by the proposed algorithm.

respect to the coupling coefficient between the Tx and Rx
coils at the air-gap of 10l.
Fig. 14 shows the simulation and experiment results of the

coupling coefficient for the fabricated two structures, which
are example designA (Fig. 13(a)) and result 2 by the proposed
algorithm (Fig. 13(b)), with respect to the distance between
the Tx and Rx coils. Due to the manufacturing errors, small
discrepancies exist between the simulation and experiment
results, but it can be seen that there is no difference in the
tendency of the two results. The coupling coefficient of
the proposed structure starts to become higher than that of
the general design A when the distance between the Tx and
Rx coils is 7l. Therefore, the results are in good agreement
with the measurement results in Table 4.

FIGURE 14. Simulation and experiment results of the coupling coefficient
w.r.t. the distance between the Tx and Rx coils for the fabricated example
design A (Fig. 13(a)) and result 2 (Fig. 13(b)).

Physically, this is the result of lowering the magnetoresis-
tance between the Tx and Rx coils, by virtue of the 10th,
11th, and 15th ferromagnetic cubes of the proposed structure,
as shown in the magnetic flux distribution of Fig. 6.

In this paper, only the coupling coefficient was used as a
reward of the software algorithm. However, it is possible to
freely design the optimal structure by applying other param-
eters at the same time such as mutual inductance value for
maximizing the output power in the Rx coil, or magnetic
flux density value for uniform magnetic flux distribution.
Therefore, the method proposed in this paper can be used to
optimize previously commercialized WPT products, and it is
expected that this will further upgrade the WPT technology.

V. CONCLUSION
An optimal structure design of ferromagnetic cores in WPT
by reinforcement learning algorithm has been proposed in
this paper for the first time. Unlike conventional design
methods that rely on the intuition or experience of the WPT
designer, the proposed method has two advantages:

1) Applicable under complex constraints where it is diffi-
cult to ensure that the design by the WPT designer is optimal

2) Possible to discover an innovative structure without
investigating all cases

Because of these advantages, even thoughmost of theWPT
designs are based on the hardware characteristics, the learn-
ing algorithm is applicable and can find an innovative struc-
ture that shows high performance above the level of structures
proposed by skilled WPT designers. In addition, it can be
easily applied to various types of WPT optimal designs such
as a coil shape design, or a flux distribution design. Through
combination with the convolutional neural network (CNN),
which is optimized for image data learning, it is anticipated
that optimization will be possible for a wider range of WPT
design such as high dimensional matrix or 3-D optimal struc-
ture design to find more innovative structures; this is left as
further work. Finally, software power is expected to bring
more creativity to future WPT studies.
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